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Abstract

EvacSim is a multi-agent building evacuation simulation
featuring pedestrian occupant agents occupying two-
dimensional continuous free-space to simulate pedestrian
egress for building evaluation and evacuation planning
support. We detail pedestrian model elements that govern
microscopic agent movement such as personal space
preservation, obstacle avoidance and moving together as a
crowd. We validate the EvacSim pedestrian model against
real-world pedestrian data, comparing flow rates, density
and velocity for corridor entry and for merging crowds, and
we demonstrate that EvacSim simulations are consistent
with the real-world data.

1. INTRODUCTION

EvacSim (Figure 1) is a simulation tool developed in
Java that models pedestrian evacuation of buildings for
evaluation of building designs, evacuation planners and
emerging emergency response techniques [1,2]. EvacSim
models space in two dimensions with agents occupying
continuous free space, updating each agent periodically
(once per "tick" of simulation time). In this paper we
describe the requirements of simulation, the model design
choices taken to accommodate these requirements, and the
validation of this model against real-world pedestrian
movement data.

An important feature of the EvacSim model is that
complexity is kept low by performing relatively simple
atomic actions. For example, rather than re-computing agent
positions to maximize agent personal space in each tick, our
agents make a series of small positional adjustments over
the course of multiple ticks, with stable positioning arising
naturally as a consequence.

Agents preserve personal space, avoid obstacles
collisions, and produce queuing and congestion behaviour
which is a key requirement for building and planner
evaluation. We describe experiments performed to evaluate
the model in terms of the pedestrian throughput in various
bottleneck widths and compare these results with real-world
pedestrian experiments from the literature, demonstrating a
close correspondence between EvacSim  pedestrian
movement and real behaviour. We also investigate the

behaviour of crowds merging in building evacuation,
comparing EvacSim's model with real-world t-junction
results and we show how an improvement to the braking
behaviour of the agents improves the model realism.
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Figure 1- Screenshot of an EvacSim simulated

evacuation

2. REQUIREMENTS

Simulation of evacuation requires an occupant model
that accurately reflects the behaviour and movement of
building occupants in order to properly reproduce key
evacuation metrics such as congestion data and evacuation
time. Furthermore, in application scenarios involving real-
time response systems such as dynamic evacuation
planning, there is a strong requirement for efficient, faster-
than-realtime simulation to produce predictive results to
assist decision making. This requirement necessitates a
balance of realism and computational simplicity in order to
provide useful simulation results under the time constraints.
In multi-agent simulation, the overall complexity of the
simulation is a product of the individual complexity of
constituent agents. As such, for timely simulation we
require individual agent computation to be kept low while
still providing the degree of realism required to reproduce
real pedestrian behaviour.

3. RELATED WORK

A number of model types for pedestrian egress exist,
notably Cellular Automata (CA) models[3-6], Graph
models[4,7] and multi-agent models[8-10]. While CA and
Graph models have a low computational complexity, they
are somewhat abstracted from the reality of the evacuation
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process and building structure, and can underestimate
congestion, the impact of merging flows of pedestrians,
interaction of pedestrians and their use of building space.
Multi-agent models have greater realism but this comes at
the expense of computational complexity. While EvacSim
makes use of a free-space multi-agent model, we designed
our pedestrian movement model to simplify computation
while maintaining realistic congestion and throughput
characteristics.

In developing our pedestrian simulation model we take
inspiration from the Social Forces model proposed by
Helbing[11] and flocking techniques such as those described
by Reynolds[12] and Olfati-Saber[13] to achieve a balance
of realism with computational efficiency. Helbing[11]
describes a detailed model for modeling pedestrians in terms
of the forces acting on the pedestrians to preserve personal
space, avoid collisions, and head towards exits. These forces
are modeled as attractive and repulsive forces acting on the
agent. The FDS-Evac simulation developed by Korhonen et
al[9] is an implementation of the social forces model,
integrated with the FDS Fire Dynamics Simulator. The
EvacSim model accounts for similar pedestrian behaviour as
the Helbing Social Forces model but reduces model
complexity by having occupant agents compute simpler
adjustments regularly which, over time, produce similar
phenomena.

A variety of real-world pedestrian movement
experiments exist in the literature. These experiments
typically consist of tracking participant movement through
bottlenecks of various widths, monitoring the rate of
throughput and mapping this to the corridor width. In our
work we performed experiments comparing EvacSim
bottleneck throughput characteristics with real-world results
from Seyfried[14], Kretz[15], Mueller[16] and Nagai[17].
We also compare with results from the t-junction
experiment work of Zhang et al [18]. This approach to
validation is similar to the approaches taken by Tavars[19],
Heliovaaraa[20], Schadschneider[21] and Wagoum[8] in
validation of their pedestrian simulation models.

In our previous work we investigated applications of
faster than realtime simulation in near-future emergency
outcome prediction[1] and decomposition of simulation
space for highly scalable, multiple-future simulation[2]. As
part of our work in [1] we investigated the simulation speed
of EvacSim for a variety of population densities,
demonstrating the capability of EvacSim for simulation of
evacuation in much faster-than-realtime timeframes.

4. MODEL DETAILS

EvacSim models the world in 2-dimensional free space,
representing distance in simulation "units". Time is
represented as simulation "ticks"; in each tick of the
simulation, each of the simulation elements (occupant
agents, sensors etc) are updated according to their function
or behaviour. Agents are represented in the world by 10-unit
diameter discs and each agent possesses a motion vector

combined with a 2-dimensional (x,y) coordinate pair which
governs its moment-to-moment movement. The maximum
amount of forward movement a given agent can make is
taken from a standard distribution of maximum speeds, and
the amount of actual forward movement performed tick-to-
tick is governed by this value and the braking procedures of
the movement model. Agent decision making processes
modify this vector periodically, directing it towards a goal
or adjusting it to avoid collisions depending on the agent
high-level behaviour model and agent observations. Agents
select visible goals to move towards as part of their
decision-making behaviour by reasoning about a graph
model of the building space; details of this higher-level
decision-making behaviour are outside the scope of this

paper.

Table 1 - EvacSim Variables

Variable Description
Name
S Amount of space preserved around agent if
possible (in simulation units)
¢ (i) Factor determining the rate of personal
space adjustment agent i makes from tick-to-
tick (in simulation units)
V(i) The maximum distance agent i can
traverse in a single tick (in simulation units)
V'(i) The distance the agent i will traverse in the
next tick, determined by Vi times nm (i) (in
simulation units)
o(i) Vector for agent i with a direction angle in
degrees
pos(i) 2D floating point coordinate pair
representing agent i's position in space
goal(i) 2D floating point coordinate pair
representing the agent i's current goal
Ogoal Amount of adjustment permitted to

SteeringVector angle each tick when pointing
towards goals, in degrees

SD Distance in front of the agent to check for
obstacles, in simulation units

Bevade Amount of evasive action taken per-tick
when avoiding obstacles, in degrees

n (i) Floating point decimal between 0-1. Used
with V(i) to determine V'(i) value

o (1) The radius of the agent i (in simulation
units).

CD Distance in front the agent to check for
collision with other agents and obstacles (in
simulation units)

Obrake Angle cone in front of the agent in which
upcoming collisions are considered (in
degrees)

The agents attempt to preserve personal space around
them, and avoid collisions with other agents by braking and
steering to avoid them, similar to the social forces model




described by [Helbing,11]. Each agent possesses a number
of variables (Table 1) governing the parameters of the
movement behaviour, and a set of global constants dictate
the parameters of general simulation, such as the amount of
personal space agents will seek, or the distance in front of
agents where collision avoidance is considered. In this
validation, 20 simulation ticks corresponds to 1 second of
simulated time, and 15 units corresponds to 1 metre of
space. With this conversion rate, agent maximum speeds fall
in the range 1.5-2.5m/s.

4.1. Agent Tick procedure

Each agent is called upon, once per simulation tick, to
update its position based on personal space, collision
avoidance and progress towards its goal. This procedure
operates as follows:

|Agent Tick procedure

1. Personal Space adjustment

Direct ¢(i) towards goal (1)

Adjust ¢(i) to steer around obstacles

Adjust pos (i) to sidestep obstacles

Apply braking factor to avoid

collisions with other agents

6. Move forward V(i) units, in ()
direction

g w N

4.2. Maintaining Personal Space

Accuracy of the agent model requires a mechanism for
the agents to ensure that they are not overlapping each other.
Typical behaviour for humans is to avoid close contact with
other occupants if there is space to do so, maintaining a gap
between other occupants, or personal space.

We achieve this by performing periodic checks to
determine if there are any agents nearby that are within a
threshold distance (S) and for the agent to adjust its position
to move away from the closest infringing occupant
(movement amount based on g (i)). Through this mechanism
of repeated observation and position adjustment, a
compressed group of agents should spread out to cover an
area. An agent is considered to be violating another's
personal space if the distance between the centres of the two
agents is less than the sum of the radii) plus S.

Having identified the closest other agent that is within
the Personal Space threshold, the agent moves in the
opposite direction by an amount based on the agent Space
Adjustment value ¢ (i) and the distance between the two
agents i, j according to the formula:

(2-(1 -((S -distance(pos(i), pos(j))/S))?) * ¢ (i)

This value indicates how far the agent pushes away from
the nearest occupant in a single time unit, and scales the
amount of movement based on inverse square of the
distance. This personal space behaviour is implemented as
part of the agents' "tick" method, called once per time unit.

After all agents have moved to accommodate the Personal
Space requirements, the simulation ticks forwards and the
procedure repeats. In these scenarios, the agents will move
apart again in the next few ticks if possible but for very
dense populations of agents there may be no stable
positioning without personal space violations occurring.

4.3. Steering towards Goals

A crucial capability agents need is the ability to move
from their current position towards a goal. This fundamental
capability can be combined with path planning to produce a
variety of microscopic movement behaviour. The basic
steering mechanism is based on the agent pointing
themselves towards their current goal, and adjusting their
position from time unit to time unit, to move themselves
closer to the goal. This steering of an agent i is performed
using a Steering Vector ¢(i) and the movement amount is
governed by V'(i). The rate of steering adjustment is given
by 6goal, giving the number of degrees of adjustment per
tick until the agent is satisfied that it points towards the
goal.

4.4. Avoiding Obstacles

With the Steering Vector, the agent can direct itself
towards a goal and move towards it. Without obstacle
avoidance, the agent would bump into obstacles or other
agents close to its chosen path. By adjusting the Steering
Vector to steer around obstacles in its path, the agent can
safely travel to its goal. To adjust the Steering Vector, the
agent first needs to look ahead to determine if it is
approaching an obstacle. To do this, the agent creates 2
"Eye" vectors. These vectors are projected out directly from
the sides of the agent by an amount equal to the Obstacle
Lookahead distance, SD, and aim in the same direction as
the Steering Vector (i) .

The lines described by these Eye Vectors are checked
against the building geometry to determine if there is a
collision coming up (Figure 2). If there is a Collision on the
"Left Eye" but not on the "Right Eye", then the upcoming
obstacle can be avoided by steering more to the right;
similarly if there is a collision on the Right Eye and not the
Left the agent steers left to avoid it. The agent then also
adjusts its current position by "sidestepping”. This
movement causes the agent to step 1 unit to the left or right
(i.e. perpendicular to the steering vector) if there is a
collision on the Right or Left Eye. If both Eyes are in
collisions, then the agent slows down to avoid impacting the
obstacle while the steering vector is adjusted to steer away
over the next few ticks. The amount of collision avoidance
steering adjustment is governed by the parameter Oevade.
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Figure 2 - Agent Lookahead for Avoiding Obstacles

4.5. Braking and Avoiding collisions between
Agents

If an agent is approaching another agent, it needs to slow
down to avoid a collision. To produce behaviour such as
queuing at bottlenecks, the agents need to be able to slow
themselves down to avoid collisions and to stay at this low
speed while waiting for the area ahead to clear up. This
braking behaviour is achieved by periodically scanning the
area ahead of the agent for other agents in line of sight
within a vision cone delineated by 0brake (Figure 3). The
agent then adjusts the impact the Speed value V(i) has on
movement by multiplying it by a Brake Factor value n(i),
between 0 and 1.0. m(i) is based on the proximity of the
nearest other agent j and the angle difference between (i)
and ¢(j). This is implemented by iterating through all other
agents in the simulation, and placing any agents within a set
number of degrees (Brake Angle parameter Obrake) to the
left or right of the Steering Vector in a "Brake Candidate"
set. This set is iterated through to determine the distance to
the closest agent in the set. This distance determines the
amount of braking to be applied to V(i) to produce the final
movement amount, V*(i).
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Figure 3: Agent Braking to avoid collision

4.6. Resolving Overlap (""Enforce core™)

In some cases, agents may be in a collision with each
other (i.e. their radii overlap). This can occur when very
dense populations are placed in confined areas where no
amount of adjustment can produce a configuration without
collisions, or when fast moving agents don't slow down

quickly enough and collide with slow moving agents. In
such a situation, the agents should prioritize the resolution
of the overlap over their goal-directed movement. To
achieve this, we implement an "Enforce Core" behaviour
invoked during collisions which disables goal-oriented
movement until the overlap is repaired (via Personal Space
adjustments described in Section 3.2.
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Figure 5 - Enforcing Agent core

Implementation of the Enforce Core behaviour was
tested by generating large numbers of agents in a room to
the left of the simulation world and sending them through a
narrow doorway to the right. The over-supply causes high
congestion and without the Enforce Core mechanism we
find a high degree of agent overlapping as the pressure of
agents trying to get to the goal exceeds the force of the
agents attempting to maintain personal space (Figure 4).
With Enforce Core enabled (Figure 5) we find that the goal-
movement pressure is reduced as agents stop to correct for
personal space whenever overlaps occur, and there is a
much more stable configuration near the doorway and an
eightfold reduction in agent overlapping.

5. VALIDATION EXPERIMENTS

The EvacSim pedestrian model was tested in a series of
experiments to compare with real-world pedestrian
movement experiments. As a key factor for building
evacuation planning is the number of occupants that can be



safely moved through a given area of the building,
bottleneck throughput is a significant metric for evaluating
egress simulation models. For adequate decision support,
evacuation simulation needs to produce throughput metrics
in line with real-world pedestrian behaviour.

The first set of experiments was performed to determine
the flow rate of pedestrians through a bottleneck. This
experiment involved generating agents and instructing them
to walk through a narrow corridor and out the other side,
where they are removed from the simulation. The
experiment is repeated with a variety of bottleneck widths
and the maximum flow throughput is recorded in each case.

First we set the experiment up with the widest corridor
width to be tested (2m). Agents are introduced in the left-
side room and instructed to move to the right. The first
introduction rate tested is initially set low (1.25/second),
with the procedure repeated for progressively higher
introduction rates (up to 6.66.../second); and the actual
throughput achieved is noted for each inflow rate attempted.
The purpose of this procedure is to discover an optimal
throughput value for the corridor. At low supply rates the
throughput achieved increases linearly but at higher supply,
we observe lower throughput (Figure 6) caused by crowding
at the entrance and inter-agent jostling, corresponding with
the traffic models of Nagel, K; Scheckenberg [21]
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Figure 6 - Throughput Achieved for 2m corridor

The experiment is then repeated varying the corridor
width, and gradually increasing the agent supply until the
throughput peaks, giving the optimal throughput for width
of corridor. These results are compared against the real-
world data described in Section 3 in the graph of Bottleneck
Throughput (Figure 7). In this comparison we observe that
EvacSim throughput results fall well within the range of
these real-world results. These results shows that EvacSim's
pedestrian model accurately reproduces bottleneck
congestion and throughput found in real pedestrian
behaviour. We observe an underestimation of throughput for
very narrow bottlenecks (70cm and below); however
bottlenecks of this size are not likely to be a feature of
building evacuation (as they would be more narrow than the
minimum door width typically stipulated by building
regulations[22,23]).
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Figure 7 - Bottleneck throughput comparison of

EvacSim with real-world experiment results

6. T-JUNCTION EXPERIMENTS

Crowd merging is a key feature of building evacuation,
as small groups in the building head towards exits and come
together into larger groups. Particularly significant for
evacuation planning are the movement characteristics of
occupant flows merging together. Zhang et al [18]
performed real-world experiments on crowd merging in t-
junction spaces and identified a phenomenon wherein the
average velocity for a given density of occupants is lower at
the point of merging than it is in the space after the merge
occurs. They suggest that the cause of this is likely to be
slowdown from negotiation of the merging of two streams
and tentativeness.

6.1. T-junction experiments with default agent

Experiments were performed in a scenario based on the
t-junction pedestrian movement experiment performed by
Zhang et. al[18] (Figure 8). In these experiments, pedestrian
agents are introduced at two sides of a t-junction, and
instructed to move to the point of junction and then continue
down the central route. All corridors have the same width,
and a grid of simulated square "sensors" is used to
periodically sample the velocity and density values in
different areas of the t-junction space.

We label appropriate sensors as "Before", "Centre" and
"After"; Before and After correspond to the "in front
merging, left" and "behind merging" areas of [18]. "Centre"
is the merging area of the t-junction, an area unlabelled in

Figure 8 - and EvacSim

experiments

Zhang[18]

t-junction



As with 1V-b, we start with a low inflow of agents and
gradually increase this inflow over time. The results of each
sensor sampling are given as data points in the Specific
Flow graph in Figure 10 as Js (average velocity for a given
density of occupants) versus p/ m 2 (occupants per m 2).

With the standard agent model, we find that the Before,
Centre and After have little to differentiate each other, in
contrast with the data from [18], in which "behind merging"
shows a clear seperation from the areas before the merge
(Figure 9). The standard agent model doesn't differentiate
between agents coming towards one another (i.e. two
streams merging) and agents heading in the same direction
in a single stream; agents will apply braking even if the
agents in front of them are also heading in the same
direction.
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Figure 9 - Flow vs Density in real-world T-Junction
experiments (Zhang[18])
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Figure 10 - EvacSim T-Junction Flow vs Density (default
agent model)

6.2. T-junction experiments with stream formation
behaviour
To reproduce the phenomenon identified by [18], the
agents need to distinguish between two different cases when

another agent enters the braking area delineated by 6brake
and SD (Section 4.5). To achieve this, we extend the
braking behaviour to consider the average vector of recent
movement for agents in the braking area. If a brake check
would normally occur, but the agent in front is heading in
the same direction as the braking agent, then the braking
agent can maintain its current speed, which we call "stream
formation”. Agents in a crowd moving in a common
direction should travel at a faster average speed due to the
lower degree of braking occuring.

Each agent possesses a record of recent coordinate
positions which is used to produce an average past motion
vector. Agents observe one another over time to produce
past-motion vectors for other agents and use these to
determine the difference in motion angle between one
another, the "motion difference angle”. We modify the
braking procedure described in Section 4.5 to ignore braking
for agents greater than 25% of the Obstacle Lookahead
value SD away with a motion difference angle of less than
the parameter "MotionDifferenceAngle tolerance”, or
"MDA".

The experiment described in section 5.1 was repeated
using two MDA values: 20 degrees and 60 degrees, with the
relationship between specific flow and density shown in
Figure 11.
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Figure 11 - T-Junction Flow vs Density (Stream-forming
agent model)



We find a clear separation between the area after
merging and the areas before the merge when using the
stream formation behaviour. We also observe greater
average specific flow due to less braking occurring in the
whole system generally.

6.3. T-junction Heatmaps

Data from the square grid "sensors" is averaged out over
the duration of the experiment and used to produce
heatmaps for comparison with heatmaps from [18] (Figure
12) illustrating the average densities (Figure 13) and
velocities for agents in the t-junction experiment space
(Figure 14). In these heatmaps we can observe the impact of
a wider tolerance in Motion Difference Angle. With MDA
of 20 degrees we observe the velocity of agents in the
"centre" area to be lower than the mid-corridor flow after
merging, as in [18]. With MDA of 60 degrees, the velocities
through the merging centre area remain high as the agents
are more likely to ignore the braking procedure despite
negotiating a merging.
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Figure 12 - Density and Velocity heatmaps for
Zhang[18] t-junction experiments
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Figure 13 - Average Density heatmaps for EvacSim
Stream-forming agents, MDA=20°, 60°
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Figure 14 - Average Velocity Heatmaps for EvacSim
Stream-forming agents, MDA=20°, 60°

7. CONCLUSIONS AND FUTURE WORK

In this work we described the requirements and details
of the EvacSim pedestrian evacuation model. This model
achieves complex occupant behaviour through periodic,
low-complexity computation to produce realistic pedestrian
movement. The accuracy and realism of this model is of key
importance in evaluating emergency evacuation planners
and providing useful predictive information for safety
personnel. To show the model realism, it was validated
against real-world pedestrian movement experimental data
in bottleneck throughput scenarios, demonstrating that this
evacuation simulation model produces throughput metrics
that match closely with real-world experiments investigating
pedestrian movement.

We identified the special case of crowd merging in
building spaces as being of particular importance in
evacuation. We made adjustments to the agent model to
reproduce real-world experimental results for crowd
merging in t-junction spaces. These adjustments reproduces
the phenomenon of reduced flow in crowd merging areas
relative to unidirectional corridor flow.

In future work, we will continue development and
evaluation of the EvacSim simulation model. As part of on-
going development of the agent model, we will evaluate the
impact of higher-level agent behaviour such as multi-goal
path planning and agent group formation on the throughput
characteristics of the agent model.
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