
Repairing Wireless Sensor Network Connectivity

with Mobility and Hop-Count Constraints

Thuy T. Truong, Kenneth N. Brown, and Cormac J. Sreenan

Mobile & Internet Systems Laboratory and Cork Constraint Computation Centre,
Department of Computer Science, University College Cork, Ireland

{tt11,k.brown,cjs}@cs.ucc.ie

Abstract. Wireless Sensor Networks can become partitioned due to
node failure or damage, and must be repaired by deploying new sen-
sors, relays or sink nodes to restore some quality of service. We formu-
late the task as a multi-objective problem over two graphs. The solution
specifies additional nodes to reconnect a connectivity graph subject to
network path-length constraints, and a path through a mobility graph to
visit those locations. The objectives are to minimise both the cost of the
additional nodes and the length of the mobility path. We propose two
heuristic algorithms which prioritise the different objectives. We eval-
uate the two algorithms on randomly generated graphs, and compare
their solutions to the optimal solutions for the individual objectives. Fi-
nally, we assess the total restoration time for different classes of agent,
i.e. small robots and larger vehicles, which allows us to trade-off longer
computation times for shorter mobility paths.

Keywords: Sensor Network, Connectivity Repair, Sink Placement.

1 Introduction

Wireless Sensor Networks are becoming increasingly important for monitoring
phenomena in remote or hazardous environments, including pollution monitor-
ing, chemical process sensing, disaster response, and battlefield monitoring. As
these environments are uncontrolled and may be volatile, the network may suf-
fer damage, from hazards, direct attack or accidental damage from wildlife and
weather. They may also degrade through battery depletion or hardware failure.
The failure of an individual sensor node may mean the loss of particular data
streams generated by that node; more significantly, node failure may partition
the network, meaning that many data streams cannot be transmitted to the sink.
This creates the network repair problem, in which we must place new radio nodes
in the environment to restore connectivity to the sink for all sub-partitions.

In this work, we assume a survey has been completed, and so we know which
nodes have failed, which radio links have been blocked, and which routes between
positions can no longer be traversed. The tasks that remain are to decide on the
positions for the new radio nodes, and to plan and follow a route through the
environment to place those nodes. We assume possible locations for new radio

J. Cichoń, M. Gȩbala, and M. Klonowski (Eds.): ADHOC-NOW 2013, LNCS 7960, pp. 75–86, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

76 T.T. Truong, K.N. Brown, and C.J. Sreenan

nodes are limited to a finite set of positions where a node can be securely placed
and which can be accessed. Radio nodes are expensive, and so solutions which
require fewer nodes are preferred. In addition, the users of the WSN may require
data to be transmitted from the sensors quickly, to allow a timely response,
and so there will be limits on the number of radio hops allowed between the
sensors and the wider network. To achieve this, we may prefer to deploy some
expensive sink nodes which provide their own network connection, in addition
to relay nodes. Physically moving around the environment may be expensive
in energy use, may take significant time, or may expose the agent placing the
nodes to danger, and so solutions which allow cheaper path plans are also pre-
ferred. Depending on the application, either one of the two objectives may be
more important: placing expensive nodes in, for example, agricultural pollution
monitoring favours solutions with fewer nodes, while restoring connectivity dur-
ing disaster response favours solutions that can be deployed quickly even if they
require more nodes. Thus the network repair problem is multi-objective.

We introduce the problem of simultaneous network repair with hop count
limits and route planning with limited mobility. We assume a set of desired
locations from which sensor data is required by the network, and we assume the
agent knows the state of the network and accessibility. The objective is to connect
as many as possible of these locations, placing extra sensors, relays and sinks
as required, minimising the relay and sink costs and the mobility costs, while
obeying the constraint on the number of allowed radio hops. We consider two
different heuristic approaches for the multi-objective problem, each prioritising
a different objective: minimising mobility costs, and minimising the relay and
sink costs. We evaluate the two algorithms on randomly generated problems,
and analyse their effectiveness under different assumptions. Finally, we consider
the total estimated time to restore the network, for two different classes of agent
(a small robot and a larger vehicle), and we show that the choice of priority
should be dependent on the performance of the agent.

2 The Network Repair Problem

Given a damaged sensor network and set of terminal locations from which we
require sensed data, our goal is to place new nodes to ensure that each terminal is
connected to a sink within a given number of radio links, and to find a mobility
path through the environment to place the nodes, while minimising both the
cost of the radio nodes and the length of the path.

Let V be a set of possible radio locations. Ec⊆V×V is the set of possible radio
links, Em⊆V×V is a set of traversable edges, and w:Em→N specifies the length
of each edge. A path p in graph G=(V,E) is a sequence [x1, x2, x3, . . . , xk−1, xk]
where each {xi, xi+1}∈E. The hop count of a path in the connectivity graph
Gc=(V,Ec) is one less than the number of nodes in the path, while the length
of a path p in the mobility graph Gm=(V,Em) is

∑
(xi,xi+1)∈p w({xi, xi+1}). Lr

is the set of locations with existing relay (and sensor) nodes, while Ls is the set
of locations with existing sink (and sensor) nodes. T is the set of terminal nodes

Repairing WSN Connectivity with Mobility and Hop-Count Constraints 77

which must be reconnected within the hop count limit k, and α∈V is the initial
starting location of our agent. cr is the cost of a relay node, while cs is the cost
of a sink node. The problem is to find two new subsets R⊆V and S⊆V of relay
nodes and sink nodes, such that for each terminal t∈T there is a sink s∈S and
a path through the connectivity graph (Lr∪Ls∪R∪S,Ec) to s with a hop count
≤k, and a tour p in the mobility graphGm that starts and finishes at α and visits
each element of R∪S, which minimises the pair (length(p), (|R| ∗ cr)+(|S| ∗ cs))
of the mobility tour length and the node cost.

Note that the two objectives may conflict. As an example, Figure 1 shows (a)
a connectivity graph and (b) a mobility graph for a set of terminals T={t1, t2, t3}
and a set of candidate locations {a,b,d,e,f,g,h,j}. Assuming cs=3∗cr, k=2 and the
current location of the agent is at f , a minimal cost node deployment to reconnect
all terminals within a hop count limit of 2 is S={d, t3}, R={t1}, with cost 7 ∗ cr.
The shortest path in the mobility graph is [f, t3, f, e, b, h, t1, h, a, d, a, e, f] with
length 45. For a deployment of S={t1, t3, g}, R={}, the node cost is 9 ∗ cr, but
there is a path [f, g, f, t3, f, e, b, h, t1, h, b, e, f] with length 34. Which of these
solutions should be selected will depend on the relative cost of the sink and
radio nodes compared to the cost of traversing the path. High node costs and
low mobility costs will prefer the first solution, while high mobility costs will
prefer the second solution.

(a) Connectivity Graph (b) Mobility Graph

h

a

d

b

e
f

g
jt2

t1

t3

2

2 h

a

d

b

e
f

g
j

6

3

3
4

8 2

2
2

t1

t2

5

t3

candidate position

candidate position
with live node

terminal

terminal with
live node

agent’s location

Fig. 1. Example Network Repair Problem

The objective of minimising the mobility path length has a travelling sales-
man path problem embedded inside it, and so we choose to investigate heuristic
approaches. To address the two objectives, we consider two approaches, which
each prioritise one of the objectives.

3 The Node Optimisation Heuristic Algorithm

Our first approach prioritises the node cost, by searching for a low cost set
of relay and sink nodes which connect the terminals to sinks within the hop
count limit (Algorithm 1). Given a set of nodes, we then search for the cheapest
mobility path that visits those nodes (Algorithm 2). We start by finding, for each
terminal j the set Tj of all possible sink locations (i.e. locations within k hops

78 T.T. Truong, K.N. Brown, and C.J. Sreenan

of j in the connectivity graph). For each sink location si which is associated
with two or more terminals, we determine the valuation (xi, yi), where xi is
the number of terminals which could be connected by si, and yi is an upper
bound on the number of new relay nodes that would be required to connect
them. The set O={si|xi∗cs≥cs+yi∗cr} then contains all such sinks that could
connect all of their terminals for less than the cost of placing a separate sink
for each terminal. We order O by the expected total cost of deploying that sink,
(|T |−xi)∗cs + yi∗cr + cs, where yi∗cr + cs is the cost of placing that sink with
extra radio nodes yi to reconnect the expected xi terminals, and (|T |−xi)∗cs is
an upper bound on the cost of placing sinks at the remaining terminals in T . We
then select the first sink location in O, add it to S, the set of new sinks, compute
relay node locations to connect the terminals and add them to R, the new relays.
We then recompute the valuations and reorder the set O to reflect the changes
in the unconnected terminals, and repeat. Once O is empty, for each remaining
unconnected terminal j we place a sink at a random location in Tj. The most
expensive operation is the calculation of (xi, yi) where we use a best-first search
to find the shortest connectivity path from a terminal to each location si ∈ O,
and we re-use those paths when we select the relay node locations.

For the problem of finding a short tour for the selected nodes (Algorithm
2), we create from the mobility graph Gm a metric closure graph for the new
nodes in S∪R. We then apply [1]’s Greedy-TSP heuristic - we sort the edges in
increasing order of cost, and we iteratively add the lowest cost edge which does
not increase any vertex’s degree to 3, and which does not create a cycle unless it
completes the tour. The runtime is dominated by the time of building the metric
closure graph, i.e. O(|S∪R|∗|V |2).

Figure 2 shows the NOH algorithm being applied to the example of Figure
1. First we find all sets Tj for each j∈T (Figure 2(a)). We then find and order
the set O (b). We select the first entry in O for a sink node, and it requires one
additional relay node at t1 (c). As t1 and t2 now have a connection to the sink at
d within 2 hops, we remove them from the list T . Now a connects no terminals
in T , while b and g only connect one terminal t3. Therefore, we remove them all
from the list O and terminate the while loop. We then select t3 for a new sink (d)
and finish the algorithm. Finally, we apply Greedy TSP to find a tour visiting
those selected locations, giving P = [f, t3, f, e, b, h, t1, h, a, d, a, e, f] which costs
45 units for 2 sinks and 1 relay node.

4 The Path Optimisation Heuristic Algorithm

Our second approach prioritises the mobility cost. First, for each terminal j∈T ,
we find the set Cj of all locations within the hop count limit from j but that
require at most one extra node to connect j. Since we must guarantee connec-
tivity within k hops for each terminal, we must place at least one node in each
Cj . Placing a sink node in Cj ensures that no other node is required in Cj . Since
the aim is to minimise mobility cost, we now search for a set of nodes that cover
the Cj and which can be visited with the shortest possible tour.

Repairing WSN Connectivity with Mobility and Hop-Count Constraints 79

Algorithm 1. Node Selection

Data: Gc=(V,Ec), Gm=(V,Em), Ls, Lr, T , k
Result: S (new sinks), R (new relays)
begin

foreach j in T do
Find the set Tj⊆V within k hops of j in Gc

O={}
foreach oi in more than one Tj do

Compute the values (xi, yi)
if cs ∗ xi≥cr ∗ yi + cs then

add oi to O in increasing order of (|T |−xi)∗cs + yi∗cr + cs

while O and T are not empty do
Move first oi from O into S
foreach j∈T such that oi∈Tj do

Find connectivity path p for oi to j
foreach location l in p not in Ls∪Lr do

add l into R

Remove j from T

Re-calculate (xi, yi) for all affected entries in O
foreach oj ∈ O with xj=1 do

Remove oj from O

Re-order O

foreach j ∈ T do
select a location l from Tj and add to S

Algorithm 2. GreedyTour

Data: A set of vertices V ′, a graph GM = (V,EM)
Result: a tour in GM visiting all nodes in V ′

begin
G′′ = (V ′′, E′′, w′′) = metric closure(V ′, GM);
P = Greedy TSP (G′′);
return [V ′′,P] ;

We build a new graph G=(V ′, E′) where V ′=
⋃

j∈T Cj , and E′={{u, v}|u∈Ci,
v∈Cj , i 	=j}, i.e. the graph of locations in the cluster sets Cj with an edge be-
tween every pair of locations from different cluster sets. We associate a weight
to each edge in E′ equal to the shortest path length in Gm between the two
endpoints. Note that any location which appears in two cluster sets will have a
0-weighted self-edge. The path optimisation problem can now be modeled as a
Generalized Travelling Salesman Problem (GTSP) on G where the agent needs
to visit exactly one node in each cluster Ci ([2]). We use the memetic algo-
rithm for the GTSP proposed by Gutin and Karapetyan in [3]. The algorithm

80 T.T. Truong, K.N. Brown, and C.J. Sreenan

(a) (b) (c) (d) (e)h

a

d

b

e

f

g
j

t2

t1

t3

T1={t1,h,a,d,b},
T2={t2,a,d,j,g},
T3={t3,b,e,f,g}

T1

T2 T3

h

a

d

b

e

f

g
j

t2

t1

t3

T={t1,t2,t3}, O={d, a, g, b},
fd=<2,1>, fa=<2,2>,
fg=<2,2>, fb=<2,4>

T1

T2

T3

h

a

d

b

e

f

g
j

t2

t1

t3

- Select d for new sink-> t1 for radio
- t1, t2 connected to sink d: T={t3}
- Remove a, b, g from O as they are
no longer in overlapped area

h

a

d

b

e

f

g
j

t2

t1

t3

- Select t3 for new sink.
- Result: 2 sinks at d and t3
and 1 radio node at t1.

2

22 h

a

d

b

e

f

g
j

2

3

34

7 2

2
2

t1

t2
5

t3

Tour: f-t3-f-e-b-h-t1-
h-a-d-a-e-f with 45

units.

2

e

f
2

322 hh

Fig. 2. A sample execution of NOH

creates a first generation of 2∗|T | tours by creating random permutations of the
clusters and then finds the best vertex in each cluster using the Cluster Optimi-
sation Heuristic (CO). The CO heuristic uses the shortest (s, t)-path for acyclic
digraphs to find the best vertex for each cluster when the order of clusters is
fixed (see [4]). It then runs a local improvement procedure on each solution.
The procedure runs several local search heuristics sequentially including Swaps
(swap every non-neighboring pair of vertices), k-Neighbor Swap (try all the per-
mutations which are not covered by any of i-Neighbor Swap, i = 2, 3, ..., k − 1),
2-opt (try to replace every non-adjacent pair of edges (si, si+1) and (sj , sj+1) by
the edges (si, sj) and (si+1, sj+1)), Direct 2-opt (a modification of 2-opt, which
only selects some of the longest edges in the solution), and Insert (remove a
vertex from the solution and insert it in different position). The procedure ap-
plies all those local search heuristics in a loop, removing any heuristic that fails
to improve the solution. Once the loop terminates, it applies the CO heuristic
again, and stops. The next generation is created by reproduction, crossover, and
mutation operators applied in parallel to the previous generation. Reproduction
simply copies the best solutions from the previous generation. The crossover op-
erator is a 2-point crossover producing a single child, by selecting a fragment
from the first parent, and then completes the tour by copying the order of the
2nd parent’s nodes starting with the node at the end of the selected fragment,
and deleting any repeated nodes. The parents are selected randomly from the
top 33% of individuals. The mutation operator modifies each selected parent
(selected from the top 75%) by removing a random fragment and inserting it
randomly in a new position. Reproduction, crossover and mutation generate new
children in the ratio (1 : 8 : 2). The local improvement moves are then applied
to each individual. The algorithm repeats until a time limit is reached. When
running the algorithm in the experiments, we use the same parameter values
given in [3]. Note that the overall running time is dominated by the creation of
the initial weighted graph.

The memetic algorithm results in a sequence of locations to be visited, and
we obtain a feasible solution if we place a sink at each location. We now improve
that solution by replacing as many sinks with relay nodes as possible (Algorithm
4). We start by assuming all locations in the set are occupied by relay nodes.
We order the set in decreasing order of the number of terminals within k hops

Repairing WSN Connectivity with Mobility and Hop-Count Constraints 81

Algorithm 3. Memetic Algorithm

Data: G = (V ′, E′) (graph), a set of clusters Ci, i∈T
Result: a tour visiting exactly one node in each Ci

begin
Initialize, construct first generation of solutions;
Improve the first generation by local search, eliminate duplicate solutions;
while not termination condition do

Produce next generation by genetic operators (reproduction, crossover,
mutation);
Improve the next generation by local search, eliminate duplicate
solutions;

Algorithm 4. Node Selection Algorithm

Data: N (set of locations), Gc = (Ls∪Lr∪N,Ec) (graph), T (set of terminals)
Result: S (locations for sinks), R (locations for relays)
begin

S←{};
while T is not empty do

Sort N in decreasing order of number of j∈T within k hops in Gc;
Move first element n0 from N to S;
Remove all j from T where j is connected to n0 within k hops in Gc;

R←N

of each location. We select the first location, convert it into a sink, and remove
from T all terminals connected to that sink in ≤ k hops. We repeat until T is
empty. Any locations remaining in N are left as relay nodes.

Figure 3 shows the POH algorithm being applied to the example of Figure 1.
First, we find a set of clusters for each terminal in Gc (Figure 3(a)). We then
calculate the costs of moving from each node in each cluster to other nodes
in different clusters (b). We apply the memetic algorithm to this new graph
and it produces the tour [f, t3, g, t1, f] (c) which is then mapped into Gm as
P=[f, t3, f, g, f, e, b, h, t1, h, b, e, f] with a mobility cost of 34 (d). Finally, we
apply the Node Selection algorithm in Gc for those visited locations {t1, t3, g}
which results in 3 new sinks.

5 Evaluation

Both proposed algorithms (NOH and POH) are heuristic, and take different
approaches to the multi-objective problem. Therefore, we evaluate them empir-
ically on randomly generated graphs, to compare the quality of their solutions
on both objectives, and also on their runtime. For the graphs, our aim is to
represent a physical area rather than abstract random graphs, and so we use a
grid to generate the graphs. Connectivity is based on the distance between two

82 T.T. Truong, K.N. Brown, and C.J. Sreenan

(a) (b) (c) (d) (e)
h

a

d

b

e

f

g
jt2

t1

t3

C1={t1}, C2={t2,j,d, g},
C3={t3}, C0={f}

C1

C3

C2

C0

d
f

jt2

t1

t3

C1={t1}, C2={t2,j,d,g},
C3={t3}, C0={f}

C1

C3

C2

10
1619

17 14

279

9
11

16

g

15

8

d
f

jt2

t1

ff

t3

The memetic result:
f-t3-g-t1-f

C1

C3

C2
ffff

10
1619

17 14

279

9
11

16

g

d

16
77

9

99
1111

g C3

15

7

2

2 h

a

d

b

e

f

g
j

6

3

34

8 2

2
2

2 ht1

t2

f
22

5

t3

Result in GM: f-t3-f-g-
f-e-b-h-t1-h-b-e-f with

34 units

h

a

d

b

e

f

g
jt2

t1

t3

The Node Selection
result: 3 sinks at t1, t3

and g

Fig. 3. A sample execution of POH

locations. To represent a landscape or a building interior, we add obstacles into
the grid, which may hinder or forbid access. The mobility graph is then based
on line-of-sight, with some limited ability to cross the obstacles.

We generate graphs within a rectangular area consisting of n×m squares of
size 10 units. Within this space, we place o mobility obstacles, where each ob-
stacle is a random polygon contained within a randomly selected pair of neigh-
bouring cells. For each square, we generate a random position within it; if that
position is inside an obstacle, we discard it, otherwise we designate it as a can-
didate location. Each obstacle is given a random weight w between 0 and 1,
representing the difficulty it creates for the agent to traverse it, and such that
any obstacle with a weight greater than 0.2 is assumed not able to be traversed.

We then create the connectivity graph by adding edges indicating that two
candidate locations are within transmission range. For each pair of locations, we
add with probability 0.85 an edge if they are within 10 units apart; we add with
probability 0.2 an edge for each pair of locations which is between 10 and 20
units apart. This is to simulate the radio obstacles where we don’t have uniform
communication ranges. For the mobility graph, we add an edge between any pair
of locations which are less than 25 units apart and which can be connected by a
straight line that does not cross an obstacle. The weight of the edge is simply the
length of the connecting line. For any pair of locations separated by a distance
of less than 25 and which has a straight line that traverses all obstacle with a
weight less than or equal to 0.2, we add those edges into the mobility graph. The
cost of the edge is the distance plus 10*weight for each obstacle it crosses.

We consider the problem size: (i) a 10 × 10 grid, and thus a maximum of
100 candidate locations, and 20 possible obstacles1. We perform two sets of
experiments: varying the number of terminals and varying the hop count limit
k. For each data point, we generate 50 instances, and present the average solution
cost (mobility cost, number of nodes needed) and runtime. For each instance,
we randomly select candidate locations as terminals or live nodes. Finally, we
calculate the total time to restore the network for different agent speeds, by
combining the runtime with the estimated travel time.

1 We also experimented with the problem size 5 × 10 grid, and thus a maximum of
50 candidate locations, and 10 possible obstacles, and got similar results.

Repairing WSN Connectivity with Mobility and Hop-Count Constraints 83

To assess the quality of the solutions, we compare the results against the op-
timal solutions for each individual objective, generated by an exhaustive search.
That is, OPT-N first finds the set of sinks and relay nodes with lowest cost
that connect all the terminals with the hop count. For that set, a tour is then
generated using Algorithm 2. OPT-P first generates the optimal mobility tour
that could connect all terminals within the hop count (by selecting the optimal
tour that visits each cluster set). For the locations on the tour, we then select
the locations to be used as sinks using Algorithm 4.

First, we vary the number of terminals and fix the hop count limit as k = 2.
Figure 4 shows the number of nodes placed by each algorithm. As the number
of terminals to be connected increases, the node cost rises as expected. The two
algorithms that prioritise mobility incur 25% higher node costs than their node
equivalents. The mobility costs rise as we increase the number of terminals. The
heuristic POH is within 30% of the exact OPT-P. As above, the algorithms that
prioritise node cost create approximately 40% higher mobility costs.

0
2
4
6
8
10
12
14
16

4 5 6 7

n
o

d
e

 c
o

st
 (

*c
n

)

number of terminals

Node cost with different number of terminals.

NOH

POH

N-OPT

P-OPT

150

200

250

300

350

400

450

4 5 6 7

m
o

b
ili

ty
 c

o
st

Mobility cost with different number of terminals.

NOH

POH

N-OPT

P-OPT

Fig. 4. Varying number of terminals

In the second set of the experiments, we fix the number of terminals at 5, and
vary the hop count limit k. As the hop limit increases, the node costs decrease,
as the connectivity problem becomes easier (Figure 5). The performance gap
between the node-based algorithms and the path-based algorithms increases.
The mobility costs also decrease as the hop limit increases. We believe this is
because the reduction in the cost is due to placing a small number of sinks in
the centre of the map, thus requiring a shorter path to visit those locations.

Table 1 shows the runtimes for the algorithms in both experiments. All in-
crease with the number of terminals and the hop count k. The running time of
NOH is significantly faster that of POH due to POH takes time to compute the
clusters and path cost between clusters.

Finally, we note that the mobility costs are associated only with the distance
travelled. For real scenarios, there is a tradeoff between the cost of the extra
nodes and the speed at which connectivity is restored, and so we should consider
the combination of runtime and the estimated time to execute the solution. We
assume that it takes an agent 30s to position a new node. We then consider
two scenarios, the first representing a small robot which moves at 0.1ms−1,
the second representing a larger vehicle moving over rough terrain at 4ms−1.

84 T.T. Truong, K.N. Brown, and C.J. Sreenan

0

2

4

6

8

10

12

2 3 4 5

no
de

 c
os

t
(*

cn
)

hop count k

Node cost with different number of hop count.

NOH

POH

N-OPT

P-OPT

100

150

200

250

300

350

400

2 3 4 5

m
ob

ili
ty

 c
os

t

Mobility cost with different number of hop count.

NOH

POH

N-OPT

P-OPT

Fig. 5. Varying hop count limit k

Table 1. Runtime

(a) Varying number of terminals

4 5 6 7

NOH 1.1 1.7 2.2 2.8
POH 17.9 23.2 43.1 57.7

(b) Varying hop count limit

2 3 4 5

NOH 1.7 1.8 2.6 3.2
POH 23.2 28.8 88.6 91.4

The total time to restore the network is thus the initial computation time, the
time to move along the path, plus the time to place the new nodes. We assume
each unit distance is 1 meter. The results are shown in Tables 2. For the slow
small robot, prioritising the mobility cost results in a faster restoration time for
all parameter settings, as the mobility costs outweigh the time to place nodes and
the increased runtime. For the vehicle, prioritising the node cost becomes more
important, since the reduction in mobility cost by the path-based algorithms
has difficulty compensating for the increased runtime and the increased node-
placement cost. Thus the WSN restoration problem is subtle, with the choice
of approach clearly dependent on the details of the specific problem. Solution
methods must take into account the main objectives (minimising infrastructure
and minimise time), but also consider the capabilities of the agent that will
implement the eventual solution.

6 Related Work

Wireless sensor networks are prone to failures, which can lead to a loss of con-
nectivity when the network becomes partitioned and/or nodes become isolated.
Several researchers have addressed this problem by devising appropriate plan-
ning methodologies such that a deployed network will be resilient in the face
of limited failures, or can be altered to avoid anticipated failures, for example
due to node power exhaustion. In contrast, our work seeks to repair a network
after failures have occurred. Some other papers have addressed this problem by
using specialised nodes that can be moved into position and restore connectivity,
e.g. [5], [6], [7] but such solutions are not attractive because mobile nodes are
expensive and in large networks many such nodes may be required.

Repairing WSN Connectivity with Mobility and Hop-Count Constraints 85

Table 2. Total Restoring Time

(a) V=0.1ms−1, vs number of terminals

4 5 6 7

NOH 3275.1 3978.3 3969.8 4212.8
POH 2187.9 2478.5 2873.7 3225.8

(b) V=0.1ms−1, vs hop count limit

2 3 4 5

NOH 3978.3 3391.8 3549.9 3505.1
POH 2478.5 2419.1 2478.6 2055.2

(c) V=4ms−1, vs number of terminals

4 5 6 7

NOH 252.6 326.3 373.4 404.7
POH 300.3 365.3 456.0 521.3

(d) V=4ms−1, vs hop count limit

2 3 4 5

NOH 326.3 288.3 281.4 270.5
POH 365.3 363.5 399.9 407.9

Many papers address the repair problem by placing relay nodes that reconnect
partitions in the network, minimising number of required nodes. For example,
using centralised solutions, [8] uses a spider web approach while [9] forms a
connectivity chain toward a centre point of the network. In contrast, we optimise
both the number of additional nodes and the mobility path length needed for
their deployment. We also explicitly take into account the impact of obstacles
that can impede both the available paths and the ability of nodes to communicate
directly, and we bound the number of network hops by judiciously deploying
additional sink nodes in the interest of quality of service constraints.

In regard to the problem of multiple sink deployment, some other authors have
addressed this for the purpose of improving network performance. There are two
main strategies: to reduce energy consumption so as to maximise the network
lifetime, e.g. [10], [11] and to minimise the average data latency or maximum
hop distance between a node and its nearest sink, e.g. [12]. These papers do not
deploy sink nodes in the act of network restoration, and thus do not consider
the mobility cost to deploy sink nodes, and the implications of obstacles on the
choice of possible sink locations.

7 Conclusion

In this paper we address the problem of restoring connectivity in a wireless sensor
network, using a mobile agent to place relay and sink nodes, avoiding obstacles
and respecting bounds on quality of service (defined in terms of network hop-
count). We formulate the problem as one of searching over two linked graphs
which share the vertex set. The multi-objective problem requires us to minimise
both the cost of additional nodes and the path to be taken by the mobile agent.
We propose two heuristic algorithms which prioritise the different objectives. We
evaluate them on randomly generated networks and compare their solutions to
the optimal solutions. Finally, we also evaluate the total restoration time for each
solution as a function of the mobile agent’s speed, quantifying a trade-off with
computation time. In future work, we will consider different algorithms for the
two different priorities, and we will investigate the Pareto frontier. We will also

86 T.T. Truong, K.N. Brown, and C.J. Sreenan

consider the more general problem, in which we must discover the damage to
the network as we repair it. Finally, we will consider the problem of continually
spreading damage, and the use of teams of agents cooperating to repair the
network.

Acknowledgment. This work was funded by the HEA PRTLI4 project NEM-
BES, and by the SFI centre CTVR (10/CE/I1853).

References

1. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling
Salesman Problem. John Wiley & Sons (1985)

2. Fischetti, M., Salazar-Gonzalez, J.J., Toth, P.: The generalized traveling salesman
and orienteering problems. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Sales-
man Problem and Its Variations. Combinatorial Optimization, vol. 12, pp. 609–662.
Springer (2004)

3. Gutin, G., Karapetyan, D.: A memetic algorithm for the generalized traveling
salesman problem. Journal of Natural Computing 9(1), 47–60 (2010)

4. Fischetti, M., Gonzlez, J.J.S., Toth, P.: A branch-and-cut algorithm for the sym-
metric generalized travelling salesman problem. Operations Research 45, 378–394
(1997)

5. Akkaya, K., Senel, F., Thimmapuram, A., Uludag, S.: Distributed recovery from
network partitioning in movable sensor/actor networks via controlled mobility.
IEEE Transaction on Computing 59, 258–271 (2010)

6. Abbasi, A.A., Younis, M.F., Baroudi, U.A.: A least-movement topology repair
algorithm for partitioned wireless sensor-actor networks. International Journal of
Sensor Networks 11(4), 250–262 (2012)

7. Abbasi, A.A., Younis, M.F., Baroudi, U.A.: Recovering from a node failure in
wireless sensor-actor networks with minimal topology changes. IEEE Transaction
on Vehicular Technology 62(1), 256–271 (2013)

8. Senel, F., Younis, M., Akkaya, K.: A robust relay node placement heuristic for
structurally damaged wireless sensor networks. In: LCN 2009, pp. 633–640 (2009)

9. Lee, S., Younis, M.: Recovery from multiple simultaneous failures in wireless sen-
sor networks using minimum steiner tree. Journal of Parallel Distributed Comput-
ing 70, 525–536 (2010)

10. Kim, H., Kwon, T., Mah, P.S.: Multiple sink positioning and routing to maximize
the lifetime of sensor networks. IEICE Transactions on Communications 91-B(11),
3499–3506 (2008)

11. Gu, Y., Ji, Y., Li, J., Chen, H., Zhao, B., Liu, F.: Towards an optimal sink place-
ment in wireless sensor networks. In: ICC 2010, pp. 1–5 (2010)

12. Kim, D., Wang, W., Sohaee, N., Ma, C., Wu, W., Lee, W., Du, D.Z.: Mini-
mum data-latency-bound k-sink placement problem in wireless sensor networks.
IEEE/ACM Transaction on Networking 19(5), 1344–1353 (2011)

	Repairing Wireless Sensor Network Connectivity
with Mobility and Hop-Count Constraints
	1
Introduction
	2
The Network Repair Problem
	3
The Node Optimisation Heuristic Algorithm
	4
The Path Optimisation Heuristic Algorithm
	5
Evaluation
	6
Related Work
	7
Conclusion
	References

