Fault-Tolerant Relay Deployment for
k Node-Disjoint Paths in Wireless Sensor Networks

Lanny Sitanayah

Department of Computer Science
University College Cork, Ireland
Email: 1s3@cs.ucc.ie

Abstract—Ensuring that wireless sensor networks (WSNs) are
robust to failures requires that the physical network topology will
offer alternative routes to the sinks. This requires sensor network
deployments to be planned with an objective of ensuring some
measure of robustness in the topology, so that when failures occur
that routing protocols can continue to offer reliable delivery.
Our contribution is a solution that enables fault-tolerant WSN
deployment planning by judicious use of a minimum number of
additional relay nodes. A WSN is robust if at least one route to a
sink is available for each remaining sensor node after the failure
of up to £—1 nodes. In this paper, we define the problem for
increasing WSN reliability by deploying a number of additional
relay nodes to ensure that each sensor node in the initial design
has k node-disjoint paths to the sinks. We present GRASP-ARP, a
centralised offline algorithm to be run during the initial topology
design to solve this problem. We have implemented this algorithm
and demonstrated in simulation that it improves the efficiency
of relay node placement for &k node-disjoint paths compared to
the most closely related published algorithms.

Index Terms—wireless sensor networks; network deployment
planning; relay placement; node-disjoint paths.

I. INTRODUCTION

In wireless sensor networks (WSNs), sensor nodes transmit
their data wirelessly over a multi-hop network to sink nodes,
where data is either processed or transmitted on through a
high-speed connection. These networks are subject to failures:
the wireless devices are often unreliable, they have limited
battery life, transmissions may be blocked by changes in
the environment, and the devices may be damaged, e.g. by
weather, wildlife or human intervention. For dealing with
failures, techniques for reliable routing in WSNs have been
proposed and are well-understood, but to be effective these
depend on a physical network topology that ensures alternative
routes to the sink are available. This requires sensor network
deployment to be planned with an objective of ensuring some
measure of robustness in the topology, so when failures occur
that routing protocols can continue to offer reliable delivery.
Our contribution is a solution that enables fault-tolerant WSN
deployment planning by judicious use of additional relays.

One key objective in the topology design of a WSN is to
ensure some measure of robustness. In particular, one standard
criterion is to ensure routes to the sink are available for all

978-1-4577-2028-4/11/$26.00 (© 2011 IEEE

Kenneth N. Brown
Mobile & Internet Systems Laboratory Cork Constraint Computation Centre
Department of Computer Science
University College Cork, Ireland
Email: k.brown@cs.ucc.ie

Cormac J. Sreenan
Mobile & Internet Systems Laboratory
Department of Computer Science
University College Cork, Ireland
Email: cjs@cs.ucc.ie

remaining sensor nodes after the failure of up to £—1 nodes.
This can be achieved by ensuring that every node in the initial
design has k node-disjoint paths to the sinks: i.e. at least k
paths that share no intermediate nodes. Node-disjoint paths
are required to provide multi-path routing capability for some
protocols [1]. Since there are sometimes data latency require-
ments, there may be a limit to the path length from sensor to
sink. To ensure that the sensors have sufficient paths, it may
be necessary to add a number of additional relays, which do
not sense, but only forward data from other nodes. Installing
additional relays comes at a cost that includes not just the
hardware purchase but more significantly the installation and
ongoing maintenance, thus motivating solutions that minimise
the number of additional relays.

The problem we address in this paper is that of finding a
minimal set of relays which ensures k& node-disjoint paths for
each sensor. We define the single-tiered, constrained partial
fault-tolerant relay placement problem for k node-disjoint
paths with length constraints for WSNs with data sinks, which
we call the additional relay problem (ARP). We make no
assumptions on the geographical or physical properties of the
area in which the WSN is to be deployed, but we assume a
limited set of possible locations for the relays, and a fully-
specified connectivity graph. We propose GRASP-ARP, a
local search algorithm based on GRASP [2], to be run as a
centralised offline algorithm during the initial topology design,
i.e. prior to network deployment and operation. Our algorithm
requires repeated counting of the number of node-disjoint
paths for each node, for which we use a dynamic program-
ming procedure. We compare GRASP-ARP against the closest
approach from the literature, and we demonstrate empirically
that it finds solutions requiring 25% fewer additional relays for
small values of k. We also show that it scales better, finding
solutions in reasonable time for problems with hundreds of
nodes. This represents a quantifiable improvement, making it
possible to compute cost-effective WSN designs that offer an
assured level of reliable delivery.

The rest of the paper is organised as follows. We survey the
related work in Section II, present the additional relay problem
and GRASP-ARP in Section III and IV, respectively. Sec-
tion V presents simulation results and Section VI concludes.

TABLE I
EXISTING RELAY PLACEMENT ALGORITHMS

. . Deployment Fault-
Algorithms k Routing Locations Tolerance
Hao et al. [3] 2 2-tiered constrained partial
Bredin et al. [4] >1 1-tiered unconstrained full
Pu et al. [5] >1 1-tiered unconstrained partial
Kashyap et al. [6] >2 2-tiered un/constrained partial
Han et al. [7] >1 1-tiered unconstrained full/partial
Zhang et al. [8] 2 1/2-tiered unconstrained partial
Misra et al. [9] 1,2 1-tiered constrained partial

II. BACKGROUND AND RELATED WORK

A WSN can be modeled as a graph G = (V, E), where V
is a set of nodes and E is a set of edges. Each edge connects
two nodes that are within transmission range of each other',
and the two nodes are said to be adjacent. A path of length
t between two nodes v and w is a sequence of nodes v =
V9, V1, . . ., Vs =w, such that v; and v;4; are adjacent for each
1. A path from a node v to a set of nodes W is simply a
path from v to any node w € W. Two nodes are connected if
there is a path between them. A graph is connected if every
pair of nodes is connected. A cutset is a set C CV such that
(V—=C,E|ly_¢) is disconnected (where E| x means a set of
edges restricted to those that connect nodes in X). A graph is
k-connected if it has no cutset of size less than k. Two paths
P and @ from v to w are node-disjoint if they have no nodes
in common except for v and w.

The problem of placing relay nodes for increased reliability
has long been acknowledged as a significant problem, and we
summarise the existing algorithms for WSNs in Table I. In
single-tiered networks, all nodes may forward packets from
other nodes, while in two-tiered networks, sensor nodes trans-
mit their own data directly to a cluster head. In connectivity
problems, the aim is to ensure the network is connected (or
k=1), while in survivable problems, the aim is to ensure k-
connectivity for k£ > 1. In unconstrained problems, the relay
nodes can be placed anywhere, while in constrained problems,
they are limited to a set of candidate locations. Partial fault-
tolerance requires k-connectivity between every sensor node,
while full fault-tolerance requires k-connectivity between both
sensor and relay nodes. We choose to focus on single-tiered
networks as this is most common in the research literature and
for published WSN deployments. Furthermore we assume the
constrained approach for possible relay locations, which we
believe is more reasonable for real-world deployments. Finally
we assume partial fault-tolerance, reflecting the fact that relays
are for connectivity only and do not have a sensing role.

All of the algorithms cited try to achieve k-connectivity,
and are designed for WSNs without designated sinks. Unlike
our algorithm, the published algorithms do not place any
constraints on the path lengths. The closest problem definition
to ours is Misra et al.’s [9]. However, it can only establish up to
2-connected networks due to the use of an existing algorithm

IFor simplicity we assume bi-directional links, but this could be easily
relaxed by specifying a more complex connectivity graph.

to compute a low weight bi-connected subgraph. Other work
with similar objectives to ours include Bredin et al. [4], Pu et
al. [5] and Han et al. [7], although they are for unconstrained
deployment locations. Bredin et al.’s [4] considers full fault-
tolerant relay node placement. This was then modified by Pu ez
al. [5] for partial fault-tolerance after noting that there is no
need to ensure multiple paths for the relays. The simulation
results in Han et al.’s work [7] show that Bredin et al.’s [4] is
more efficient for partial fault-tolerance, while Han et al.’s [7]
is more efficient for full fault-tolerance in terms of the number
of additional relays. Therefore, among all existing algorithms,
we infer that the most relevant one for our work is Pu et
al’s [5], except that it assumes unconstrained relay locations.

Offline algorithms to discover k shortest node-disjoint
paths in existing networks are well studied in the literature.
Torrieri [1] calculates a set of short node-disjoint paths in
polynomial time. Bhandari [10] proposes k runs of a modified
Dijkstra algorithm, each of which requires O(|V|?), to find
k shortest node-disjoint paths between a source and a sink.
There is a close relation between k-connectivity and maximum
flow problems. Maximum flow algorithms, such as Ford-
Fulkerson [11], are used to find link-disjoint paths [12], and
thus need to be extended with a node-splitting technique as
used by Bhandari [10]. Link-disjoint paths share no links, but
are less robust than node-disjoint paths, and so we restrict our
discussion to the latter.

The greedy randomized adaptive search procedure
(GRASP) [2] is a metaheuristic intended to capture the
good features of pure greedy algorithms and of random
construction procedures. It is an iterative process, which
consists of two phases: a construction phase and a local
search phase. Martins et al. [13] use GRASP to solve the
Steiner tree problem in graphs (SPG). SPG is similar to the
relay placement problem, in that it must select from a set of
candidate nodes in order to connect a number of designated
terminals, although its aim is to find a minimal spanning tree
rather than a forest with node-disjoint paths.

III. ADDITIONAL RELAY PLACEMENT

We consider WSNs where the nodes are partitioned into
sinks, sensors and relays, and so in the graph representation
V=SUNUR. We define a WSN to be (k,[)-sink-connected
if and only if for every sensor node v € N, there are k node-
disjoint paths from v to S' of length <I.

We can now define the additional relay placement problem:
given a graph G=(SUNUA, E), where A is a set of candidate
positions for relay nodes, find a minimal subset R C A such
that H=(SUNUR, F|gnur) is (k,)-sink-connected.

For our algorithm, we introduce some secondary definitions.
k, is the number of node-disjoint paths a sensor currently has.
X CN is the set of sensors with k, <k,Vxe X.Y CN is the
set of sensors with k, >k, Yy €Y', and such that y is on a path
of a sensor z € X to a sink or a node with at least k£ node-
disjoint paths. Z C N is a set of sensors with k, >k, Vz€ Z,
such that z does not appear on a path of a sensor x€ X to a
sink or a node with k node-disjoint paths.

IV. GRASP-ARP
A. Construction Phase

The first step in any GRASP algorithm is to construct an
initial solution. We generate a graph G’ = (V', E’), where
Vi ={SUXUZ} and E' = {(v,w),v € X,w € {SU
Z} | 3srp(v,w)}. srp(v,w) denotes the shortest relay path
from v to w in the original graph G in terms of the cost c,
where all intermediate nodes in the path are candidate relays.
The link’s cost ¢/ (v,w) = srp(v,w) is associated with each
link (v,w) € E’. After that, we find a minimum forest F' of
G’ such that for each v € X, we select k—k, least cost links
to we {SUZ}. Then, we replace the links in F' by the links in
the shortest relay paths in the original graph G and save this
set of paths P. We add randomisation to the initial solution by
building a restricted candidate list with all links (v, w) € E’
such that ¢ (v, w) <}, +(Cryaz — Chnin)» Where 0 <a <1.
¢ i and ¢ . denote the least and the largest costs among all
unselected links, respectively. Then, k—k, links are selected
at random from the restricted candidate list.

B. Node-based Local Search

The next stage in a GRASP algorithm is to explore the
neighbourhood of the initial solution, looking for lower cost
solutions. Let R be the set of relays in the current forest F'
and Ryseq(P) is the number of relays used in the current set
of paths P. We explore the neighbourhood of the solution by
either adding a new relay r € { A\ R} into R or by eliminating
arelay t€ R from R. In each iteration, elimination moves are
evaluated only if there are no improving insertion moves.

C. Algorithm Description

The pseudocode for GRASP-ARP is given in Algorithm 1.
It takes as input the original graph G = (V, E), the set S of
sinks, the set A of candidate relays, the set X of sensors with
ks <k, the set Z of sensors with k, >k but do not appear on
any discovered paths, the restricted candidate list parameter c,
and the number of iterations. Graph G’ = (V’, E’) is computed
in line 2. The procedure is repeated max_iterations times. In
each iteration, a greedy randomised solution for a minimum
forest F' of G’ is constructed in line 4. Let R be the set of
relays in the current forest F, P be the set of paths, and
Ry seq(P) be the number of relays used in P.

The local search starts with the initialisation in line 8. The
loop from line 9 to 14 searches for the best insertion move. In
line 10, we count the number of node-disjoint paths k, from
each sensor x € X, defined by the insertion of node r into the
current set of relay nodes. Let P,¢,, be its new set of paths.
In line 11, we check if this new solution P, improves the
current best solution. Solution updates are made in line 12.
When all insertion moves have been evaluated, we check in
line 15 if an improving solution has been found and update
the solution in line 16. Then, the local search continues. If
no improving solution is found from the insertion moves, the
elimination moves are evaluated. These moves are similar to
the insertion moves, except they are defined by the elimination
of node ¢ from the current set of relay nodes.

GRASP-ARP (G, S, A, X, Z, o, maz_iterations)
1 best_value «+— o0o;

2 Compute G'=(V’',E’) and ¢ (v, w),V(v,w) € E';
3 for 1«1 to max_iterations do
/* Construction phase */
4 Find F of G'=(V', E’) with R and P as the result;
5 do
6 do
7 insertion < false; elimination < false;
/* Insertion moves */
8 best_set — R; best_number «— Ryseq(P);
9 for all re {A\R} do
10 Count k,,Vx € X from FT7, result in Prew;
11 if Rused(Prew)<best_number then
12 best_set«— RU{r};
best_number «— Rysed(Prew);
13 end if;
14 end for;
15 if best_number < Ryseq(P) then
16 R—RU{r}; F—F*"; P Ppew;
Rused(P) — Rused(Pnew);
17 insertion < true;
18 end if;
19 while insertion;
/* Elimination moves */
20 best_set — R; best_number < Ryseq(P);
21 for all te R do
22 Count k,,Vz € X from F~¢, result in Ppew;
23 if Rused(Prew) <best_number then
24 best_set«— R\ {t};
best_number <« Ryscd(Prew);
25 end if;
26 end for;
27 if best_number < Ryseq(P) then
28 R—R\{t}; F—F7" P Prew;
Rused (P) — Rused(P'new);
29 elimination < true;
30 end if;
31 while elimination;
/* Best solution update */
32 if Ryseqa(P)<best_value then
33 R* —R; P* «— P; best_value «— Rysca(P);
34 end if;
35 end for;

36 return R*, P*;
Algorithm 1: GRASP-ARP

If at the end of the local search we found a better solution
compared to the best solution, updates are made in line 33.
The best set R* of relay nodes and the best set P* of paths
are returned in line 36.

D. Counting Node-Disjoint Paths

In lines 10 and 22 of Algorithm 1, we count the number
of node-disjoint paths from a sensor node to the sinks. We
introduce Counting-Paths, a heuristic algorithm that counts
the number of node-disjoint paths from each sensor and finds
the shortest node-disjoint paths to the sinks. The idea behind
Counting-Paths is to use the Ford-Fulkerson [11] maximum
flow algorithm, but this only discovers link-disjoint paths.
However, by utilising the node-splitting technique as used
by Bhandari [10], we can find node-disjoint paths. The time

complexity of the Ford-Fulkerson algorithm for a pair of
source and sink is O(|E|k), where k is the number of node-
disjoint paths. We refer to [14] for simulation results that
validate the efficiency of Counting-Paths compared to [10]
and [1].

The dynamic programming implementation of Counting-
Paths is motivated by the fact that multi-hop WSNs are often
characterised by many-to-one (convergecast) traffic patterns.
If the network has n source nodes, running Counting-Paths
n times increases the worst time complexity to O(|V || E|k).
However, if we do not need to know the complete routes
during the deployment process, it is not necessary for us to
discover the actual paths, but only the number of node-disjoint
paths that satisfies the length restriction and the neighbours
that have k node-disjoint paths. This local information is used
by nodes to forward their data to the nearest neighbours and
the neighbours will have their own decisions to forward them
further. Below, we prove the result that justifies our dynamic
programming approach.

Lemma 4.1: Let v be a node which has node-disjoint paths
to a subset W of k nodes none of which have a cutset of size
< k. Then v has no cutset of size <k.

Proof: Suppose v does have a cutset, C', of size <k. A
set of size <k can break at most k—1 of the paths from v to
W. Let we€ W be any of the nodes whose paths from v are
not broken by C', and so v is still connected to w. But w must
be connect to .S, since w has no cutset of size < k. Therefore
v is still connected to S. Therefore C' is not a cutset for v.
Contradiction. []

As a corollary, if a node v has node-disjoint paths to k
nodes, each of which has k£ node-disjoint paths to the sink,
then v must also have k node-disjoint paths to the sink.

For WSNs with multiple sinks, a well-known approach is by
adding a supersink as an imaginary node that has connection
to the original sinks. By doing this, we reduce the problem of
multiple sinks to the problem of single sink.

E. Acceleration Scheme

We follow the acceleration scheme for the node-based
local search as in [13] by using faster implementation of the
insertion moves (line 8-18). The idea is to keep a candidate list
with promising insertion moves, which is periodically updated.
The candidate list containing the k_best improving insertion
moves is generated in the first iteration. The list is kept in
an increasing order of the associated move values. In each
following iteration, instead of reevaluating all insertion moves,
we only evaluate moves from nodes in the candidate list. Each
time a node is evaluated, it is removed from the list. When
the list becomes empty, a new full iteration is performed, all
insertion moves are evaluated, and the candidate list is rebuilt.

V. SIMULATION AND RESULTS

All algorithms were evaluated on a custom simulator written
in C++. We do not use standard network simulators because
we are not evaluating network protocols and operations, but
rather the performance of algorithms that are used in planning

Fig. 1. Number of additional relay nodes needed for the multiple sources -
single corner sink in 25-node networks

TABLE II
RELAY PLACEMENT ALGORITHMS’ RUN TIME FOR THE MULTIPLE
SOURCES - SINGLE CORNER SINK IN 25-NODE NETWORKS

Run time (sec)

Algorithms k—2 E—3
K-CONN-REPAIR 8.1711 23.5087
GRASP-ARP-DP-MaxlIter=1 1.3539 61.7501
GRASP-ARP-DP-Maxlter=10 3.9977 200.3548
GRASP-ARP-DP-Maxlter=100 26.7742 1573.4410
GRASP-ARP-Maxlter=1 1.3032 91.3281
GRASP-ARP-Maxlter=10 4.5867 244.6632
GRASP-ARP-MaxIter=100 36.8587 1814.2370

a network. Our simulation results are based on the mean value
of 20 randomly generated network deployments, enough to
achieve a 95% confidence interval. The network consists of
up to 225 sensor nodes deployed within randomly perturbed
grids, where a sensor node is placed in a unit grid of 8m x 8m
and the coordinates are slightly perturbed. Candidate relays are
also distributed in a grid area, where a candidate occupies a
unit grid of 4m x 4m. Both sensor nodes and relay nodes use
the same transmission range, i.e. 10 metres.

We compared GRASP-ARP to the partial k-connectivity
repair algorithm (K -CONN-REPAIR for short) proposed by
Pu et al. [5]. We followed the algorithm detailed in [5] and
made two necessary modifications to work in constrained
deployment locations, where relay nodes can only be placed in
specific candidate locations. The original K-CONN-REPAIR
deploys relay nodes along a straight line between two sensor
nodes. Therefore, our first modification is to place relay nodes
in candidate locations along the shortest relay path between
two sensor nodes. When all relay nodes are deployed, our
second modification tries to remove relay nodes one by one
by still preserving the k-connectivity. We use a maximum
network flow based checking algorithm [15], [16] to check the
connectivity. In the simulation, we compared the performance
of GRASP-ARP against K-CONN-REPAIR in terms of the
number of additional relay nodes needed and the run time.

Fig. 2. Number of additional relay nodes needed for the multiple sources -
single centre sink in 25-node networks

TABLE III
RELAY PLACEMENT ALGORITHMS’ RUN TIME FOR THE MULTIPLE
SOURCES - SINGLE CENTRE SINK IN 25-NODE NETWORKS

Run time (sec)

Algorithms k=2 k=3
K-CONN-REPAIR 8.1711 23.5087
GRASP-ARP-DP-Maxlter=1 1.2009 18.6055
GRASP-ARP-DP-MaxIter=10 3.2695 56.4545
GRASP-ARP-DP-MaxlIter=100 29.1741 396.7828
GRASP-ARP-MaxIter=1 1.3203 27.6423
GRASP-ARP-MaxIter=10 4.4375 94.7696
GRASP-ARP-MaxIter=100 423155 755.2196

A. Multiple Sources - Single Sink Problem

We choose the sink at the top-left or in the centre of the
network, while all sensor nodes are the source nodes. Our
simulation uses 25-node topologies and 100 candidate relays.
We also set the maximum path length [,,,, equals to 10
for topologies which consist of 25 sensor nodes. GRASP-
ARP uses the dynamic programming implementation (DP)
and the basic Counting-Paths algorithm to find the k& node-
disjoint paths. Figure 1 shows the number of additional relay
nodes needed for £k = 2 and k = 3 for the case where the
sink location is at the top-left of the network, while Figure 2
shows the results for the case where the sink is in the centre.
Our GRASP-ARP finds nearly the same number of additional
relay nodes compared to -CONN-REPAIR when the position
of the sink is in the centre of the network because it has
higher connectivity. These two figures also show that the effect
of randomness in GRASP does not guarantee that a higher
number of maximum iteration (Maxlter) in the local search
produces better results. Table II and III shows the algorithms’
run time, where for small networks, GRASP-ARP takes longer
compared to K-CONN-REPAIR especially for k£ = 3. This
happens because GRASP-ARP repeatedly executes Counting-
Paths during the local search phase.

B. Multiple Sources - Multiple Sinks Problem

We have four sinks deployed at the top-left, top-right,
bottom-left and bottom-right of the network. We use 49-node

Fig. 3. Number of additional relay nodes needed for the multiple sources -
multiple sinks in 49-node networks

TABLE IV
RELAY PLACEMENT ALGORITHMS’ RUN TIME FOR THE MULTIPLE
SOURCES - MULTIPLE SINKS IN 49-NODE NETWORKS

Algorithms Run time (sec)

k=2 k=3
K-CONN-REPAIR 283.5649 665.4548
GRASP-ARP-AnySinks-DP 30.1625 274.1320
GRASP-ARP-AnySinks 38.0461 387.7298
GRASP-ARP-DiffSinks-DP 23.8539 336.0117
GRASP-ARP-DiffSinks 42.2258 426.7554

topologies with 196 candidate relays and set [,,,, equals to
15. In multiple sinks problem, there are two cases where the
node-disjoint paths terminate at: different sinks and any sinks.
The different sinks problem is where the k node-disjoint paths
must terminate at k different sinks. The any sinks problem
is the case where the k node-disjoint paths may terminate
at any sinks. Figure 3 and Table IV show the simulation
results, where we use max_iteration = 10 for GRASP-ARP. In
this scenario, GRASP-ARP outperforms K-CONN-REPAIR
in both the number of additional relay nodes needed and
the run time because GRASP-ARP only finds k£ node-disjoint
paths to the dedicated sinks, while K-CONN-REPAIR must
run an expensive connectivity checking algorithm in each
iteration to provide k-connectivity for an entire network.

We also vary the number of candidate relays in the networks
to show whether it has an impact on the run time efficiency
of GRASP-ARP. As depicted in Figure 4 for the 49-node
networks, the run time increases significantly when the number
of candidate relays increases.

K-CONN-REPAIR is too costly to be implemented in a
larger network as it needs to check the connectivity between
every pair of nodes. Our GRASP-ARP, on the other hand,
is able to scale larger networks. We present the run time for
100 and 225-node topologies in Table V. The results presented
here are for k=2 and use 400 candidate relays, where 100 and
225-node networks need 0.7 and 1.45 additional relay nodes
in average, respectively. More simulation results are available
in [14].

Fig. 4. Algorithms’ run time in increasing number of candidate relays for
the multiple sources - multiple sinks in 49-node networks

TABLE V
RELAY PLACEMENT ALGORITHMS’ RUN TIME FOR THE MULTIPLE
SOURCES - MULTIPLE SINKS IN 100 AND 225-NODE NETWORKS

Run time (sec)

Algorithms 100-node 225-node
GRASP-ARP-AnySinks-DP 2692118 834.9906
GRASP-ARP-AnySinks 307.9353 1358.7140
GRASP-ARP-DiffSinks-DP ~ 261.9937 1027.2200
GRASP-ARP-DiffSinks 3051702 12454740

VI. CONCLUSION AND FUTURE WORK

Ensuring that wireless sensor networks are robust to fail-
ures requires that the physical network topology will offer
alternative routes to the sink. This requires sensor network
deployment to be planned with an objective of ensuring
some measure of robustness in the topology, so that when
failures do occur that routing protocols can continue to offer
reliable delivery. Our contribution is a solution that enables
fault-tolerant WSN deployment planning by judicious use of
additional relay nodes. In this paper, we define the problem
for increasing WSN reliability by deploying a number of
additional relay nodes to ensure that each sensor node in
the initial design has k£ node-disjoint paths to the sinks. We
present GRASP-ARP, a centralised offline algorithm to be
run during the initial topology design to solve this problem.
We also adapt a version of the closest approach from the
literature for comparison. Our simulation results show that our
solution requires fewer relay nodes for larger problems than
the competitor, and that different variants of our algorithm are
significantly faster, allowing us to tackle larger problems.

We are currently evaluating network protocols and opera-
tions using the designed topologies in the network simulator
ns-2. While this paper focuses on additional relay node de-
ployment, our future work will include additional sensor de-
ployment, as well as finding locations to deploy sinks in a hop-
constrained network that can optimise the network resiliency.
We will also consider the networks capacity requirement in
the algorithm design.

ACKNOWLEDGMENT

This research is fully funded by the NEMBES project,
supported by the Irish Higher Education Authority PRTLI-IV
research program.

REFERENCES

[1] D. Torrieri, “Algorithms for Finding an Optimal Set of Short Disjoint
Paths in a Communication Network,” IEEE Transactions on Communi-
cations, vol. 40, no. 11, pp. 1698-1702, 1992.

[2] T. Feo and M. Resende, “Greedy Randomized Adaptive Search Proce-
dures,” Journal of Global Optimization, vol. 6, pp. 109-133, 1995.

[3] B. Hao, J. Tang, and G. Xue, “Fault-Tolerant Relay Node Placement in
Wireless Sensor Networks: Formulation and Approximation,” in Proc.
Workshop High Performance Switching and Routing (HPSR’04), 2004,
pp. 246-250.

[4] J. Bredin, E. Demaine, M. Hajiaghayi, and D. Rus, “Deploying Sensor
Networks with Guaranteed Capacity and Fault Tolerance,” in Proc.
6th ACM Int’l Symp. Mobile Ad Hoc Networking and Computing
(MobiHoc’05), 2005, pp. 309-319.

[5] J. Pu, Z. Xiong, and X. Lu, “Fault-Tolerant Deployment with k-
connectivity and Partial k-connectivity in Sensor Networks,” Wireless
Communications and Mobile Computing, vol. 9, no. 7, pp. 909-919,
2008.

[6] A. Kashyap, S. Khuller, and M. Shayman, “Relay Placement for Fault
Tolerance in Wireless Networks in Higher Dimensions,” Computational
Geometry, 2010.

[71 X. Han, X. Cao, E. Lloyd, and C. Shen, “Fault-tolerant Relay Node
Placement in Heterogeneous Wireless Sensor Networks,” IEEE Trans.
Mobile Computing, vol. 9, no. 5, pp. 643-656, 2010.

[8] W. Zhang, G. Xue, and S. Misra, “Fault-Tolerant Relay Node Placement
in Wireless Sensor Networks: Problems and Algorithms,” in Proc. 26th
Ann. IEEE Conf. Computer Communications (INFOCOM’07), 2007, pp.
1649-1657.

[9] S. Misra, S. Hong, G. Xue, and J. Tang, “Constrained Relay Node

Placement in Wireless Sensor Networks to Meet Connectivity and

Survivability Requirements,” in Proc. 27th Ann. IEEE Conf. Computer

Communications (INFOCOM’08), 2008, pp. 281-285.

R. Bhandari, “Optimal Physical Diversity Algorithms and Survivable

Networks,” in Proc. 2nd IEEE Symp. Computers and Communications

(ISCC’97), 1997, pp. 433-441.

L. Ford and D. Fulkerson, Flows in Networks.

Press, 1962.

J. Kleinberg and E. Tardos, Algorithm Design. Addison-Wesley, 2011.

S. Martins, P. Pardalos, M. Resende, and C. Ribeiro, “Greedy Random-

ized Adaptive Search Procedures for the Steiner Problem in Graphs,” in

Randomization Methods in Algorithmic Design, ser. DIMACS Series on

Discrete Mathematics and Theoretical Computer Science. American

Mathematical Society, 1999, vol. 43, pp. 133-145.

L. Sitanayah, K. Brown, and C. Sreenan, “Relay Node Placement

for k Node-Disjoint Paths in Constrained Wireless Sensor Network

Deployment Planning,” Dept. of Computer Science, University College

Cork, Tech. Rep. UCC-CS-2011-07-17, Jul. 2011.

C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algo-

rithms and Complexity. Englewood Cliffs, NJ: Prentice Hall, 1982.

R. Ravi and D. Williamson, “An Approximation Algorithm for

Minimum-Cost Vertex-Connectivity Problems,” Algorithmica, vol. 18,

no. 1, pp. 2143, 1997.

[10]

(11]

Princeton, University

[12]
[13]

[14]

[15]

(16]

