
Priority Interrupts of Duty Cycled Communications

in Wireless Sensor Networks

Tony O’Donovan1, Jonathan Benson1, Utz Roedig2, Cormac J. Sreenan1

1Mobile and Internet Systems Laboratory, Dept. of Computer Science, University College Cork, Ireland.
2InfoLab21, Lancaster University, UK.

Abstract— FrameComm is a contention based, Duty Cycled,
MAC protocol that ensures a message will be transmitted during
the receiver’s listen phase by sending a packet, followed by a
short gap, repeatedly for a precalculated number of times or
until an acknowledgment is received. While introducing duty
cycled communications can yield large power savings it does so
at the cost of increased delay and decreased throughput. Many

WSNs may incorporate several distinct message types of varying
priority. A node with a high priority message to send may find the
channel to be busy with a lesser priority message from another
node and must therefore ‘back-off’ leading to further delays.
In a multi-hop environment, these delays are compounded and
may become unacceptably large. This paper proposes adding a
high priority interrupt message to FrameComm that allows a
node with important data to send to interrupt another node’s
lesser priority transmission giving immediate access to the
channel. The priority interrupt mechanism is evaluated using
an implementation in TinyOS 2 on a small laboratory testbed.

I. INTRODUCTION

Communication in Wireless Sensor Networks (WSNs) con-

sumes a great deal of energy and has been the focus of much

research with many energy efficient communication protocols

being proposed. Many WSN platforms use the capabilities

of modern low power radio transceivers, such as ChipCon’s

CC2420, to achieve substantial power savings. These radios

generally have four modes of operation, listen, receive, trans-

mit and sleep. Energy efficiency is maximized by spending as

much time as possible in sleep mode which consumes only

µA compared to mA when using the other modes. However,

since communication between two nodes cannot occur if either

node’s radio is in sleep mode, a mechanism is required to

ensure the sender’s transmit and the receiver’s listen operations

coincide. This coordination of send and listen activities is

known as transmitter-receiver rendezvous.

If the listen/sleep cycle of the receiver is fixed and known

then a transmission can be simply extended such that an

overlap between the transmission and the listen phase is

guaranteed to occur. Traditionally, this was achieved using a

long preamble immediately followed by the packet payload.

A receiver hearing the preamble would keep its radio in a

listen state until the packet was received. This duty cycle

concept was implemented in B-MAC [1]. A number of modern

radios such as the CC2420 provide additional features such

as automatic packet header processing and CRC computation

and are normally used to send complete packets rather than

individual bits. With these transceivers it is possible for

a sender to transmit a series of identical short messages,

which we call ‘Framelets’, in such a way that the receiver

is guaranteed to catch at least one. Despite the overhead for

the sender the scheme is very energy efficient, requires no

additional hardware and no active coordination among nodes.

This duty cycle concept was implemented in FrameComm

[2] and is also used in the current TinyOS LPL low power

listening module.

A WSN has to transport a number of different message

types. Control information is exchanged and data readings

from a variety of sensors are collected. Naturally, all of these

messages may be of different significance and it would be

useful to prioritize their transport within the sensor network

accordingly. A scheduling mechanism can be employed to

order messages according to their priority before transmission.

However, even if a high priority message is scheduled imme-

diately, the channel may be blocked by low priority traffic

from another node currently transmitting. In this case the

node is forced to back-off and wait until the channel becomes

available. In a duty-cycled communication system the channel

might be blocked for a significant duration. Additionally, the

message may have to travel several hops in the network and

these waiting times might occur at a number of hops resulting

in large end-to-end delays for high priority messages. To

solve this problem, we propose a method that allows the

interruption of ongoing transmissions to gain access to the

channel promptly if a high priority message needs to be sent.

We propose the use of inter-framelet interrupts to implement

priority channel allocation. An interrupt can be sent by a node

with a higher priority message if a lower priority message

from a neighboring node is currently transmitting its framelet

trail. The interrupt is sent during the gap between framelets

and is acknowledged by the node currently transmitting. This

node then enters a back-off state leaving the channel clear

for transmission of the high priority message. This simple but

effective system can be used to prioritize varying traffic types.

This paper presents the basic concept of priority inter-

rupts for framelet based communication systems. An im-

plementation of the concept using our previously developed

FrameComm [2] medium access control protocol is presented.

Some practical application areas where the scheme would be

of benefit are also described. Finally, the effectiveness of the

interrupt mechanism is evaluated within a small WSN lab

deployment.

732978-1-4244-2413-9/08/$25.00 ©2008 IEEE

II. RELATED WORK

Several other Duty Cycle based MAC protocols use

Framelet trails to ensure the listen and send activities overlap

allowing communication to occur. The current default energy

saving protocol in TinyOS[3] is based on the Low Power

Listening component of [1], but uses message retransmission

instead of a long preamble in order to accommodate packet

based radios like that of [4]. X-Mac [5] also uses framelets

to establish rendezvous between sender and receiver but only

retransmits a message header, the payload is sent only after

one of the replicas has been acknowledged and the sender

knows that the destination is listening. Koala [6] is another

Duty Cycled scheme, here the sender listens to the channel for

a ‘probe’ message that the receiver sends each time it wakes

up, when the receiver’s probe message is acknowledged it stays

awake for the incoming transmission. All of these protocols

are primarily focused on energy-efficiency and do not take

message priority into account.

The requirements for low-latency, hard real-time applica-

tions and the potential for 802.15.4 based radios to satisfy

them is examined in [7]. The problem of scheduling access to

the wireless medium is the focus of most of the related work,

ensuring messages with high priority can gain access to the

channel first as in [8]. PR-MAC[9] is among many protocols

that use Arbitration Inter-Frame Space (AIFS) from IEEE

802.11e[10] to prioritize channel access. Adaptive Distributed

Fair Scheduling (ADFS) described in [11] incorporates a

weighted queue to schedule messages based on priority, how-

ever the protocol requires synchronization of nodes to operate.

Few works address the problem of interrupting an already

ongoing transmission on the shared medium. In particular, to

the best of our knowledge, no work addresses the problem

of interrupting an ongoing transmission in the context of

duty cycled wireless sensor networks. RTQS[12] presents an

approach to conflict free transmission scheduling and provides

prioritised communications, however it requires static priori-

ties. CoBRA [13] is a framework that supports multiple classes

of traffic in sensor networks by enforcing rate control using

distributed cluster based mechanisms.

TOMAC [14] is a TDMA based MAC protocol that uses a

non-destructive bit-wise arbitration for message preambles. In

a TDMA slot all nodes with data to send start simultaneously

to transmit their unique bit sequence as preamble. The trans-

mission of a 0 is dominant and as a result the node with the

lowest number transmitted as preamble will win and continue

to transmit the data block. Channel access can be prioritized

according to the bit numbers used as preamble. An ongoing

transmission is not interrupted, instead, all transmitters start

simultaneously and the transmitter with the highest priority

will continue to the end while others back-off.

Brown et al. [15] describe a sensor node that uses two

radios. A low powered radio with small bandwidth is used as a

wake-up radio, data transmission follows on the high powered

radio with larger bandwidth. Their work describes the usage

of the wake-up radio to schedule transmissions but it would

Sender

Ack

Receiver

RADIO OFF RADIO ON

Fig. 1. Framelet-rendezvous.

easily be possible to use the same concept to interrupt ongoing

low priority transmissions. However, such a solution requires

the use of two radio devices on the sensor node.

III. FRAMELETS

In this Section, the Framelet rendezvous mechanism is

outlined (see [16] for details). The relationships between the

packet transmission time δ, the gap between transmissions

δ0, the receiver listening time ∆ and the number of required

framelets n are defined. These relationships are crucial to

ensure correct rendezvous between transmitter and receiver.

The rendezvous process is depicted in Fig. 1.

A. Duty Cycle

The duty cycle period is represented as P = ∆+∆0, where

∆ is the time the radio that remains active and ∆0 is the time

that the radio spends in sleep mode. The duty cycle ratio, or

duty cycle D for short, is defined as:

D =
∆

P
=

∆

∆ + ∆0

(1)

B. Rendezvous using Framelets

Framelets are defined as small packets having a limited size.

The trail of framelets is characterized by three parameters:

• Number of transmissions: n

• Time between framelets: δ0

• Framelet transmission time: δ

In order to achieve correct transmitter-receiver rendezvous

using framelets a number of relationships must be obeyed.

First, there is a relationship between the transmission time

of a framelet, δ, and the gap in between framelet transmissions,

δ0, to the minimum listen time at the receiver, ∆. This ensures

that the listener is active for a sufficient time to guarantee

overlap with at least one full framelet, assuming the channel

is busy. Formally stated:

∆ ≥ 2 · δ + δ0 (2)

With some transceivers δ may vary according to the length

of a framelet. If δ or δ0 are not constant then the worst case

values can be assumed.

Second, there is a relationship between the minimum num-

ber of framelets, n, in a trail and the parameters of the duty

733

cycle, ∆ and ∆0, and of course the parameters of the framelet

trail itself, δ and δ0. This ensures that there are a sufficient

number of framelets transmitted such that a correct overlap

with a receivers listening period, ∆, is guaranteed to occur.

Formally stated:

n ≥

⌈

P

δ + δ0

⌉

(3)

If δ or δ0 may vary it is difficult to calculate a priori the

number of framelets needed. An alternative to this approach

is to simply ensure that the transmission of the framelet trail

exceeds the duration of P .

C. Acknowledgments

To save further energy on the transmitter side, an ac-

knowledgment mechanism can be used. The radio switches

to a listen state in the transmission gaps, δ0. A receiver

acknowledges the reception of the first framelet encountered.

After receipt of the acknowledgment the sender stops the

framelet transmission. Thus, using acknowledgments, most

transmissions will not require all n framelets. As result, a

transmission will occupy the channel for a shorter period of

time. To enable acknowledgments, δ0 must be long enough

to cater for transceiver switching times and sending of the

acknowledgment.

D. Fragmentation

One of the requirements for this framelet communication

scheme is that there is a maximum limit on packet size,

δ. Various factors such as the operating system and the

specification of the node’s radio transceiver can have an impact

on the value chosen for δ. If the size of the data a node has

to send exceeds δ, then it becomes necessary to split the data

into several fragments that are smaller than the imposed limit

and send each piece in a separate message. This can be done

with a fragmentation layer.

The fragmentation layer adds a two byte fragmentation

header to the message payload, consisting of a one byte length

field and a one byte fragment number. The length field is used

to denote the total number fragments in the message and the

fragment number indicates the position of the current fragment

in the message. Transmission of a fragmented message begins

with the message passing through the fragmentation layer

where it is split into several pieces, each one being given a

fragment number before being queued for sending.

The first fragment is sent like any other framelet, firstly

listening to the channel to determine whether or not it is

occupied before repeatedly sending the first fragment. The

destination node will receive one of these framelets during the

listen period of its duty cycle and send an acknowledgment.

It then checks the fragmentation header of the framelet to

determine if there are more fragments to come and extending

its listen period if necessary.

Once the sender has received the acknowledgment for

the first fragment it knows the destination node is listening

and immediately sends the remaining fragments; since the

Fig. 2. Fragmentation.

destination is listening only a single framelet is required for

each. The process can be seen in Fig. 2.

E. Summary

The duty cycle ratio, D (eq. 1), strongly influences the

energy consumption pattern of a node; a small D indicates

a low energy consumption. The worst-case message transfer

delay between two nodes is defined by P . P can be reduced

while keeping the required duty cycle D by minimizing the

values of δ and δ0. Hence, to optimize message transfer delays,

δ and δ0 should be as small as possible. Depending on the

capabilities of radio transceiver and the minimum packet size,

lower bounds for δ and δ0 exist.

IV. HIGH PRIORITY INTERRUPTS

An ongoing framelet transmission can be interrupted by any

node in communication range by sending a short message

similar to the acknowledgment described in Section III-C. This

feature can be used by nodes that have to send high priority

data and need to access the channel immediately.

A. Interrupt Concept

If a node has data to send it will attempt to access the

channel. To do this it must first perform a carrier sense listen

of duration ∆ to ensure no other node is transmitting. If,

during this listen phase, it receives a single framelet sent by

a current transmitter, the header of this framelet is examined.

If the priority is equal to or higher than the message in the

transmit buffer then the usual back-off occurs. On the other

hand, should the priority of the received framelet be lower than

the message awaiting transmission then a priority interrupt

will be performed. The node sends an interrupt packet to

the current transmitter. The current transmitter receives this

interrupt packet as it would be waiting for an acknowledgment

from the destined receiver of the framelet transmission. If

the current transmitter correctly receives this interrupt it will

send an interrupt acknowledgment, cease transmissions and

then enter a back-off phase. After this backoff the interrupted

node will attempt to send its message again. Upon receipt

of the interrupt acknowledgment the interrupter will immedi-

ately begin transmitting its own framelet trail. If an interrupt

734

Fig. 3. High Priority Interrupts.

acknowledgment is not received the interrupter will enter a

back-off phase.

The basic mechanism can be seen in Fig. 1. Node B has a

high priority message to send and interrupts Node A who is

transmitting lower priority messages.

B. Interrupt Acknowledgment

It is evident that this procedure could be performed with-

out the use of an interrupt acknowledgment. However, the

acknowledgment ensures that the interrupt mechanism works

correctly and prevents potential collisions in the event of

interrupt loss. In addition if multiple nodes attempt to interrupt

simultaneously or nearly simultaneously then at most one will

receive an acknowledgment and the rest will back-off. If all

the interrupts collide then no acknowledgment will be sent and

all the interrupting nodes will back-off.

C. Arbitration

This priority interrupt mechanism can be used with sev-

eral levels of priority allowing multiple interruptions in a

single duty cycle period. Any node that has a message to

send can interrupt an ongoing lower priority framelet trail

from a neighboring node. A node, Node B, that successfully

interrupts another, Node A, can subsequently be interrupted

by a third node, Node C, provided that Node C’s message

priority exceeds that of Node B. In effect this provides priority

arbitration, ensuring the highest priority message gets access

to the channel.

An example of this behavior can be seen in Fig. 4, Node

A initially acquires the channel with a message of priority 3,

Node A is interrupted by Node B whose message priority is

2. Node C then senses a level 3 event and attempts to report

this with a message with priority 3 but finds the channel

occupied by higher priority Node B so it backs off. Finally

Node D, message priority 1, interrupts Node B. This example

is a typical scenario and illustrates how the node with the

highest priority message gets access to the channel without

having to wait for the sender currently occupying the channel

to deliver its message.

D. Summary

The process of interrupting another node takes place very

quickly and the interrupting node can seamlessly take control

of a busy channel to transmit its own high priority message.

Multiple interrupts may take place among a group of nodes

Fig. 4. Priority Arbitration.

(e.g. A interrupts B, which is then interrupted by C etc.). Thus,

it is ensured that at a given time the highest priority message

is very likely to gain access to the channel. For a given

Duty Cycle Period P a node with a high priority message to

send and only lower priority messages to contend with should

always experience delays less than P and on average P
2

. This

observation can be expanded to multi-hop scenarios of h hops;

here these values are h · P and h · P
2

respectively.

V. IMPLEMENTATION

The previously described concepts were implemented in

TinyOS 2.0.2 for Tmote Sky and Tmote Invent sensor nodes

and denoted FrameComm. FrameComm was modified to in-

clude high priority interrupts; we refer to this protocol as

FrameCommHPI.

A. FrameComm

FrameComm [2] is an implementation of a CSMA based

MAC using the framelets scheme. It is similar to LPL (Low

Power Listening), the default power saving protocol that is

part of TinyOS 2.0.2, but it was developed in parallel and has

a few key distinctions. In terms of similarities both concepts

use framelet trails to ensure rendezvous and the listening cycle

length is dictated by the duty cycle and the times δ and δ0.

LPL however does not implement the listening phase ∆
in the same manner as FrameComm. LPL repeatedly polls the

CCA to detect if the channel is busy for a fixed time of 11ms.

If during this time a packet is detected the listening phase

is extended to ensure that the packet is received correctly.

FrameComm on the other hand performs a standard listen

for 12ms, which should guarantee interception of any packets

transmitting and performs a brief CCA at the end of the listen

735

period in case another framelet has begun transmitting. If so

the listen period is extended. As a result of the longer listen

period ∆ FrameComm had a longer sleep period ∆0 than LPL.

A 2% duty cycle using FrameComm has a period P = 600ms

whereas LPL has a period P = 550ms. Therefore LPL should

theoretically be able to handle more traffic than FrameComm

at the same duty cycle.

Another major difference is the way in which the carrier

sense is performed. Whereas FrameComm uses a full listen,

as described above, LPL merely uses a brief CCA before

beginning its transmissions. The use of this brief CCA is

insufficient to ensure that the channel is in fact clear and a

number of problems arise when LPL experiences contention

for the channel (see Section VII).

Yet another difference between the two implementations is

the back-off strategy. FrameComm makes use of a full listen

and exploits the overheard information to influence its back-

off strategy. LPL does not do this since it does not receive

packets during its carrier sense phase. In addition the back-

off strategy of LPL is unrelated to the duty cycle and results

in numerous back-offs which are not sufficient to remove

unnecessary contention for the channel.

B. FrameCommHPI

When a node has data to send it will pick up any message

currently occupying the channel in its carrier sense phase. The

priority of this message is ascertained by checking its type and

comparing it to that of the message the node wishes to send.

If the node finds that the current message in transit is of equal

or higher priority it begins a back-off, allowing the current

sender to complete the ongoing transmission. Otherwise, the

node generates and sends an interrupt message to the current

transmitter requesting the channel. The interrupt itself is little

more than a CC2420 message header, the type field denotes

it to be an interrupt and the src field identifies its origin. On

receipt of such an interrupt, the receiver immediately sends an

interrupt acknowledgment and enters a back-off period. The

acknowledgment informs the node that the channel has been

conceded and its high priority transmission commences.

In the absence of an acknowledgment the sender concludes

that the interrupt or its acknowledgment has been lost and

enters a back-off phase before trying again. Since there is still

a high priority message that needs to be sent the length of this

back-off is selected to be shorter than the standard congestion

back-off.

VI. APPLICATION AREAS

There are a number of application scenarios that can benefit

from the outlined priority interrupt mechanism. In particular,

the priority interrupt mechanism can be used to (1) ensure

fast delivery of important application messages, (2) implement

fairness regarding channel access.

We are currently using TinyOS with the FrameComm MAC

layer in a number of different WSN projects. Within these

projects the outlined priority interrupt feature is helpful in

supporting the application scenarios efficiently.

A. Physical Intrusion Detection (Prioritization)

We are experimenting with a physical intrusion detection

system used to secure an office building [17]. A number

of wireless intrusion detection sensors are distributed in the

building and report their observations to a central sink for

data analysis. In addition, each node sends periodic heart-beat

messages to indicate correct operation. The sink generates an

alarm if an intrusion or system failure is detected and security

personnel are informed to deal with the incident.

To ensure timely detection of intruders it is necessary to

transport messages with positive detection events with the

highest priority. Heart-beat messages and network mainte-

nance messages containing routing or key update material are

not time critical. Thus, an efficient network-wide scheduling

mechanism is needed.

Part of the solution is a priority scheduler on each node

which is able to correctly schedule messages locally. However,

a scheduler alone is not sufficient as it is not possible to claim

the channel immediately if another node is already in the

process of transmitting a low priority message. For example,

we frequently observes the case where a key update message

is sent from the sink to all nodes (broadcast, downstream),

blocking the channel needed for an event detection to be

sent to the sink (unicast, upstream). Priority interrupts in

FrameCommHPI allow us in such cases to clear the path for

an important message traveling upstream.

B. Car Park Management (Fairness)

We constructed and evaluated a wireless sensor network

used to monitor the usage of car park spaces [18]. Sensor

nodes are deployed on the ground and employ a magnetic field

detector to decide if a car is parked in this spot. Subsequently,

detection messages are routed towards the sink.

Our study showed that link quality fluctuates heavily and

that for extended periods communication between adjunct

nodes can be disrupted. Thus, a node might have to try several

times to transmit a message successfully to the next hop.

In addition, a node might also have to back off as another

node gained access to the channel first. Thus, messages routed

through particular nodes can experience a very high delay.

Priority interrupts in FrameCommHPI can help to deal

with such situations. The priority of a message can be set

dynamically, representing the time a node has spent trying

to transmit a particular message. Thus, the message priority

increases with successive unsuccessful transmissions or back-

offs. As a result, nodes which have to deal with bad channel

conditions will obtain higher priority in accessing the medium.

VII. EXPERIMENTAL EVALUATION

The primary goal of the experiments is to quantify the

reduction in channel access time for high priority traffic as

a result of using FrameCommHPI.

A. Evaluation Metrics

The main measurement of interest is the node-to-node deliv-

ery latency, t, of messages. However, without a common time

736

Fig. 5. Experiment Setup.

source or complex synchronization mechanism it is difficult

to measure this latency. With this in mind it was decided to

measure the latency locally on each node by comparing the

time the node decides to schedule a message for transmission,

t1, and the time the node receives an acknowledgment, t2,

(t = t2 − t1). More specifically, within the TinyOS imple-

mentation we measure the period between the application

calling a send and receiving a sendDone signal. While there

is some overhead associated with a message being sent down

the TinyOS communication stack and the sendDone being

delivered, this time does not vary between experiments or

across nodes. The message size is constant throughout and the

nodes are not carrying out any other operations or activities

that could affect these times. As a result the only variable is

the time taken to access the channel and deliver the message.

The number of packet losses, r, (given in percent) is also of

interest and is determined.

B. Experiment Setup

The experiments were carried out using Moteiv Tmote Sky

and Tmote Invent sensor nodes running TinyOS 2.0.2. A small

tree topology consisting of some leaf nodes, a forwarding node

and base station (sink) as shown in Fig. 5 was used. The leaf

nodes and the forwarding node were duty cycled while the

base station was always on.

Each experiment begins by sending a control message

requesting a number of messages from each leaf node (n1

to nn). The leaf nodes then send a series of messages to the

forwarding node n0 that sends them to the sink where they are

uploaded to a PC for analysis. The payload of each message

consists of a node ID, a sequence number and the measured

message send time of the previous message. The first 100
messages from each node are taken and from these the average

latency t and loss rate r are calculated. The measurement is

repeated 5 times for each measurement point. A 2% Duty

Cycle was employed giving a Duty Cycle Period, P = 600ms,

for FrameComm and P = 550ms for LPL.

FrameCommHPI’s high priority interrupt feature only

comes into effect when there is contention on the channel.

Thus, a message generation interval of n ·500ms was chosen,

where n is the number of leaf nodes. A fixed generation

interval would introduce a bias towards one node as it would

generate its message first each time, to prevent this the

interval included randomization. The desired average gener-

ation interval, txr, is included in the control message. Each

 0

 200

 400

 600

 800

 1000

 1200

Fram
eC

om
m

H
PI,

2 leaf nodes

Fram
eC

om
m

,

2 leaf nodes

LPL,2 leaf nodes

Fram
eC

om
m

,

1 leaf node

LPL,1 leaf node

L
a
te

n
c
y
 t
[m

s
]

Normal
High Priority

Fig. 6. Experiment 1, Latency t.

individual interval, txri, is calculated with the formula txri =
(rand%txr) + txr

2
. This gives a value between txr

2
and 3txr

2
,

averaging out to txr over the course of the experiment.

C. Experiment 1

Initially the experiment was run with a single leaf node

n1 generating messages to get a base latency tb, that is

a latency t without channel access delays introduced by

contention. Subsequently, the experiment was repeated with

two leaf nodes generating messages for FrameComm, LPL and

FrameCommHPI. Messages are generated at a random interval

that average at 2 · 500ms = 1000ms. The results are shown

in Table I and Fig. 6, the large values for standard deviation

is due to the scheme being Duty Cycled.

Single Leaf Node: With a single sender LPL slightly

outperforms FrameComm in terms of latency, t. This was

expected as LPL has a slightly smaller duty cycle period than

FrameComm. The measured average latency tb,FrameComm =
322.81ms and tb,LPL = 281.65ms were slightly greater than

the expected P
2

, confirming t as valid metric. With a single

leaf node, no losses were recorded for either protocol.

Two Leaf Nodes: The introduction of a second leaf node

generating messages illustrates the effect of the differences be-

tween LPL and FrameComm and especially FrameCommHPI.

LPL’s message send times are largely unchanged but there is

a significant increase in packet losses. FrameComm’s latency

increases significantly but the packet losses remain low. This

result shows that the current TinyOS LPL implementation

suffers considerable losses where contention is present. The

increased latency with FrameComm can be attributed to nodes

trying to access a busy channel.

When FrameCommHPI is introduced it is clearly evident

that the delay for Node 2, the node generating high priority

messages, is significantly reduced. The average values are only

marginally above the target tb,FrameComm set by the single

sender node using FrameComm and is very close to P
2

as

expected. This additional latency can be attributed to the nec-

essary exchange of interrupts and interrupt acknowledgment.

LPL v FrameComm: Fig. 6 shows that latency in LPL is

relatively unaffected by an adding congestion when compared

to FrameComm. This would seem to be in LPL’s favor but

737

Latency t [ms] Loss Rate r [%]

Node1 Node2 Node1 Node2

Average Std Dev Average Std Dev Average Std Dev Average Std Dev

LPL(1 sender) 281.65 159.52 - - 0.0 0 - -

FrameComm(1 sender) 322.81 166.70 - - 0.0 0 - -

LPL(2 senders) 259.50 173.14 250.02 167.87 26.6 6.69 21.0 4.00

FrameComm(2 senders) 688.98 332.49 655.80 315.73 0.6 0.55 0.4 0.55

FrameCommHPI(2 senders) 1001.93 658.39 327.85 192.58 0.4 0.55 0.4 0.55

TABLE I

EXPERIMENT 1, LATENCY t, LOSS RATE r.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Fram
eC

om
m

H
PI,

2 leaf nodes

Fram
eC

om
m

,

2 leaf nodes

LPL,2 leaf nodes

Fram
eC

om
m

,

1 leaf node

LPL,1 leaf node

L
a
te

n
c
y
 L

o
s
s
 P

ro
d
u
c
t

Normal
High Priority

Fig. 7. Experiment 1, Latency Loss Product.

this is not a complete picture as it does not factor in losses.

Fig. 7 on the other hand reflects both latency and losses and

it clearly shows LPL has problems when multiple senders are

present.

While LPL is energy efficient and reliable with a single

sender it suffers considerable losses when the network is

congested. For some applications this may not be an issue

but for those with high priority messages or critical data such

losses would be a concern. Event based systems are most likely

to suffer since it is probable that any nodes in the vicinity of

a high priority event will detect it and attempt to report it,

resulting in contention.

FrameComm continues to be very reliable in the presence

of heavy congestion due to some key differences between its

design and that of LPL. This is mainly as a result of LPL’s

CCA mechanism and its backoff as described in Section V-A.

D. Experiment 2

Experiment 2 examines the behavior of FrameCommHPI

in terms of average latency t with various combinations of

normal and high priority senders. This gives an indication

of how FrameCommHPI performs in a larger scale multi-hop

network with a mixture of priorities, particularly in upstream

forwarding nodes where data converges approaching the sink.

Each run of this experiment had four leaf nodes generating

messages. Messages are generated at a random interval that

average at 4 · 500ms = 2000ms. To begin with all four leaf

nodes sent messages of normal priority. With each subsequent

variant the priority of one sender was increased, giving three

normal and one high priority, then two normal, two high

and finally one normal and three high. The results of this

experiment are shown in Fig. 8. A cumulative distribution for

the latency of both normal and high priority traffic is presented

for each variant of the experiment.

With a single high priority sender an average latency of

very close to P
2

is achieved, despite the extra network traffic.

This value increases with each additional high priority sender,

however even with three high priority senders the average

latency for high priority messages is still half that of when

all messages priorities are equal. A more dramatic jump for

the latency of low priority messages can also be seen. This

is expected as a larger proportion of high priority messages

leads to more interruptions.

VIII. CONCLUSION & FUTURE WORK

In this paper a concept for prioritizing messages using

interrupts in Duty Cycle communication schemes is presented.

An implementation called FrameCommHPI is described and

evaluated along with practical application areas that would

benefit from its use. As the shown, the channel access times for

critical data can be effectively reduced and message transport

latency is improved. In the future, we plan to combine the

presented interrupt mechanism with an adaptive duty cycle

scheme to further improve data delivery latency.

Acknowledgments: Mr. O’Donovan is supported by Mi-

crosoft Research through its European PhD Scholarship Pro-

gramme and the EMBARK Initiative of the Irish Research

Council for Science, Engineering and Technology.

REFERENCES

[1] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for
wireless sensor networks. Proceedings of the 2nd ACM Conference on
Embedded Networked Sensor Systems, 2004.

[2] J. Benson, T. O’Donovan, U. Roedig, and C. Sreenan. Opportunistic
Aggregation over Duty Cycled Communications in Wireless Sensor
Networks. Proceedings Of ACM/IEEE International Symposium on
Information Processing in Sensor Networks (IPSN), 2008.

[3] Tinyos 2.0.2. http://www.tinyos.net.

[4] Moteiv Tmote Sky & Tmote Invent motes. http://www.moteiv.com.

[5] M. Buettner, G. V. Yee, E. Anderson and R. Han. X-MAC: A Short
Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks.
Proceedings of the 4th International Conference on Embedded Net-
worked Sensor Systems (SenSys), 2006.

[6] R. Musaloiu-E, C. M. Liang, A. and Terzis. Koala: Ultra-Low Power
Data Retrieval in Wireless Sensor Networks. Proceedings Of ACM/IEEE
International Symposium on Information Processing in Sensor Networks
(IPSN), 2008.

738

0.0

0.2

0.4

0.6

0.8

1.0

 0 2000 4000 6000 8000 10000 12000 14000

P
T
(t

)

Latency t[ms]

4 Normal & 0 High Priority Senders
Normal

0.0

0.2

0.4

0.6

0.8

1.0

 0 2000 4000 6000 8000 10000 12000 14000

P
T
(t

)

Latency t[ms]

3 Normal & 1 High Priority Senders
High Priority

Normal

0.0

0.2

0.4

0.6

0.8

1.0

 0 2000 4000 6000 8000 10000 12000 14000

P
T
(t

)

Latency t[ms]

2 Normal & 2 High Priority Senders
High Priority

Normal

0.0

0.2

0.4

0.6

0.8

1.0

 0 2000 4000 6000 8000 10000 12000 14000

P
T
(t

)

Latency t[ms]

1 Normal & 3 High Priority Senders
High Priority

Normal

Fig. 8. Experiment 2, Cumulative Distribution, P T (t) v Latency t[ms].

[7] K. K. Chintalapudi and L. Venkatraman. On the Design of MAC
Protocols for Low-Latency Hard Real-Time Discrete Control Applica-
tions over 802.15.4 Hardware. Proceedings Of ACM/IEEE International
Symposium on Information Processing in Sensor Networks (IPSN),
2008.

[8] P. Ansel, Q. Ni, and T. Turletti. An Efficient Scheduling Scheme
for IEEE 802.11e. Proceedings of IEEE Workshop on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks, 2004.

[9] A. Firoze, L. Jun and L. Kwong. PR-MAC A Priority Reservation MAC
Protocol For Wireless Sensor Networks. Proceedings of International
Conference on Electrical Engineering (ICEE), 2007.

[10] Y. Xiao. Enhanced DCF of IEEE 802.11e to support QoS. Proceedings
of IEEE Wireless Communications and Networking (WCNC), 2003.

[11] J. W. Fonda, M. Zawodniok, S. Jagannathan and S. E. Watkins. Adaptive
Distributed Fair Scheduling and Its Implementation in Wireless Sensor
Networks Systems. IEEE International Conference on Man and Cyber-
netics (SMC), 2006.

[12] O. Chipara, C. Lu, C. and Roman. Real-Time Query Scheduling for
Wireless Sensor Networks. Proceedings of the 28th IEEE International
Real-Time Systems Symposium (RTSS), 2007.

[13] K. Karenos, V. Kalogeraki and S. V. Krishnamurthy. A Rate Control
Framework for Supporting Multiple Classes of Traffic in Sensor Net-
works. Proceedings of the 26th IEEE International Real-Time Systems
Symposium (RTSS), 2005.

[14] A. Krohn, M. Beigl, C. Decker and T. Zimmer. TOMAC - Real-
Time Message Ordering in Wireless Sensor Networks Using the MAC
Layer. Proceedings of the 2nd Intern’l Workshop on Networked Sensing
Systems, 2005.

[15] J. Brown, J. Finney, C. Efstratiou, B. Green, N. Davies, M. Lowton
and G. Kortuem. Network interrupts: supporting delay sensitive appli-
cations in low power wireless control networks. Proceedings of the 2nd
Workshop on Challenged Networks, 2007.

[16] A. Barroso, U. Roedig, and C. J. Sreenan. Use of Framelets for Ef-
ficient Transmitter-Receiver Rendezvous in Wireless Sensor Networks.
Proceedings of the 5th International IEEE Workshop on Wireless Local
Networks, 2005.

[17] A. Chung and U. Roedig. DHB-KEY - A Diffie-Hellman Key Distri-
bution Protocol for Wireless Sensor Networks. Adjunct Proceedings
(Posters) of the 5th IEEE European Workshop on Wireless Sensor
Networks (EWSN), 2008.

[18] J. Benson, T. O’Donovan, U. Roedig, P. O’Sullivan, C. Sreenan, J.
Barton, A. Murphy, and B. O’Flynn. Car-Park Management using
Wireless Sensor Networks. Proceedings of the First IEEE International
Workshop on Practical Issues in Building Sensor Network Applications
(SENSEAPP), 2006.

739

