Deployment Alternatives for Performance
Debugging in Wireless Sensor Networks

Tony O’Donovan and Cormac J. Sreenan
Mobile and Internet Systems Laboratory,
Department of Computer Science,
University College Cork
Cork, Ireland
Email: t.odonovan@cs.ucc.ie

Abadtpoct—A common approach for performance monitoring
and diagnosis in wireless sensor networks (WSNs) is to send
meta-data to a sink node to process. WSN radio constraints limit
the amount of this meta-data that can be sent. Logging it to the
node’s onboard storage can also aid in long-term performance
debugging. Using the stored data it is possible for nodes to do
statistical analysis for the detection of performance anomalies in
the network, rather than at the sink. In this paper we compare
the cost and accuracy of performing anomaly detection in the
network and at the sink.

I. INTRODUCTION

Most of the research to date in sensor networks has been in
areas such as environmental monitoring and agriculture, where
performance assurances are not considered essential. The goal
of the FP7 funded GINSENG project [1], on the other hand,
is to develop a WSN to meet application-specif ¢ performance
targets in real industry settings where performance is critical.
Such deployments require tools that can help in the detection
and analysis of faults and anomolies in the network when they
occur.

In networks such as this, both bandwidth and energy are at
a premium. The common performance monitoring approach of
frequently sending meta-data to the sink can be costly. In this
paper we use the node’s onboard storage and computational
capabilities to log and analyse recent traff ¢ patterns that can
indicate problems or faults in the network. Carrying out this
analysis on the node’s themselves rather than at the sink allows
us to reduce the number of performance related messages that
are sent to the sink. We show that this can provide considerable
savings, particularly for multi-hop networks.

The GINSENG project includes a test bed in an operating
oil refnery at Sines, Portugal where part of our evaluation
is performed. Due to the possibility of explosion the nodes
need to be enclosed in ATEX boxes [2]. The presence of the
oil tanks and pipes that make up the refnery also provide
a diff cult environment for radio communications. All of this
together with the application scenario constraints, constitute a
very challenging deployment.

II. MOTIVATION

Environmental conditions, software errors and component
failures are among the many causes for the poor performance
of wireless sensor networks in real world deployments. During

978-1-4244-9289-3/11/$26.00 ©2011 IEEE

the development phase it may be necessary to provide extra
infrastructure to help with detecting, diagnosing and fxing
such problems. The GINSENG project, for example, uses
embedded PCs running Linux connected to each node. This
allows access to the serial logs of the nodes as well as the
ability to reprogram them remotely. However, such a system
is only feasible for a small number of nodes and can not be
supported beyond the development phase.

Due to the distributed nature of WSNs each node must send
a periodic update to the sink so that a representation of the
status of the network is available to the operator. The accuracy
of that representation is determined by the frequency of the
updates that the nodes send. However, there is a large overhead
associated with sending periodic performance updates to the
sink.

By logging performance related data to the nodes’ onboard
Flash storage it is possible to carry out statistical analysis in
the network [3]. Using the data logged to Flash the nodes
can check for changes in routing or traff ¢ patterns that often
indicate performance anomalies. If a supplementary update is
sent when a performance anomaly is detected, it is possible
to reduce the frequency of periodic status updates to the
sink without incurring any signif cant loss of accuracy in the
available representation of network status. As well as the
energy saving associated with fewer status updates there is
also more bandwidth available to application messages.

III. DESIGN

The frequency of performance messages sent by a node
affects the accuracy of the representation of the network held
at the sink. A high update rate provides a clearer picture of
the network’s current state for the operator but comes with
overhead associated with additional network traff ¢, a low rate
means less traff ¢ but the condition of the network available to
the operator may be out of date and of little use. The desirable
scenario is a low update rate without the loss of accuracy.

It is possible to achieve this goal by getting the node to
check for anomalous traff ¢ behaviour based on stored data
and send supplementary performance messages if an anomaly
is encountered. Given that GinMAC [4] is TDMA based and
the application has a periodic nature, it is to be expected that
the number of messages sent and received by a node in a

given period should not vary considerably from one period
to the next. Any sudden increase or decrease in traffc in
such a system is a key indicator of performance problems
or network changes. Interference, disconnected nodes and
topology changes all result in a changed message sent/received
rate. With this in mind, it was decided to periodically log
the number of messages sent to and received by a node to
Flash and use this log as a basis for the node’s usual traffc
conditions. Any large deviation from this norm generates an
exception and a supplementary performance message to update
the sink.

IV. IMPLEMENTATION

While we wish to reduce the overhead associated with
sending performance monitoring data to the sink, some state
information is required at the sink, so low-rate periodic updates
are still necessary. The frequency of performance message
transmission is reduced, with the new lower frequency sending
only 1 message for every 5 messages normally sent. To ensure
the sink is aware of changes in traff ¢ conditions a check for
anomalies is performed and supplementary messages are sent
if necessary.

Upon initialisation a fle is created on the node’s Flash using
the Coffee [5] flesystem and an fsUpdate event is scheduled.
The fsUpdate event updates the fle with the number of slots,
the number of messages sent and the number of messages
received since the last time the event was triggered. A circular
array is used to capture a recent snapshot of the node’s traff c
so that bursts can be detected easier. The standard deviation
and average number of messages sent and received are then
calculated based on the records in the fle stored in Flash.
Finally a check is performed to see if the current traffc
conditions are consistent with those of the stored data.

Equation 1 is for messages sent:

25D, < Abs(A, — Cy) (1)

where SD,, A, and C, denote the standard deviation,
average and current number of messages sent in a period
respectively.

Similarly exceptions in the rate of messages received is
checked using Equation 2

25D, < Abs(A, — C,))

where SD,, A, and C, denote the standard deviation,
average and current number of messages received in a period
respectively.

If an exception is encountered then an exception message
is generated and added to the queue. Exception messages are
marked so the sink can distinguish easily between exceptions
and regular messages sent at the lower frequency.

V. EVALUATION

The evaluation was carried out using the GINSENG testbed
at the Petrogal oil ref nery at Sines, Portugal and a laboratory

Fig. 1.

A node in the Sines tesbed.

testbed in University College Cork (UCC). The Sines deploy-
ment consists of 16 TelosB nodes running a version of Contiki
2.4 [6] that has been heavily modifed for the GINSENG
project including GinMAC, overload control and performance
debugging etc. The network includes a section where nodes
are widely spread with long communication ranges and a
section where there is a high concentration of nodes with short
communication ranges. Nodes operate at different heights from
the ground in areas with large metal structures, which can
seriously affect wireless communication.

Each node (excluding the Sink) is contained within an
ATEX box as a safety precaution and then individually con-
nected to existing sensors located throughout the testing area
of the ref nery, as shown in Figure 1. Nodes are connected to a
number of different sensor types including pressure, tempera-
ture and f ow transmitter. During the current development and
evaluation phase the nodes are also connected to embedded
PCs running Linux to allow for remote reprogramming.

A PC running Ubuntu Linux is connected to one of the
nodes and is used as a sink. This sink is located in a small
portable off ce in the ref nery. The other 15 nodes make up a
network with a static 3-2-1 topology as shown in Figure 2.

The UCC testbed also conists of 16 TelosB nodes that use
the same software and the same topology as the Sines de-
ployment. Apart from the physical environment, the laboratory
testbed is as close a representation of the Sines testbed as
possible.

Each node generates an application message once per sec-
ond and performance messages once every 25 seconds at
the default high frequency. The low frequency for sending
performance messages is !/5th of the high rate, i.e. one
message every 125 seconds.

A. Evaluation Results

Of interest is the difference in accuracy of the sink’s
representation of the nodes’ state that comes from reducing
the performance message update rate. This is for the low
update rate, both with and without exceptions. The cost of
sending the updates at both rates is also of interest, as is the

Fig. 2. The GINSENG test bed 3-2-1 topology.

Sines Refinery Results - Messages Sent Inaccuracy
1.8 T T T T T T T T T

Normalised Absolute Inaccuracy

2 3 4 5 6 7 8 9 10 " 12 13 14 15 16
Node Number

Low s Low with Exceptions s

Fig. 3. Detection Inaccuracy Summary - Messages Sent.

additional cost of monitoring for performance changes and
sending supplementary updates if a threshold is breached.

1) Accuracy: This experiment was carried out on the Sines
testbed. We wanted to measure how much the performance
data at the sink differed from that of the high update rate when
we use the low update rate with and without exceptions. Since
the performance data at the high rate was being used as our
normal, it was necessary to use the high update rate for all the
messages. Exception messages and those sent at the low rate
were marked, so they could be distinguished from the high
rate messages and each other.

In order to determine the accuracy we took the number of
messages sent/received at the high frequency as normal and
then calculated how much this number differed from that of
both the low frequency and the low with exceptions. The aver-
age inaccuracy for each node is shown for messages sent and
messages received in Figure 3 and Figure 4 respectively, with
a decrease in inaccuracy refecting an increase in accuracy.
The accuracy for most nodes is improved; this improvement
is considerable for nodes 2 and 4.

Sines Refinery Results - Messages Received Inaccuracy
1.8 T T T

0.8 1

0.6 1

Normalised Absolute Inaccuracy

04 B

0.2 B

2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
Node Number

Low Low with Exceptions e

Fig. 4. Detection Inaccuracy Summary - Messages Received.

UCC Testbed Results - Performance Message Cost

900 T

a
o
I
'll)
5
&
8
=
8
§
E
2
[
o

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Node Number
High s Low e Low with Exceptions messss
Fig. 5. Performance Debugging Overhead per Node (Communication).

2) Cost: This experiment was carried out on the UCC
testbed. Three two hour runs were done, frst with the high
performance update frequency (every 25 seconds), then with
the low frequency (every 125 seconds) and fnally the low
frequency with exeptions. The number of messages required
to send each node’s performance updates to the sink is shown
in Figure 5, including the cost associated with forwarding the
performance updates. The difference between the high and
low is signifcant indicating a considerable energy saving is
possible by reducing the update frequency. However, the lower
frequency including exceptions has only a slightly higher cost
than the low frequency.

As well as the overhead associated with sending the excep-
tion messages, the cost of storing performance data in Flash
must be taken into account. Figure 6 shows a breakdown of
the energy used during the run with the low performance
update rate and exceptions. On average Flash read and write
operations added just 0.02mW in two hours, accounting for
under 10% of the nodes total energy usage.

UCC Testbed Results - Energy Cost
4 T

Energy [mW]
N

2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16
Node ID

Tx mmmsm CPU mssmm Flash mmssm Sleep

Rx m—

Fig. 6. Energy Breakdown per Node.

VI. RELATED WORK

Sympathy is a popular tool that provides network-
monitoring and is particularly suited to periodic data gathering
WSNs [7]. The sink gathers performance related data from all
nodes in the network for analysis. PAD and PerDB employ
a different approach, these schemes include a small amount
of performance information in each application message [8],
[9]. The causal diagrams and belief networks used in PAD
are like Sympathy’s decision tree. Weighted decision trees are
used to calcuate the Visibility metric, which aids in the design
of network protocols suited for debugging [10].

Our scheme, along with Sympathy, PAD and PerDB are
among many that monitor for changes in traff ¢ patterns and
routing to detect faults and anomolies in networks. While
the others rely on the sink to perform the analysis and fault
detection, we use the storage and computational capabilities
of the nodes to perform the detection on the nodes themselves.
One of the main goals of this work is to reduce the overhead
of performance debugging, as in PAD and PerDB. However,
unlike those systems that discard data not included in appli-
cation messages, we log data to the nodes’ Flash allowing it
to be used in detection of faults.

Statistical analysis can be used for application-level data
integrity, rather than checking for performance anomolies in
the communication layers as in this work. For example, invalid
data from faulty or compromised nodes are detected using
outliers by Ganeriwal et al. [11]. Suelo analyses sensor data
to look for predef ned features that can indicate problems with
the sensors [12].

Like this work, Envirolog employs a node’s Flash memory
to log data in order to improve performance [13]. The authors’
aim is to be able to later replay logged events, allowing
analysis of network’s performance. We use the logged data
to detect performance anomolies in the network itself as it
happens.

VII. CONCLUSION

Periodic updates of performance meta-data is commonly
used to provide WSNs with performance monitoring and
debugging capabilities. Frequent updates can be costly in terms
of both energy and bandwidth. We present a scheme where
nodes store performance data in Flash, which is used to check
for anomolous traff ¢ conditions. Using this scheme it is pos-
sible to reduce the rate at which performance updates are sent
to the sink without a major loss of accuracy. This work is part
of the GINSENG project that aims to develop WSN systems
for industrial environments where performance is critical. Part
of the evaluation was carried out on the GINSENG testbed in
an operation oil ref nery in Sines Portugal.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement n° 224282.

REFERENCES

[1] “GINSENG,” Web page, visited 2011-07-01.
http://www.ict-ginseng.eu/

[2] “ATEX,” Web page, visited 2011-07-01. [Online]. Available:
http://ec.europa.eu/enterprise/sectors/mechanical/documents/guidance/atex

[3] T. O’Donovan, N. Tsiftes, Z. He, T. Voigt, and C. J. Sreenan, “Detailed
diagnosis of performance anomalies in sensornets,” in Proceedings of the
Sixth ACM Workshop on Hot Topics in Embedded Networked Sensors
(HotEmNets2010), June 2010.

[4] P. Suriyachai, J. Brown, and U. Roedig, “Time-critical data delivery
in wireless sensor networks,” in Proceedings of the Sixth IEEE Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS
’10), June 2010.

[5] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt, “Enabling large-scale storage
in sensor networks with the coffee fle system,” in Proceedings of the
Eighth ACM/IEEE International Conference on Information Processing
in Sensor Networks (IPSN 2009), April 2009.

[6] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
fexible operating system for tiny networked sensors,” in Proceedings of
the IEEE Workshop on Embedded Networked Sensor Systems (EmNets),
November 2004.

[71 N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin,
“Sympathy for the sensor network debugger,” in Proceedings of the
Third International Conference on Embedded Networked Sensor Systems
(SenSys ’05), November 2005.

[8] K. Liu, M. Li, X. Yang, and M. Jiang, “Passive diagnosis for wireless
sensor networks,” in Proceedings of the Sixth ACM Conference on
Embedded Networked Sensor Systems (SenSys '08), November 2008.

[9] V. Pejovic and C. J. Sreenan, “Perdb: Performance debugging for

wireless sensor networks,” in Proceedings of the Sixth European Confer-

ence on Wireless Sensor Networks (EWSN 2009), Poster/Demo session,

February 2009.

M. Wachs, J. 1. Choi, J. W. Lee, K. Srinivasan, Z. Chen, M. Jain, and

P. Levis, “Visibility: a new metric for protocol design,” in Proceedings

of the Fifth International Conference on Embedded Networked Sensor

Systems (SenSys '07), November 2007.

S. Ganeriwal, L. K. Balzano, and M. B. Srivastava, “Reputation-based

framework for high integrity sensor networks,” ACM Transactions on

Sensor Networks (TOSN), June 2008.

N. Ramanathan, T. Schoellhammer, E. Kohler, K. Whitehouse, T. Har-

mon, and D. Estrin, “Suelo: human-assisted sensing for exploratory soil

monitoring studies,” in Proceedings of the Seventh ACM Conference on

Embedded Networked Sensor Systems (SenSys '09), November 2009.

L. Luo, T. He, G. Zhou, L. Gu, J. Stankovic, and T. Abdelzaher,

“Achieving repeatability of asynchronous events in wireless sensor

networks with envirolog,” in Proceedings of the 25th IEEE Conference

on Computer Communications (INFOCOM ’06), April 2006.

[Online]. Available:

