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Abstract: A common time reference across nodes is required in most Wireless
Sensor Networks (WSNs) applications. It is needed, for example, to time-stamp
sensor samples and for long-term duty cycling of nodes. Also many routing protocols
require that nodes communicate according to some predefined schedule for reasons of
energy efficiency. However, independent distribution of the time information, without
considering the routing algorithm schedule or network topology may lead to a failure of
the synchronisation protocol. This was confirmed empirically, and was shown to result
in loss of connectivity. This can be avoided by integrating the synchronisation service
into the network layer with a so-called cross-layer approach. This approach introduces
interactions between the layers of a conventional layered network stack, so that the
routing layer may share information with other layers. We explore whether energy
efficiency can be enhanced through the use of cross-layer optimisations and present two
novel cross-layer routing algorithms. The first protocol, designed for hierarchical, cluster
based networks and called CLEAR (Cross Layer Efficient Architecture for Routing), uses
the routing algorithm to distribute time information which can be used for efficient duty
cycling of nodes. The second method - called RISS (Routing Integrated Synchronization
Service) - integrates time synchronization into the network layer and is designed to work
well in flat, non-hierarchical network topologies.

We implemented and tested the performance of these solutions in simulations and
also deployed these routing techniques on sensor nodes using TinyOS. We compared
the average power consumption of the nodes and the precision of time synchronization
with the corresponding parameters of a number of existing algorithms. All proposed
schemes extend the network lifetime and due to their lightweight architecture they are
very efficient on WSN nodes with constrained resources. Hence it is recommended that
a cross-layer approach should be a feature of any routing algorithm for WSNs.
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1 Need for synchronisation in Wireless
Sensor Networks

The time synchronisation problem is a standard problem
in distributed systems, but especially in Wireless Sensor
Networks (WSNs). We can distinguish three main
domains where synchronised clocks are required: at the
interface between the sensor network and an external
observer, among the nodes of the sensor network, and
at the interface between the sensor network and the
observed physical world.

In many applications, a sensor network interfaces
to an external observer (a human operator or an
autonomous computing system) for tasking, reporting
results, and management. Tasking a sensor network
often involves the specification of time windows of
interest such as “only during the day”. As a sensor
network reports observation results to an external
observer, the temporal properties of observed physical
phenomena may be of interest. For example, the time-
stamping of the samples gathered by sensors or times
of occurrence of physical events are often crucial
for the observer. In these scenarios nodes should be
synchronised to an absolute time reference.

Time synchronisation is also required for
intra-network coordination among different sensor
nodes Karl and Willig (2007); Wang and Wang
(2007); Faizulkhakov (2007). This includes security
(e.g. authentication), data consistency (e.g. cache
consistency, consistency of replicated data), concurrency
control (e.g. atomicity, mutual exclusion such as
TDMA) Macedo et al. (2009), and communication
protocols (e.g. at-most-once message delivery). In these
applications nodes can be synchronised to an absolute
time value or they can estimate a relative time to
abstract time reference (e.g. neighbour’s local clock).
The energy efficiency of WSN can be improved by
frequently switching sensor nodes or components thereof
into power-saving sleep modes if the energy saved during
the sleep mode compensates the additional energy
dissipation due to putting into sleep and to awaking the
node. In order to ensure seamless operation of the sensor
network, temporal coordination of the sleep periods
among sensor nodes may be required. This is called
a transmitter-receiver rendezvous problem Anastasi
et al. (2009). Also, many data-fusion1 algorithms

have to process sensor samples in order of their time
of occurrence. However, sensor networks may suffer
from highly variable message delays and thus messages
from distributed sensor nodes may often not arrive
at a receiver in the order in which they were sent.
These can be reordered according to the time of sensor
readout only when nodes are synchronised. Methods for
localisation of sensor nodes based on the measurement
of time of flight or difference of arrival time of certain
signals also require synchronised time.

In the third group of applications where node
synchronisation is required we can distinguish data
fusion which may extract higher-level information about
an observed object (e.g. its size, speed, or shape) by
correlating measurements from multiple locations. Also,
sometimes one of the tasks of a WSN is to partition
sensor samples into groups (that each represent a
single physical phenomenon) when many instances of a
physical phenomenon occur within a short time. Then
the temporal relationships among sensor measurements
are a key factor in performing this separation. In these
scenarios only a relative time synchronisation is needed.

All these different requirements for time
synchronisation have led to the development of many
synchronisation protocols. The next section describes
the main difficulties in designing such protocols and
describes a representative synchronisation algorithm
that we used as reference to estimate performance of
our solutions described in sections 4 and 5. Section 6
compares the proposed solutions, their scope and
application scenarios and concludes the paper.

2 WSN synchronisation difficulties

Clock synchronisation algorithms face two problems:
time-stamping jitter caused by delays in transmitting a
packet and time errors due to the operating differences
of hardware (a so-called clock drift2). Time-stamping
jitter is a result of a variance of time interval between
inserting a time-stamp into the packet by the sender
and reading of it at the receiver. The source of message
time-stamping inaccuracy was analysed by Maroti et
al. Maróti et al. (2004). It includes sending, channel
access, transmission, propagation, reception and receive
time uncertainty. These errors are random and difficult
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to predict and eliminate especially in a network with
many communicating nodes. Clock drifts are difficult to
overcome and they can vary with time and temperature.
One of the methods to compensate clock drifts requires
a periodic updating of the time information between
nodes.

A popular synchronisation technique for WSNs is
the Flooding Time Synchronisation Protocol (FTSP)
described by Maroti et al. Maróti et al. (2004). It utilises
periodic flooding messages containing current local time
information and originated at the elected coordinate,
which is the node with the lowest ID. Upon receiving
this packet a node records the contained time-stamp and
the time of arrival, and broadcasts the message to its
neighbours after updating the time-stamp.

There are many other protocols in the literature that
address the synchornisation problem Karl and Willig
(2007); Lasassmeh and Conrad (2010) in WSNs. Most
of them were designed with an assumption that the
network stack architecture compiles with the traditional
layered hierarchy. As a result they operate as individual
entities located at the application layer of the network
stack which use services of lower layers (e.g. physical
or routing layer) and provide time information to other
applications. These solutions are efficient in terms of
synchronisation precision but in WSNs we have also to
consider the power cost of a protocol. Energy efficiency
of WSN nodes can be improved by a using a so-called
cross-layer design approach instead of a traditional
layered architecture. In next section I will compare these
two approaches and give more details about problems
that may occur while using traditional layered hierarchy
of the network stack in WSNs.

3 Problems with traditional approach to
synchronisation in WSN

3.1 Layered vs cross-layer protocol architecture

Most of the proposed communication protocols for WSN
follow the traditional layered protocol architectures.
More specifically, the majority of these communication
protocols are individually developed for different
networking layers, i.e., physical, medium access control
(MAC), network, and transport layers. While these
protocols may achieve very high performance in terms
of the metrics related to each of these individual layers,
they are not jointly optimized in order to maximize
the overall network performance while minimizing the
energy expenditure. Considering the scarce energy and
processing resources of WSN, joint optimization and
design of networking layers, i.e., cross-layer design,
stands as the most promising alternative to inefficient
traditional layered protocol architectures. Cross-layer
design refers to protocol design done by actively
exploiting the dependence between protocol layers to
obtain performance gains.

Cross-layer design can be realised in different
ways. It may consist of combining information and
functionalities of several traditional communication
layers into a single protocol or defining dependence
of one protocol’s actions on the actions of protocols
from other layers. It generally decreases the level of
modularity, but provides highly reliable communication
with minimal energy consumption which is very
challenging in the context of severe energy and
processing constraints of wireless sensor nodes.

The layered architecture may be unduly restrictive
in the WSN context, where packets are often routed
by a cluster-based protocol. The autonomous operation
of the network stack layers can lead to a significant
drop of communication performance. For example we
observed that the LEACH routing scheme Heinzelman
et al. (2000) may cause a failure of the synchronisation
protocol when it puts the node into low power mode. As
a consequence, the WSN stops delivering measurements
to the base station. Another issue that we identified
was the high packet loss observed with the same routing
scheme. This problem has two origins: the harshness of
the communications environment and hardware limits
of the nodes (which may be exacerbated by different
configurations of LEACH). These problems can be
encountered in a WSN when the routing is performed
by a cluster-based protocol using duty-cycling of the
nodes. We demonstrated these shortcommings using the
LEACH protocol which is one of the most widely used
hierarchical routing schemes in WSNs. The analysis of
these problems are presented in next section.

3.2 Intra-cluster communication problem

Energy resources are the main constraint of a WSN.
The power being drained from the nodes can be reduced
by arranging sensor communication with a schedule,
turning off the transmitter when data sending does
not occur. This solution was implemented in many
protocols, for example in LEACH where subordinate
nodes communicate with cluster heads according to
a TDMA scheme. However, in order to identify the
allocated communication time slots, the sensor node
clocks must be synchronised. The authors of LEACH
propose to implement a separate synchronisation
protocol and then share time information with the
routing scheme. In our experiments this task was
performed by the Flooding Time Synchronisation
Protocol (FTSP) Maróti et al. (2004). The use of
a synchronisation scheme independent of the routing
protocol caused some of the problems we encountered
with a deployed WSN.

We carried out all the described experiments with a
10 node network of sensor nodes uniformly distributed
in a grid topology with a minimal inter-node distance
of 5 m. We employed a commonly-used sensor network
platform; namely the Tmote Sky sensor node Polastre
et al. (2005), and the networking stack as implemented
in TinyOS Levis and Gay (2009). Its networking stack
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includes a default physical layer that supports single-
bit error correction and double bit error detection
capabilities. On top of this, its default MAC layer (LPL)
implements a simple CSMA/CA scheme. LEACH uses
a CSMA/CA protocol in the setup phase when nodes
randomly access the channel to elect cluster-heads which
then create TDMA schedule for the subordinate nodes.
Then the nodes communicate according to the TDMA
scheme with their cluster-heads.

For test purposes we implemented the LEACH
protocol in the nesC programming language. There was
no available implementation of LEACH on real WSN
nodes. LEACH requires network synchronisation and
the authors of LEACH do not specify how it should
be performed. Therefore we chose FTSP for this task
because it is one of the most popular synchronisation
protocols and also an implementation on TinyOS is
provided by the authors. We also installed a simple
application on the nodes which periodically collects
humidity and temperature measurements from sensors
integrated on the sensor nodes. This data is then
routed with LEACH to the base station which is a
Tmote Sky sensor node connected to a laptop with
an application for processing measurements from WSN.
To test the routing scheme each node records the
number of generated packets, whereas the base station
stores the number of received messages. At the end of
the experiment sensor nodes send data reports which
are compared with the base station summary. These
measurements are then examined for a quantitative
study of the protocol performance.

First a series of tests demonstrated the data delivery
efficiency of LEACH depending on two key parameters:
the probability of becoming a cluster-head and the
frequency of data packets. There may be many reasons
for communication failure. First of all, interference can
be caused by the signals sent by nodes from other
clusters. Also the MAC layer does not prevent the
hidden terminal problem. Finally, the computational
resources of the nodes are too small to accept high rate
and long bursts of data. In consequence, if the receiver’s
processor is performing a task and the reception buffer
or task queue is full, the message is discarded. This
situation is unacceptable in applications where packet
delivery must be guaranteed (e.g. intruder detection or
medical applications).

Figure 1 shows how the cluster-head election process
influences the packets delivery rate to the base
station. In these experiments we collected packet failure
delivery statistics as described above. We changed the
probability of becoming a cluster-head (one of LEACH
parameters) for every test round of 6 hours. Sensors were
taking measurements every 10 seconds and sending 3
packets per minute. The performance of LEACH drops
with increasing probability of becoming a cluster-head.
A higher density of cluster-heads increases the number
of nodes trying to communicate with the base station.
In consequence, the hidden terminal problem occurs
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Figure 1 Data delivery with LEACH protocol as a
function of the probability of becoming
cluster-head (95% confidence interval).
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Figure 2 Data delivery with LEACH protocol as a
function of the packet sending rate.

more often and the base station will also have problems
handling many signals arriving at the one time.

We also observed that packet loss depends on the
ratio of sensor measurement and data sending rates.
Subordinate nodes can only communicate in the time
slot assigned by the cluster-heads. In consequence,
sensor measurements that cannot be sent have to
be buffered until the next transmission. During the
series of experiments described below, the cluster-head
election probability was arbitrarily chosen to be 0.2
and packet delivery statistics are obtained by comparing
the number of packets sent by every sensor node with
the number of packets received by the base station.
This time sensor nodes were sending packets with a
constant rate of three packets per minute but for
every experiment round of 6 hours we were varying
the frequency of collecting sensor measurement. As
can be seen in Figure 2, if more samples have to be
stored before being sent then more packets are dropped
before reaching the base station. This degradation of
the overall performance can be explained as follows.
The channel access protocols cannot sustain long bursts
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of messages, even if the total data rate is relatively
low. We conclude that a too long sleeping period can
have negative consequences on the network lifetime.
Nodes turn off transceiver periodically in order to save
energy. Then sensor samples are saved and sent in
a longer data burst when the node wakes up. When
the sleeping period increases, data delivery performance
worsens. Lost packets have to be resent which results in
additional energy drain from the sensor node. So some
of the energy saved in a low power mode is consumed
when lost packets are resent.

Another issue that we observed during experiments
was the loss of synchronisation due to the duty cycle
of the subordinate nodes. With FTSP, each sensor node
sends periodic synchronisation messages and if LEACH
initiates sleeping mode for subordinate sensor nodes,
they cannot receive those packets and quickly become
unsynchronised. That is why in our experiments with
LEACH, low power mode was disabled.

We address these encountered problems in two new
cross-layer communication protocols. They are designed
with four goals:

• to minimise the overhead of the synchronisation
protocol

• to minimise the awake time of the transceiver and
in consequence its energy dissipation

• to achieve good time synchronisation

• to achieve robust protocol performance across a
range of values for the duty cycle of the nodes.

To achieve them we propose to use a so-called
cross-layer design approach where the traditional
layered protocol architecture is violated by cutting
across traditional layer boundaries with the purpose
of performance optimisation, resource preservation or
error resilience. Compared to the traditional layered
protocol architecture, the network synchronisation can
be obtained in a more energy efficient way when the
synchronisation service is integrated in the routing
layer. Several time synchronisation protocols which use
cross-layer information sharing between Network, MAC
and PHY layers have been proposed Karl and Willig
(2007); Miao et al. (2009). In those scenarios, the
advantage of granularity of the network stack is still
retained. However, time information estimated by one
layer can be shared with other layers. Therefore, this
design approach is also easier to incorporate in new
applications.

Time information is required by many protocols and
applications in WSNs (as discussed in section 1). There
is thus a need to estimate it efficiently and to share
it across the network stack. Because it is very rare
for synchronisation not to be necessary in WSNs, we
advocate integrating the synchronisation service into
the routing layer. Next two sections describe two novel
routing protocols which enable energy efficient time

synchronisation of nodes and use a cross-layer design
approach:

• CLEAR – Cross Layer Efficient Architecture for
Routing, which works well in cluster-based WSNs.

• RISS – Routing Integrated Synchronisation
Service, intended for use in non-hierarchical
WSNs.

We implemented and tested the energy efficiency
and time precision of these solutions in different
environments. Both protocols were deployed on sensor
nodes using TinyOS with the aim of comparing
their performance with other similar techniques. Both
protocols not only provide high precision of time
synchronisation for low energy cost, but also achieve
an excellent performance over a variety of network
topologies.

4 CLEAR

In this section we describe the CLEAR protocol which
integrates time synchronization into the network layer
and is designed to work well in hierarchical, cluster-
based network topologies.

4.1 A description of CLEAR

We could solve the experienced LEACH shortcommings
described in Section 3.2 with a traditional layered
network solution. It would involve a packet
acknowledgement mechanism to prevent data loss and
a separate duty-cycle mechanism for FTSP to keep all
of the nodes synchronised. This solution however has
some drawbacks. First of all, it increases data traffic
by adding ACK messages. Besides, independent sleep
modes for routing and synchronisation schemes are
energy inefficient because more energy is dissipated due
to the frequent awaking and putting into sleep of the
nodes. Also the duty-cycle mechanism for FTSP may
require additional computations and can be complicated
to implement.

The problems stated above led us to consider a
solution that requires interaction of network stack
layers. This idea motivated a variant of LEACH called
CLEAR which combines both functions: routing and
time synchronisation. The method we use to synchronise
the clocks requires interaction with the MAC layer.

The CLEAR protocol increases the energy efficiency
of LEACH by optimising the duty cycle of the
subordinate nodes in the clusters. It minimises the
number of times subordinate nodes need to wake-
up because the exchange of time information between
nodes is managed by the routing protocol and the
time information is transmitted according to the same
schedule as data is transmitted.

The overall scheme operates as follows. Before
starting the routing of messages with CLEAR, nodes
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need to synchronise their clocks during an initial set-
up phase. We used a method based on the periodic
flooding messages originating at the base station. These
contain time-stamp information which is compared by
the receiver with its local clock. With this method
we can attain a high precision at discrete points in
time. However, a very small difference in the clock
frequencies can introduce errors for the global time
estimation between synchronisation points. Thus the
protocol implements linear regression to compensate for
frequency differences of the clock crystals.

Once the nodes’ clocks are correlated during the
initial set-up phase, the routing protocol can start
routing the data. It elects cluster heads and other
sensors join the closest cluster. Then the subordinate
nodes receive the TDMA schedule from the cluster-
heads and go to sleep until their communication slots
occur. However, the synchronisation information has
still to be updated because of the clock drifts mentioned
previously. Therefore CLEAR aligns the crystals of
subordinates nodes in the following way:

• A subordinate node transmits data to its cluster-
head and waits a maximum of T seconds for an
acknowledgement.

• Cluster-heads which receive packets from
subordinate nodes check each packet’s integrity
and if there are no errors, stores them for
retransmission to the base station. An ACK
message is then sent which includes the
synchronisation protocol information. Content of
this packet is more detailed in next paragraph.

• After the arrival of the ACK message, the
subordinate node updates its clock time on the
basis of the information contained in the ACK
packet. It then erases the original data and goes to
sleep until the next communication slot.

• If the ACK packet is not received within T
seconds, the node enters a low power mode but
this time the data is stored and will be sent
with subsequent sensor measurements at a future
transmission time.

There are two reasons for integrating this
acknowledgment scheme into LEACH. Primarily, this
mechanism guarantees data delivery to the base station.
Our experiments carried out in a real environment,
described in Section 3.2, showed us that LEACH
may encounter a high rate of packet delivery failure.
According to Zhao et al. Zhao and Govindan (2003)
even reasonable link layer loss recovery is unable to
mask the high data losses WSNs encounter in a real
environment. Secondly, CLEAR makes the duty cycle
of the subordinate nodes more efficient. The ACK
packet integrates synchronisation data and therefore
subordinate nodes do not have to wake up solely
for receiving time information. The packet contains
two fields: the source address and the global time of

network. To increase energy efficiency, the cluster-head
acknowledges all packets sent by a node within one time
slot with a single ACK message.

The CLEAR synchronisation method is based on the
comparison of the global time value included in the
ACK packet and the local clock value at the reception
instance. Such a method may degrade precision because
the medium access time is random. We implemented
MAC layer time-stamping3 on the send and receive
side in order to reduce message transmission jitter
and in consequence the synchronisation error. The
cluster-head performs time-stamping when a part of
the ACK message was already transmitted whereas
the subordinate node records the reception time of
the global time field. With this method we observed
a maximum synchronisation error of 2 ms. The node
which receives the ACK message updates the global
time information, erases acknowledged measurements
and goes to sleep. CLEAR minimises the number of
times a node needs to awaken because it turns on
the transceiver for both routing data and updating
synchronisation information.

The cross-layer approach is present in two aspects of
the CLEAR protocol. First, it uses a MAC layer time-
stamping to reduce time jitter caused by the variation of
channel access time. The feature requires interaction of
MAC, PHY and application layers. Second, the routing
protocol uses a common schedule for sending sensory
measurements and also to synchronise the nodes. The
schedule needs to be shared between Network and
application layers. In the next section we present an
overview of CLEAR performance.

4.2 CLEAR performance

In this series of experiments we used the same WSN and
data delivery performance measurement as described in
section 3.2. In our tests comparing LEACH and CLEAR
we were primarily interested in two aspects of wireless
communication: energy consumption and packet loss.

The highest packet delivery ratio we could attain
with real world experiments was 90% although it could
drop to as low as 40%. Therefore some mechanism
of assured delivery is required and CLEAR integrates
into LEACH a message acknowledgement mechanism.
Thus at the price of increased channel occupancy
we guarantee packet delivery to the base station.
Even if some messages are lost with CLEAR, the
acknowledgement mechanism ensures the delivery of
sensor measurements to the base station.

We also analysed the influence of CLEAR on
the network lifetime. As mentioned already, CLEAR
makes the duty cycle of the subordinate nodes more
efficient, and so the network can operate for longer
periods than when using LEACH with the same initial
energy resources. In order to predict system longevity,
we measured the current consumption of the Tmote
Sky sensor nodes. To do this we used the voltage
measurement circuit described in the appendix.
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First, the sensor nodes were operated using the
LEACH and FTSP protocols. The frequency differences
of the crystals used in Tmote Sky motes introduces
drifts up to 40 µs. In our experiments we observed that
sensor nodes became unsynchronised after 16 minutes
when LEACH initiated the periodic low power mode
due to FTSP messages not being received (which was
described in section 3.2). Hence we could not run
experiments with LEACH and low power mode for a
long time. Instead, the protocols are implemented with
a layered architecture and the sensor nodes are not put
to sleep. On average, the nodes drained a current of 20
mA each, so with two typical AA batteries (2000 mAh)
as a power source, network longevity can be estimated
to be 100 hours.

In contrast, CLEAR facilitates the nodes entering
into low power mode. Then the current consumption
drops to about 250 µA. So with nodes sending packets
every two minutes, CLEAR can extend the network
lifetime for the same battery resources up to around
840 hours (when the cluster-head election probability
equals 10%). This value depends on two parameters of
the routing scheme: the fraction of nodes being made
cluster-heads and the frequency of packet transmission.
Figure 3 shows the variation of WSN lifetime as a
function of these variables.
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Diminution of the cluster-head election probability
has a positive influence on the network longevity. With
more nodes operating in low power mode, the energy
draining from the system drops. Also, frequent data
transmission by subordinate nodes can limit the lifetime
of the WSN.

High packet loss was encountered with the LEACH
protocol when many packets had to be stored in a buffer
before being sent because of the long sleeping period. It
may be a critical problem for the applications requiring
high measurement frequencies. CLEAR makes the duty
cycle more energy efficient because nodes send packets
and are synchronised during the same wake up interval.
Besides it ensures data delivery to the base station so

the nodes can be put into sleep for a longer time without
decreasing the measurement frequency.

4.3 CLEAR: summary

The experiments performed in a real environment
showed us that the traditional layered architecture
may make the routing and synchronisation protocols
inefficient in terms of energy consumption. We
discovered also that LEACH, a hierarchical routing
protocol, may encounter high packet loss. Thus we
proposed to integrate synchronisation, routing, MAC
time-stamping and an acknowledgment scheme into
a new, cross-layer designed protocol called CLEAR.
It drains less energy from the nodes compared with
LEACH and in consequence extends the network
lifetime. It also guarantees data delivery to the base
station.

In clustered networks some nodes become cluster-
heads and they are responsible for managing neighbours.
The other nodes join clusters and perform tasks
according to the commands sent by their cluster-
heads (e.g. they send samples in accordance with
the schedule generated by the cluster-head). Thus
the hierarchy importance increases in the downstream
direction because a node is responsible for managing
its upstream neighbors. Also a clustered architecture
requires that nodes communicate over bidirectional
links i.e. data must be sent over the same links in
both directions in these networks. For example the
cluster-heads transmit the TDMA schedules and data
requests in the upstream direction but the subordinate
nodes send sensor samples over the same links in the
downstream direction. For these reasons CLEAR is
best suited to such networks, since it also requires
bidirectional links. With CLEAR, a cluster-head sends
the synchronisation information in the reverse direction
over the same link as was used by a subordinate node to
send sensor samples.

5 RISS

In a flat network, the time synchronisation can be
efficiently achieved with a different approach than
in a hierarchcal network where cluster nodes have
the responsibility to distribute time information to
subordinate nodes. In non-hierarchical networks all
nodes have the same functionality and the RISS protocol
demonstrates how the time synchronisation can be
achieved in networks with such architecture.

5.1 An outline of RISS

In most WSN application scenarios (e.g. monitoring
of the outdoor environment, habitat, offices, systems,
buildings, and industrial sites) nodes perform the
computational and transmission tasks periodically. It is
rarely the case that the node stays active while it waits
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for an event to happen but even in those cases it must
periodically broadcast a beacon message to maintain
network connectivity. This periodic transmission being
a common property of WSNs applications, we propose
to exploit it to obtain an overall network time reference.
Less overhead is required to estimate neighbour’s clock
frequency rather than to generate a global network time.
Accordingly, since the previously mentioned monitoring
applications do not require an absolute time-of-day
reference, synchronisation supported by RISS is limited
to the estimation of the neighbours’ clock frequency.

Typically, sensory data is forwarded regularly to
the downstream nodes (in the direction towards the
base station) from the upstream nodes (in the reverse
direction). RISS protocol extracts the time information
from the periodic communication of the nodes. We
chose this approach because of the following reasons.
First, it reduces the protocol overhead because the
downstream node can estimate the frequency of a
neighbour’s clock on the basis of periodic packets sent by
the neighbour. So RISS does not require any additional
packets and in consequence the energy cost of the
protocol is reduced. Second, in WSNs data is mostly
transmitted in downstream direction and it is possible
that a pair of nodes can communicate directly only in
that direction as they are connected by an asymmetric
link Sang et al. (2010). These nodes could communicate
indirectly and synchronise using multi-hop bi-directional
communication. But the synchronisation error between
these two nodes is minimised if they synchronise on the
basis of the synchronisation data sent over direct link in
the downstream direction. Finally, it may even happen
that there is no multi-hop path from the downstream to
the upstream node even these nodes can communicate
directly in the opposite direction. In this situation, the
synchronisation information may only be sent in the
downstream direction.

So in order to synchronise, a node learns the clock
frequency of every upstream neighbour. To do that
the node uses the periodicity of the operation of the
upstream neighbour and the time information added to
the packet by the sender. So the task of the upstream
node is to add information to the message that would
facilitate the time alignment of nodes. However, we
recommend adding not a time-stamp of the sending
instant, but rather the time which has elapsed since the
last local periodic interrupt clock (the reasons for that
are described in section 5.2.1). Then the receiver after
collecting multiple messages can calculate the neighbour
clock frequency with respect to its local clock. Below, a
more detailed description of RISS is provided.

5.2 Detailed description of RISS

In the RISS protocol every node knows the clocks’
frequencies of its upstream neighbours. So, for example
the base station has to evaluate the clocks of the nodes
which report data directly to it. In this section we

describe how a node learns clock’s frequencies of its
upstream neighbours.

5.2.1 Sender operation

The task of the upstream sensor nodes is to perform
some periodic operation (e.g. to awaken the transceiver)
at time Ti and to send a packet (Figure 4). The task
period P is known to the downstream receiver and it
may be decided before the deployment of the network or
changed operationally and reported to all nodes.

It takes an amount of time Wi for the sender to
actually transmit the packet. The random delay Wi

reflects the time taken to assemble a packet and to
submit it to the MAC layer and time to access the
channel. This waiting time is inserted into the message
just after the transmission of the SFD4. This process
is called MAC layer time stamping and it reduces the
synchronisation error due to channel access time jitter
because the value of channel access time will be reflected
in the corresponding Wi. After the insertion of the
waiting time value, the FCS5 field must be recalculated.

Sending information just about the random time
delay (Wi) and not the clock reading at the time
of transmission (Ti +Wi) has two advantages. Firstly,
this number occupies a small range in comparison
to the possible clock scope. Thus, sending it requires
less energy and packet space. In our experiments we
observed that the maximum nondeterministic delay of
the transmission was 566 ticks using a 32kHz clock.
We need 10 bits to transmit this number instead
of the 32 bits required for sending the time-stamp.
This is important in WSNs where most of the energy
resources are consumed by the transceiver Fedor and
Collier (2007). Also in WSNs, the packet space is very
limited. For example in Tmote’s implementation of the
network stack the user has 28 bytes for application
data. So saving even 22 bits of the header might have
a substantial benefit. In the next paragraph we describe
how the receiver synchronises with its neighbours.

5.2.2 Receiver operation

The downstream node records the information about
the last Q packets received from a sensor node in order
to estimate its clock frequency. This data is stored
in a Q · l array where l is the number of upstream
neighbours. For every packet received, the node must
save the corresponding Wi and Ri values, where Ri is
the local clock value at the reception of i-th packet. After
that, the sensor node estimates the clock frequency of
the most recent transmitter from the set of Wi and Ri

values stored in the table using the method below. This
calculation is performed every time a packet is received.
We compared two different techniques to estimate the
sender’s clock frequency.

Linear regression:. We implemented linear regression
using a standard optimised algorithm Press et al.
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Variable Meaning

Ti Wake-up instance of the transceiver to execute i-th periodic task

P Duty-cyle period of the transceiver

Wi Time elapsed between wake-up of the transceiver and sending of the i-th packet

Ri i-th packet reception instance

R̂i Estimated reception instance of the i-th packet

Q The number of past packets processed

Fr→t Frequency of the transmitter clock

I(k) Time occurrence of an observed event expressed at the node k

G Difference between estimated packet arrival and awake time in order to reduce packet loss

Table 1 Variables used in the mathematical formulas.

Figure 4 Time line of the operation of the receiver (bottom) and transmitter (top). Every P seconds the sender wakes up
the transceiver at its local time Ti, samples the sensor, and transmits the SFD of the packet at local time Ti +Wi.
Sender adds the value Wi to the message and turns off the transceiver. The receiver hears the SFD at the local
time Ri.

(1988) 6. So, if we want to estimate the frequency of
the transmitter clock Fr→t with the Q most recently
received packets, the sum sy of receiver time-stamps of
the packets reception is given by:

sy =

c−Q+1∑

i=c

Ri (1)

Every time-stamp Ri corresponds to the time of
transmission of the SFD expressed using the sender’s
clock. If i is the packet sequence number, the sum of
the SFD transmission time-stamps can be expressed as
follows:

sx =

c−Q+1∑

i=c

i · P +Wi (2)

So the frequency of the transmitter clock Fr→t can
be obtained with the following equation:

Fr→t =

∑c−Q+1
i=c ti ·Ri

s
(3)

where ti = i · P +Wi − sx
Q and s =

∑c−Q+1
i=c t2i

These calculations turned out to be very resource
demanding. In particular the division by large integers
in equation 3 requires a considerable amount of time.
Because of the time expenditure and in consequence,
energy inefficiency of this method we propose another
technique for estimating the frequency of the sender’s
clock for use in the RISS protocol.

Fast approximation:. We call the frequency of the
transmitter clock expressed at the receiver Fr→t. For
every packet sent with an inter-packet period equal to P
we can write:

Ri −Ri−1 = Fr→t · (P −Wi−1 +Wi) (4)
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or

Fr→t =
Ri −Ri−1

P + (Wi −Wi−1)
(5)

We want to avoid the division operation in equation 5
for computational efficiency. For convenience we write
Ri −Ri−1 = ∆Ri and Wi −Wi−1 = ∆Wi. Hence,
equation 5 becomes:

Fr→t =
∆Ri

P +∆Wi

=
∆Ri

P
· P

P +∆Wi

=
∆Ri

P
· 1

1− (−∆Wi/P )

=
∆Ri

P
· (1 +

+

(−∆Wi

P

)
+

(−∆Wi

P

)2

+

(−∆Wi

P

)3

+ ...).

(6)

which converges provided |∆Wi| < P . In this
context7, |∆Wi| << P and so Fr→t is well approximated
by F̂r→t where

F̂r→t =
∆Ri

P
·
(
1− ∆Wi

P

)

=
∆Ri

P
− ∆Ri∆Wi

P 2
(7)

The second term is well approximated as ∆Wi/P since
∆Ri ' P . Hence:

F̂r→t ' (Ri −Ri−1)− (Wi −Wi−1)

P
(8)

We calculate only the numerator of that expression.
Defining F ′

r→t = P · F̂r→t and averaging that value over
the Q most recently received packets we obtain:

F ′
r→t =

∑c−Q+1
i=c [Ri −Ri−1 −Wi +Wi−1]

Q
(9)

We show in sections 5.3 and 5.4 how the obtained
value of F ′

r→t can be used for two main applications of
time synchronisation in WSNs: duty cycling of nodes
and for estimation of a common time reference.

5.3 Duty cycling of the node

Duty cycling is one of the most common techniques
used in WSN to save the energy resources of the sensor
nodes Karl and Willig (2007); Anastasi et al. (2009).
As stated previously, the transceiver drains more energy
than other subsystems from the sensor node. For this
reason it seems reasonable to turn it off periodically.
However, in order to maintain the connectivity of the
network we must ensure that when the transmitter

wants to forward a packet, its destination is awake.
There is thus a tradeoff between keeping nodes asleep for
the maximum possible time and minimising the packet
loss due to the receiver not listening. Thus it is necessary
that the communicating sensor nodes have the same
time reference and wake up at the same instance to
communicate. We can use the frequency of the sender’s
clock as estimated with the RISS protocol to synchronise
the duty cycling of the nodes in the following way.

When the downstream node captures a sufficient
number of packets from its upstream neighbour to
estimate its clock frequency, it calculates the arriving
time of the next packet and goes to sleep. This
estimation can be done as follows. After reception of
packet i, we can expect that the arrival time-stamp of
packet i+ 1 is:

Ri+1 = Ri + P · Fr→t + Fr→t · (Wi+1 −Wi) (10)

However, we cannot predict the term Wi+1 which
is stochastic. Thus we propose to replace the difference
(Wi+1 −Wi) by a minimum of that value over the
last Q packets minaε(0:Q−1)(Wi−a −Wi−a−1). We do
that to minimise the packet loss due to the receiver
waking up after the packet’s arrival. In order to
reduce the error of calculation of the neighbour’s clock
frequency we propose to combine the results of multiple
estimates. Also, the term minaε(0:Q−1)(Wi−a −Wi−1−a)
corresponds to a small value so we can neglect its
multiplication by Fr→t which is very close to one. So
equation 10 becomes:

R̂i+1 = Ri + P · Fr→t + min
aε(0:Q−1)

(Wi−a −Wi−1−a).

(11)

The arrival of the next packet can be predicted with
equation 11. However, a packet loss may still occur
because the value R̂i+1 is estimated on the basis of the
arrival times of the most recent Q packets. Thus, if for
example the channel occupancy drops the next packet
will have a smaller channel access time than the previous
Q packets. Thus, it will be transmitted before estimated
time R̂i+1 and not heard by the still sleeping receiver.
To prevent such packet loss we propose to awake the
receiver earlier than the estimated time R̂i+1 by a guard
interval G which we determine empirically. For a general
application scenario it would be most reasonable to
make the value of G adaptive and either to increase it
when the reception of a packet is missed or decrease
its value when a receiver spends a long time idly
listening. However, RISS can be used in networks with
asymmetric links where the receiver cannot acknowledge
the reception of a packet over the same link. If G
were adaptive, losses of several consecutive packets could
occur. In consequence, if the link is asymmetric so that
the receiver cannot directly inform the sender about the
reception failure, a significant amount of data can be
lost. Therefore we propose to use a fixed value of G and



Cross-layer routing and time synchronisation in Wireless Sensor Networks 11

to keep the receiver awake after a reception failure until
the arrival of the next packet. With this mechanism two
successive packet losses cannot occur.

We can replace the term P · Fr→t with the value of
F ′
r→t estimated with the fast approximation method to

reduce the calculation time of the next packet arrival.
Therefore, equation 11 becomes

R̂i+1 = Ri + F ′
r→t + min

aε(0:Q−1)
(Wi−a −Wi−1−a)−G.

(12)

where F ′
r→t is obtained with equation 9.

R̂i+1 is the state variable denoting the required wake
up time of the node. It is updated after every reception
of a packet. When a receiver has multiple upstream
neighbours, it must keep a record of estimated, future
arrivals from all of them. Whenever it receives a packet,
it predicts the arrival time of the next message from the
same sender and goes to sleep until the projected time
R̂i+1 of the next message to arrive from all upstream
neighbours.

5.4 Estimation of event time correlation

Another major purpose of obtaining a common network
time reference in WSN is the ability to time-stamp
events. In most WSNs applications the user must know
the time of occurrence of a sensed event. We propose
a method of generating time-stamps which requires
only a little protocol overhead. In section 5.2.2 we
describe how every node can estimate the frequency of
its upstream neighbours with RISS. This information
may be used at each node to estimate the time-stamp,
expressed in local clock units, of the received samples
from an upstream neighbour. To obtain that value the
receiver needs to know the time, expressed with the
clock units of the upstream neighbour, elapsed between
the occurrence of the sample and the instance of sending
the packet containing the sample. Then the receiver
is able to express that period in its local clock units
and by consequence precisely estimate the instance of
acquisition of the data sample. To obtain that value
it must substract the calculated value of elapsed time
from the instance of reception of the SFD of the packet.
Thus we propose to insert into the packet a field which
is updated by every node on the communication chain
between the source of the packet and the base station
to reflect its own local clock. Initially, the sensor node
k records the time E(k) elapsed between an observed
event (which can be sampling of the sensor, a packet
reception etc.) and the periodical clock interrupt (Ti(k))
described in section 5.2 in that field. Then the receiver
(node k + 1) computes in its local clock units the period
between the event observed by the sender and the SFD
of the received packet at time Ri(k + 1). This value can
be obtained as follows. If the time value sent by the
node k is E(k) and the value of F ′

r→t is estimated at
the receiver with the fast approximation method, the

time of occurrence I(k + 1) of the observed event can be
obtained with the following equation:

I(k + 1) = Ri(k + 1)− F ′
k+1→k · [Wi(k) + E(k)]

P
(13)

where Wi(k) is the value sent in the packet (see
section 5.2.1).

If the receiver of the packet is not the base station,
it forwards the value E(k + 1) to the downstream
neighbour (node k + 2). The value E(k + 1) corresponds
to the time elapsed between the initial sensor sampling,
expressed at node k + 1, and transmission of the packet
and is given by:

E(k + 1) =
F ′
k+1→k · [Wi(k + 1) + E(k)]

P
+ P (14)

Then the receiver (node k + 2) will collect the SFD
of the packet and repeat the update of the time field
before the transmission. So the time of occurrence I(k +
2) of the observed event expressed at node k + 2 can be
obtained with the following equation:

I(k + 2) = Ri(k + 2)− F ′
k+2→k+1 · [Wi(k + 1) + E(k + 1)]

P
.

(15)

where Ri(k + 2) is the reception time of the packet from
node k + 1 containing the value E(k + 1) and Wi(k +
1) is the random delay of that packet. This operation
continues until the message reaches the base station.

For example, if a node A observed an event e at
its local time 1000 and wakes up at instance 3000
to transmit the packet at 1200 local clock units, it
will insert in the packet two values: E(k) = 3000−
1000 = 2000 and Wi = 1200− 1000 = 200. Then the
receiver node B will record 7500, the value of its local
clock at the reception instance of the packet. If we
assume that node B estimated with RISS the value
of F ′

B→A (see equation 9) to be 66000 and duty-cycle
period of node A equals 60000 then the node B can
compute the time of occurence of event e in its local
clock units using equation 13, I(k + 1) = 7500− 66000 ·
(200 + 2000)/60000 = 5080.

5.5 Integration of RISS into network layer

RISS is a generic method for time synchronisation in
a flat WSNs. It represents tasks of the nodes and
information they need to exchange in order to obtain
network synchronisation. RISS requires interaction
between MAC and network layers. RISS applies a so-
called MAC layer time-stamping to increase precision
of the synchronisation. It also uses information about
neighbours which is managed by the routing protocol.
We propose that RISS should be integrated into the
network layer.

Incorporating the synchronisation service in the
routing protocol at the network layer results in an
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efficient implementation since the network architecture
is managed by this layer. In the synchronisation method
we propose, every node must first discover its upstream
and downstream neighbours. This information can be
deduced from the routing tables.

5.6 RISS performance

The purpose of our experiments is fourfold:

• to compare the effectiveness of linear regression
and fast approximation methods (section 5.2.2) to
estimate clock frequency

• to optimise the parameters of the RISS protocol

• to verify the robustness of the RISS protocol

• to compare RISS with other synchronisation and
duty cycling methods in WSNs

We employed a commonly used sensor network platform,
the Tmote Sky sensor node Polastre et al. (2005),
for experiments. Each Tmote Sky node has an 8MHz
TI MSP430 microcontroller and a 2.4GHz, 250kbps
IEEE 802.15.4 Chipcon wireless transceiver. We built
a network composed of four nodes and a single base
station. Each node wakes up every 10s, transmits the
sensor reading to the base station and goes to sleep.
The base station collects 1000 packets from every sensor
node. The time of next wake up is estimated with
the RISS protocol. The base station also turns off
the transceiver when the channel is free. The results
of experiments were measured both in hardware and
software i.e. at the end of a test we read from software
variables the values of measured quantities and also We
used a voltage measurement circuit (see appendix) to
estimate the time precision and energy efficiency of the
RISS protocol.

5.6.1 Comparison of linear regression and fast
approximation methods

Initially we compared the computing time of both
methods. The results are shown in table 2.

linear regression fast approximation

time execution 75.6ms 3.6ms

precision ≤ 2 clock ticks ≤ 2 clock ticks

Table 2 Time execution and precision of RISS with linear
regression and fast approximation

Fast approximation method is much faster than
linear regression for a similar level of time precision.
Processing inefficiency may be a drawback especially if
the estimated frequency is needed to duty cycle nodes.
A long calculation may significantly reduce the efficiency
of that service. Thus we continued the experiments with
fast approximation method in order to optimise it.

5.6.2 Optimisation of RISS

The performance of the duty cycle service depends on
two parameters: Q and G (see equation 12) whose ideal
values are determined empirically. In order to do that
we built a network composed of four nodes and a single
base station. Each node wakes up periodically, transmits
the sensor reading to the base station and goes to sleep.
The time of the next wake up is estimated with the RISS
protocol. The base station also turns off the transceiver
when the channel is free.

Optimisation of Q. The first series of experiments is
to estimate the ideal number of past packets (called
Q) needed to predict the next packet arrival time (see
equation 9). There is a trade-off between time execution
and precision when choosing Q. As Q increases,
the accuracy of estimation increases because a larger
number of past packets is considered when estimating
next packet’s arrival time. However, the execution time
of the algorithm (when the node is awake) increases with
Q. We want to determine empirically the value of Q
that maximises the energy efficiency of the duty cycling
protocol. We configured the WSN as follows. Each node
sends a sensor sample to the base station every 10s.
The base station collects 1000 packets from every sensor
node. We measure the average awake time of the base
station transceiver as a function of Q. The optimal
value of Q is platform dependent and we performed this
experiment using TmoteSky nodes Polastre et al. (2005).
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Figure 5 Average transceiver awake time as a function of
Q, the number of past packets processed.

The result of this test is shown in Figure 5. The
graph has a local minimum when Q equals 8. The
precision of the synchronisation alorithm increases with
the value of Q in the interval between 5 and 8 and
therefore the avarage awake time decreases because we
can predict more precisely the arrival time of the next
packet. However for the values of Q grater than 8 the
time required to run synchronisation algorithm becomes
significant. During the execution of the synchronisation
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algorithm the nodes stays awake and therefore for the
values of Q grater than 8 the average awake time
increases with Q. It means that, for this hardware
configuration, the receivers should estimate the arrival
of the next packet on the basis of the time-stamps
of the 8 previous messages. Then the average time
spent listening to the channel, processing the packet
and turning off the transceiver is kept low and is
approximately 16.5ms.

Optimisation of G. Also, we carried out a series of tests
to optimise the value of constant G in equation 12.
It represents the time which we subtract from the
estimated time-stamp of the future message and is used
in order to compensate for the random component of
the arrival time. The energy efficiency drops with the
value of G but if we set the constant G too small, a
packet loss may occur. This failure of reception disables
duty cycling until the arrival of the next packet and is
energy inefficient. So, there is a trade off between setting
G to a low value which may increase the energy draining
because of the missed packets and a larger value of G
that extends the awake time for every packet. With
the same network of four nodes and a base station we
measure the average awake time and number of packets
lost as a function of the value of G. The value of Q is
set to 8 and every sensor node sends 1000 packets. The
results of this experiment are shown in Figure 6.
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Figure 6 Average transceiver awake time as a function of
the pre-awake constant (G in equation 12).

For values of G greater than 170, the average
transceiver awake time increases linearly. We do not
observe any packet loss in those circumstances. However,
if the constant G is below 170, the rate of energy
consumption increases. This is due to packets being
missed by the receiver. The duty cycling is then disabled
until the next message arrival. Four out of 4000 (0.1%)
packets missed when G equals 160. When G is 170,
the transceiver is powered up 170/32768kHz = 5.19ms
earlier than predicted in order to compensate for the
stochastic component of the packet arrival time.

5.6.3 Sensitivity of RISS

In this series of tests we want to verify the influence
of application specific parameters on the performance
of RISS. We test how the energy efficiency varies with
the packet size. We also want to test whether the RISS
protocol is sensitive to the duty cycle period.

Influence of packet size on the energy efficiency of RISS.
With the network of four nodes and a base station, we
set up the protocol parameters to the optimal values
previously determined. We vary the size of the packet
sent by nodes and we record the average awake time of
the base station. The processing time of RISS increases
linearly with the number of bytes of the message (see
Figure 7). For the minimum packet size of 4 bytes
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Figure 7 Average transceiver awake time as a function of
the packet size.

we measured an awake time of 15.73ms and for the
Tmote’s maximum packet size of 28 bytes we evaluated
this value to be 17.57ms. So we deduced that on
average the transceiver power up time increases by
0.0784ms for an additional byte in a packet. The CC2420
transceiver has a transmission rate of 250kbps, and so
takes 0.032ms to transmit one byte. The difference of
0.0784-0.032=0.0464ms is due to the processing by the
duty cycling protocol of an additional byte. Thus in
applications where delay is not a major concern, sensor
samples should be stored and sent in packets of the
maximum size in order to optimise energy efficiency.
For example if a node sends a sensor sample of four
bytes in an independent packet, the receiver is awakened
for 15.73ms to compute the arrival time of the next
packet with RISS. However if this sample is inserted in a
packet which contains previous sensor samples, it would
increase the processing time of the arrival time of the
next packet (and thus the awake time) by only 0.18ms.

Influence of the duty cycle period on the energy efficiency
of RISS. We keep the same network architecture for
this test. However, this time we modify the frequency
of packets and analyse the variation of the energy
efficiency. Our observations are plotted in Figure 8.
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Figure 8 Average transceiver awake time as a function of
the inter-packet arrival time

The energy efficiency is inversely proportional to
the average awake time, which from Figure 8 can be
seen to be relatively insensitive to variations in packet
arrival rate. The algorithm performs well in the region
where inter-packet arrival time is between one and sixty
seconds. Although the performance of RISS may then
drop, in real applications we will rarely increase the
inter-packet period above one minute because it may
lead to a loss of network connectivity, and to a lack of
information about the neighbour nodes.

5.6.4 Comparison of RISS with other protocols

Comparison of RISS with other duty cycling protocols.
To compare the duty cycling performance of RISS
we chose as a reference the scheduling protocol which
is a part of Boomerang, Moteiv’s distribution of
TinyOS Boomerang (Boomerang). In the first stage
we deployed Boomerang on a network comprising four
sensor nodes and a base station. Each node sends
a sensor measurement every 10s and the lowpower
coefficient is set to 1%, the minimum possible value for
Boomerang, and thus probably the most efficient. After
collecting 500 packets at the base station, we measure
the average awake time of every sensor node. In the
second phase of the test we installed the RISS protocol
on the same network. Similarly, nodes send 500 packets
with the inter-packet interval of 10s. The comparative
results are plotted in Figure 9.

Each node stays asleep for longer when using duty
cycling with RISS. The average awake time per node
equals 449.6ms with Boomerang and 10.6ms with fast
approximation method. Node 0 is the base station.
We can observe that with Boomerang it consumes less
energy than other nodes. The reverse is the case with
RISS protocol (see section 5.1). This is due to the
different approach to synchronisation. In Boomerang
it is the upstream sensor node which adapts to the
duty cycling operation of its downstream neighbours.
We implemented the opposite solution in RISS (see
section 5.1). While the difference of average awake time
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Figure 9 Average transceiver awake time with
Boomerang and RISS protocol.

between the base station and the least efficient node
is considerable in the case of Boomerang (679.98ms),
it is very small (8.06ms) with our protocol. We
attribute this to the authors of Boomerang allowing the
minimum duty cycle period to be one percent. Also
Boomerang requires the exchange of dedicated packets
for synchronisation which extends each node’s awake
time.

Comparison of RISS with other time-stamping protocols.
The RISS protocol may also be used to determine time-
stamp of an event. The performance of the solution
can be tested by measuring the difference between the
protocol’s estimate of an event time and its actual
instance. To do this we propose the following experiment
scenario. A network is composed of a single node (node
A) and a base station (node B). Node B periodically
collects sensor samples from node A. It also estimates
node A’s clock frequency with the RISS protocol. A
node C (the reference broadcaster) broadcasts packets at
intervals to nodes B and A. For ease of implementation
we assured periodic transmission of these packets.
Whenever a packet is heard by the two nodes (A and B),
they record the time of occurrence of that packet. When
node A sends the sensor reading to node B, it adds
to the packet the value of the time which has elapsed
(according to A’s clock) between the packet broadcast
by node C and the SFD of the message being currently
transmitted. Then, node B uses that value to calculate
the time of reception (according to B’s clock) of the
packet from node C. It compares the obtained result
with the time-stamp it applied to the packet from node
C using its local clock upon reception of that packet.
The difference between these two values corresponds to
an error of the estimation of the arrival time of the
packet from the reference broadcaster. For every test we
vary the frequency of the sensor packets and we find
maxi Ei where Ei is the error in the i-th iteration of
the estimation at the base station of the event time. We
compare the precision of RISS with that of FTSP Maróti
et al. (2004) which we tested with the same scenario. We
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chose FTSP as a reference protocol because it is one of
the most prevailing WSN synchronisation protocols and
also its implementation on TinyOS is provided by the
authors. Our observations are shown in Figure 10.
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Figure 10 Maximum synchronisation error as a function
of the synchronisation beacon frequency for RISS
and FTSP protocols.

On that graph we plotted the observed maximum
error in event time estimation for FTSP and RISS.
This inaccuracy is expressed as the number of ticks of
a 32kHz clock. The exactness of the method depends
on the frequency of update messages. This update is
done by the exchange of beacon packets in case of
FTSP and by the addition of time information to
application packets in RISS. The shape of the curve
shows that the precision of time synchronisation is
a decreasing function of the frequency of the time
information exchange between nodes. We observed the
smallest maximum synchronisation error of 1/32768 ≈
30.5µs when the time information was updated every
second. Because the maximum synchronisation error
can only be expressed as an integer multiple of clock
units, FTSP and RISS perform equivalently in terms
of synchronisation precision. The difference between the
maximum synchronisation error of the two protocols is
typically zero or one clock unit. The only exceptions in
Figure 10 are for the inter-packet periods of 30 and 40s.
However, the corresponding maximum synchronisation
error of 2 and 3 clock units measured with FTSP
protocol was encountered very rarely. Similar outliers
would probably be obtained with RISS protocol with a
larger set of measurements than the ten used to generate
results from Figure 10.

5.7 RISS: summary

RISS exploits the cyclical operation of the nodes to
establish the time reference of every sending neighbour.
We showed in previous sections how this information can
be used for duty cycling of the nodes and obtaining the
time-stamp of sensor samples. The experiments carried
in a real environment proved the advantage of RISS

over other synchronisation protocols. It performs better
than FTSP in terms of synchronisation precision. Also
RISS is more energy efficient than Boomerang when
used for duty cycling of the nodes. Finally, it is possible
to increase significantly the sleeping time of the nodes
by sending multiple sensor readings in one packet.

6 Comparison of CLEAR and RISS

In the previous sections we described CLEAR and
RISS protocols which may be used to synchronise
clocks of the nodes in WSNs. Both apply the idea of
integrating the synchronisation service in the routing
layer. However, they should be used in networks with
different routing scenarios. CLEAR is suitable for
networks which use hierarchical routing, like LEACH
protocol Heinzelman et al. (2000). In this type of
networks, some nodes become cluster-heads and they
are responsible for managing neighbours. The other
nodes joint clusters and perform tasks according to the
commands sent by their cluster-heads (e.g. they send
samples with the schedule generated by the cluster-
head). Thus the hierarchy importance increases in the
downstream direction because a node is responsible to
manage its upstream neighbors. CLEAR adapts to this
hierarchy because in this protocol nodes synchronise
clocks according to the downstream neighbors.

CLEAR should be applied in hierarchical networks
also because the links in these systems must be
bidirectional. This is due to the fact that data
must be sent over the same links in both directions
in these networks. For example the cluster-heads
transmit the TDMA schedules and data requests in
the upstream direction but the subordinate nodes
send sensor samples over the same links in the
downstream direction. However the asymmetric links
are frequently encountered in wireless networks Sang
et al. (2010) and thus these links must be discarded
from the routing tables in hierarchical networks. This
can be done by eliminating the communication with
nodes located in the transition region. So because a
hierarchical network has to eliminate communication
over asymmetric links, the CLEAR protocol can be
applied in this type of WSNs. However, in non-
hierarchical networks the asymmetric links problems
may be overcame by sending packets over different
routes in downstream and upstream directions.

Indeed, in a non-hierarchical WSNs the
communication over asymmetric links is possible.
It is only required that nodes are able to discover
such connections and be aware of their presence. To
enlarge the connectivity of the network these links
can be maintained, but the data is transmitted over
separate links in different directions. Thus the CLEAR
protocol cannot be applied in non-hierarchical WSNs.
RISS is more suitable protocol for such systems. It is
characterised by a smaller overhead than CLEAR and
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can obtain energy efficiency when used for duty cycling
of the nodes.

Although RISS performs better in terms of energy
efficiency than CLEAR, the latter protocol should be
applied only in hierarchical WSNS. This is due to the
different ways of synchronisation used by both protocols.
In RISS protocol downstream mote synchronises to
its upstream neighbour and as it was argued before,
in hierarchical networks it is the upstream mote that
should be synchronised to a downstream node.

The proposed solutions overcome the overhead
incurred by traditional layered synchronisation
architectures use the so called cross-layer method where
communication between nonadjacent layers is enabled.
The advantage of these novel methods was tested
by simulations and by experiments carried out with
WSNs deployed in different environments and various
communication scenarios.

APPENDIX

One of the metrics used during our experiment was
the energy efficiency of the protocol. This can be
expressed and measured in many ways. Experiments
showed that among all a sensor node’s components it
is the transceiver that drains most of the power from
the battery. Hence, there are two ways of comparing the
energy efficiency of protocols:

• Compare an average power consumption of a node
for considered protocols

• Compare an average awake time of the transceiver
for examined protocols

In the appendix we describe how measurements of
energy efficiency were performed.

A.1 Measurement of average power consumption
by the sensor node

To measure an average power consumption by the sensor
node we built the circuit depicted in figure 11.

We performed experiment on the Tmote Sky
platform from MoteivPolastre et al. (2005). The
Tmote Sky module is a low power “mote” with
integrated sensors, radio, antenna, microcontroller, and
programming capabilities. To be powered it requires
a voltage source between 2.7 and 3.6V. In order to
measure its power consumption we connected in series
a Tmote Sky with a 1Ω resistance. The circuit is
closed with a 3V regulated power supply. The power
consumption of the sensor node can be deduced from
the measurements of the Vr voltage on the resistance
because TmoteSky and the resistence are connected in
series. So, the same current is drained by the sensor
node and flows through the resistance. The power
consumption of the TmoteSky can be expressed as:

P = Vm × Im (16)

Figure 11 Scheme of the power consumption circuit.

where Vm is the voltage measured across the sensor node
and Im is the current which flows through it. These
values can be deduced from the measurement of voltage
Vr across the 1Ω resistance. The current Im can be
obtained with the equation:

Im =
Vr

R
(17)

where R equals 1Ω. Finally the power consumption of
the TmoteSky is:

P = Vm × Vr

R
= (3− Vr)× Vr

R
=

3Vr

R
− V 2

r

R
(18)

According to TmoteSky specification Sentilla
Corporation (2006) maximum value of current Im can
be 20mA. Thus the maximum possible value of Vr can
be 20mV which can be deduced from equation 17 where
R = 1Ω. Hence, from equation 18 we can approximate
the value P of power consumed by

P ≈ 3Vr

R
(19)

which results in maximal relative error of 0.67%.

Hence, to obtain a power consumption of the sensor
node we measured voltage Vr using NI 5112 High-Speed
digitiser National Instruments (2000). The measured
voltage was displayed with a LabVIEW application
developed for this purpose. With the same program
we could store measured samples for further treatment.
In this way we could for example calculate an average
power consumption. A typical screenshot of the voltage
measurements is shown in figure 12. The apparent
negative values are the result of software errors when
displaying a large number of collected samples (10MHz
sampling rate). The same High-Speed digitiser and the
LabVIEW application were used to measure average
awake time of the transceiver.
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Figure 12 Sample of voltage measurement across resistance R.

A.2 Measurement of average awake time of the
transceiver

In our experiments we measured the awake time
of the transceiver to compare energy efficiency of
different protocols. These measurements were performed
in software but to verify these results we estimated the
awake time using the NI 5112 High-Speed digitiser and
LabVIEW application previously described. Whenever
the transceiver was awake the application increased
the voltage of a user general I/O pin available on
the TmoteSky. After an experiment we measured the
time when the pin was at the higher voltage level and
compared that with awake time measurement provided
by software estimation.
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Note

1Data fusion consists of the assembly of distributed
observations into a coherent estimate of the original
phenomenon.

2Clock drift is caused by the different frequency of crystal
oscilators. The synchronisation precision decays with the
time elapsed from the synchronisation instance.

3In a so-called MAC layer time-stamping the global time
value is inserted into the MAC layer payload after the
transmission of the SFD and therefore the impact of the
channel access time on the jitter is minimised.

4Start of Frame Delimiter (SFD) is the 8-bit value (0xA7)
marking the end of the preamble of an IEEE 802.15.4
frame.

5Frame Check Sequence (FCS) in an IEEE 802.15.4 MAC
frame is a 16-bit International Telecommunication Union
Telecommunication Standardization Sector (ITU-T) cyclic
redundancy check (CRC) which helps verify the integrity
of the MAC frame.

6We used variable notation according to this book. For
details of the optimised implementation, please refer to the
book.

7We determined experimentally the maximal value of ∆Wi

to be 237 whereas minimum value of P is 32768 when duty
cycling period equals 1s.


