978-1-4244-2413-9/08/$25.00 ©2008 IEEE

Priority Interrupts of Duty Cycled Communications
in Wireless Sensor Networks

Tony O’Donovan!, Jonathan Benson', Utz Roedig?, Cormac J. Sreenan

1

Mobile and Internet Systems Laboratory, Dept. of Computer Science, University College Cork, Ireland.
2InfoLab21, Lancaster University, UK.

Abstract— FrameComm is a contention based, Duty Cycled,
MAC protocol that ensures a message will be transmitted during
the receiver’s listen phase by sending a packet, followed by a
short gap, repeatedly for a precalculated number of times or
until an acknowledgment is received. While introducing duty
cycled communications can yield large power savings it does so
at the cost of increased delay and decreased throughput. Many
WSNs may incorporate several distinct message types of varying
priority. A node with a high priority message to send may find the
channel to be busy with a lesser priority message from another
node and must therefore ‘back-off’ leading to further delays.
In a multi-hop environment, these delays are compounded and
may become unacceptably large. This paper proposes adding a
high priority interrupt message to FrameComm that allows a
node with important data to send to interrupt another node’s
lesser priority transmission giving immediate access to the
channel. The priority interrupt mechanism is evaluated using
an implementation in TinyOS 2 on a small laboratory testbed.

I. INTRODUCTION

Communication in Wireless Sensor Networks (WSNs) con-
sumes a great deal of energy and has been the focus of much
research with many energy efficient communication protocols
being proposed. Many WSN platforms use the capabilities
of modern low power radio transceivers, such as ChipCon’s
CC2420, to achieve substantial power savings. These radios
generally have four modes of operation, listen, receive, trans-
mit and sleep. Energy efficiency is maximized by spending as
much time as possible in sleep mode which consumes only
1A compared to mA when using the other modes. However,
since communication between two nodes cannot occur if either
node’s radio is in sleep mode, a mechanism is required to
ensure the sender’s transmit and the receiver’s listen operations
coincide. This coordination of send and listen activities is
known as transmitter-receiver rendezvous.

If the listen/sleep cycle of the receiver is fixed and known
then a transmission can be simply extended such that an
overlap between the transmission and the listen phase is
guaranteed to occur. Traditionally, this was achieved using a
long preamble immediately followed by the packet payload.
A receiver hearing the preamble would keep its radio in a
listen state until the packet was received. This duty cycle
concept was implemented in B-MAC [1]. A number of modern
radios such as the CC2420 provide additional features such
as automatic packet header processing and CRC computation
and are normally used to send complete packets rather than
individual bits. With these transceivers it is possible for
a sender to transmit a series of identical short messages,

which we call ‘Framelets’, in such a way that the receiver
is guaranteed to catch at least one. Despite the overhead for
the sender the scheme is very energy efficient, requires no
additional hardware and no active coordination among nodes.
This duty cycle concept was implemented in FrameComm
[2] and is also used in the current TinyOS LPL low power
listening module.

A WSN has to transport a number of different message
types. Control information is exchanged and data readings
from a variety of sensors are collected. Naturally, all of these
messages may be of different significance and it would be
useful to prioritize their transport within the sensor network
accordingly. A scheduling mechanism can be employed to
order messages according to their priority before transmission.
However, even if a high priority message is scheduled imme-
diately, the channel may be blocked by low priority traffic
from another node currently transmitting. In this case the
node is forced to back-off and wait until the channel becomes
available. In a duty-cycled communication system the channel
might be blocked for a significant duration. Additionally, the
message may have to travel several hops in the network and
these waiting times might occur at a number of hops resulting
in large end-to-end delays for high priority messages. To
solve this problem, we propose a method that allows the
interruption of ongoing transmissions to gain access to the
channel promptly if a high priority message needs to be sent.

We propose the use of inter-framelet interrupts to implement
priority channel allocation. An interrupt can be sent by a node
with a higher priority message if a lower priority message
from a neighboring node is currently transmitting its framelet
trail. The interrupt is sent during the gap between framelets
and is acknowledged by the node currently transmitting. This
node then enters a back-off state leaving the channel clear
for transmission of the high priority message. This simple but
effective system can be used to prioritize varying traffic types.

This paper presents the basic concept of priority inter-
rupts for framelet based communication systems. An im-
plementation of the concept using our previously developed
FrameComm [2] medium access control protocol is presented.
Some practical application areas where the scheme would be
of benefit are also described. Finally, the effectiveness of the
interrupt mechanism is evaluated within a small WSN lab
deployment.

732

II. RELATED WORK

Several other Duty Cycle based MAC protocols use
Framelet trails to ensure the listen and send activities overlap
allowing communication to occur. The current default energy
saving protocol in TinyOS[3] is based on the Low Power
Listening component of [1], but uses message retransmission
instead of a long preamble in order to accommodate packet
based radios like that of [4]. X-Mac [5] also uses framelets
to establish rendezvous between sender and receiver but only
retransmits a message header, the payload is sent only after
one of the replicas has been acknowledged and the sender
knows that the destination is listening. Koala [6] is another
Duty Cycled scheme, here the sender listens to the channel for
a ‘probe’ message that the receiver sends each time it wakes
up, when the receiver’s probe message is acknowledged it stays
awake for the incoming transmission. All of these protocols
are primarily focused on energy-efficiency and do not take
message priority into account.

The requirements for low-latency, hard real-time applica-
tions and the potential for 802.15.4 based radios to satisfy
them is examined in [7]. The problem of scheduling access to
the wireless medium is the focus of most of the related work,
ensuring messages with high priority can gain access to the
channel first as in [8]. PR-MAC[9] is among many protocols
that use Arbitration Inter-Frame Space (AIFS) from IEEE
802.11e[10] to prioritize channel access. Adaptive Distributed
Fair Scheduling (ADFS) described in [11] incorporates a
weighted queue to schedule messages based on priority, how-
ever the protocol requires synchronization of nodes to operate.
Few works address the problem of interrupting an already
ongoing transmission on the shared medium. In particular, to
the best of our knowledge, no work addresses the problem
of interrupting an ongoing transmission in the context of
duty cycled wireless sensor networks. RTQS[12] presents an
approach to conflict free transmission scheduling and provides
prioritised communications, however it requires static priori-
ties. CoBRA [13] is a framework that supports multiple classes
of traffic in sensor networks by enforcing rate control using
distributed cluster based mechanisms.

TOMAC [14] is a TDMA based MAC protocol that uses a
non-destructive bit-wise arbitration for message preambles. In
a TDMA slot all nodes with data to send start simultaneously
to transmit their unique bit sequence as preamble. The trans-
mission of a 0 is dominant and as a result the node with the
lowest number transmitted as preamble will win and continue
to transmit the data block. Channel access can be prioritized
according to the bit numbers used as preamble. An ongoing
transmission is not interrupted, instead, all transmitters start
simultaneously and the transmitter with the highest priority
will continue to the end while others back-off.

Brown et al. [15] describe a sensor node that uses two
radios. A low powered radio with small bandwidth is used as a
wake-up radio, data transmission follows on the high powered
radio with larger bandwidth. Their work describes the usage
of the wake-up radio to schedule transmissions but it would

I

A
Sender ~
en
8 S,
Ack
Y -
»
Receiver
« Ao A
RADIO OFF RADIO ON
Fig. 1. Framelet-rendezvous.

easily be possible to use the same concept to interrupt ongoing
low priority transmissions. However, such a solution requires
the use of two radio devices on the sensor node.

III. FRAMELETS

In this Section, the Framelet rendezvous mechanism is
outlined (see [16] for details). The relationships between the
packet transmission time ¢, the gap between transmissions
0o, the receiver listening time A and the number of required
framelets n are defined. These relationships are crucial to
ensure correct rendezvous between transmitter and receiver.
The rendezvous process is depicted in Fig. 1.

A. Duty Cycle

The duty cycle period is represented as P = A+ A, where
A is the time the radio that remains active and A is the time
that the radio spends in sleep mode. The duty cycle ratio, or
duty cycle D for short, is defined as:

A A
P A+ A

B. Rendezvous using Framelets

D= 1

Framelets are defined as small packets having a limited size.
The trail of framelets is characterized by three parameters:

o Number of transmissions: n
o Time between framelets: g
o Framelet transmission time: 0

In order to achieve correct transmitter-receiver rendezvous
using framelets a number of relationships must be obeyed.

First, there is a relationship between the transmission time
of a framelet, 0, and the gap in between framelet transmissions,
0o, to the minimum listen time at the receiver, A. This ensures
that the listener is active for a sufficient time to guarantee
overlap with at least one full framelet, assuming the channel
is busy. Formally stated:

A>2-0+d 2)

With some transceivers § may vary according to the length
of a framelet. If § or §y are not constant then the worst case
values can be assumed.

Second, there is a relationship between the minimum num-
ber of framelets, n, in a trail and the parameters of the duty

733

cycle, A and Ay, and of course the parameters of the framelet
trail itself, § and dg. This ensures that there are a sufficient
number of framelets transmitted such that a correct overlap
with a receivers listening period, A, is guaranteed to occur.

Formally stated:
> |2 3)
n
— |6+

If § or o may vary it is difficult to calculate a priori the
number of framelets needed. An alternative to this approach
is to simply ensure that the transmission of the framelet trail
exceeds the duration of P.

C. Acknowledgments

To save further energy on the transmitter side, an ac-
knowledgment mechanism can be used. The radio switches
to a listen state in the transmission gaps, dp. A receiver
acknowledges the reception of the first framelet encountered.
After receipt of the acknowledgment the sender stops the
framelet transmission. Thus, using acknowledgments, most
transmissions will not require all n framelets. As result, a
transmission will occupy the channel for a shorter period of
time. To enable acknowledgments, §; must be long enough
to cater for transceiver switching times and sending of the
acknowledgment.

D. Fragmentation

One of the requirements for this framelet communication
scheme is that there is a maximum limit on packet size,
0. Various factors such as the operating system and the
specification of the node’s radio transceiver can have an impact
on the value chosen for §. If the size of the data a node has
to send exceeds ¢, then it becomes necessary to split the data
into several fragments that are smaller than the imposed limit
and send each piece in a separate message. This can be done
with a fragmentation layer.

The fragmentation layer adds a two byte fragmentation
header to the message payload, consisting of a one byte length
field and a one byte fragment number. The length field is used
to denote the total number fragments in the message and the
fragment number indicates the position of the current fragment
in the message. Transmission of a fragmented message begins
with the message passing through the fragmentation layer
where it is split into several pieces, each one being given a
fragment number before being queued for sending.

The first fragment is sent like any other framelet, firstly
listening to the channel to determine whether or not it is
occupied before repeatedly sending the first fragment. The
destination node will receive one of these framelets during the
listen period of its duty cycle and send an acknowledgment.
It then checks the fragmentation header of the framelet to
determine if there are more fragments to come and extending
its listen period if necessary.

Once the sender has received the acknowledgment for
the first fragment it knows the destination node is listening
and immediately sends the remaining fragments; since the

1 1 1 2 3
3 3 3 3 3 ~
>
Sender
A4 A4 \ 4 .
>
Receiver
{ »a
RADIO OFF RADIO ON RADIO OFF

Fragment X of Y I:l Ack
Y

Fig. 2. Fragmentation.

destination is listening only a single framelet is required for
each. The process can be seen in Fig. 2.

E. Summary

The duty cycle ratio, D (eq. 1), strongly influences the
energy consumption pattern of a node; a small D indicates
a low energy consumption. The worst-case message transfer
delay between two nodes is defined by P. P can be reduced
while keeping the required duty cycle D by minimizing the
values of ¢ and dy. Hence, to optimize message transfer delays,
6 and g should be as small as possible. Depending on the
capabilities of radio transceiver and the minimum packet size,
lower bounds for § and dq exist.

IV. HIGH PRIORITY INTERRUPTS

An ongoing framelet transmission can be interrupted by any
node in communication range by sending a short message
similar to the acknowledgment described in Section III-C. This
feature can be used by nodes that have to send high priority
data and need to access the channel immediately.

A. Interrupt Concept

If a node has data to send it will attempt to access the
channel. To do this it must first perform a carrier sense listen
of duration A to ensure no other node is transmitting. If,
during this listen phase, it receives a single framelet sent by
a current transmitter, the header of this framelet is examined.
If the priority is equal to or higher than the message in the
transmit buffer then the usual back-off occurs. On the other
hand, should the priority of the received framelet be lower than
the message awaiting transmission then a priority interrupt
will be performed. The node sends an interrupt packet to
the current transmitter. The current transmitter receives this
interrupt packet as it would be waiting for an acknowledgment
from the destined receiver of the framelet transmission. If
the current transmitter correctly receives this interrupt it will
send an interrupt acknowledgment, cease transmissions and
then enter a back-off phase. After this backoff the interrupted
node will attempt to send its message again. Upon receipt
of the interrupt acknowledgment the interrupter will immedi-
ately begin transmitting its own framelet trail. If an interrupt

734

3 3 3 Back Off Back Off
A A
Node A ~ Node A ~
Priority Priority
Interrupt Interrupt
,....
' A A
Node B ~ Node B ~
Fig. 3. High Priority Interrupts. kT
ig igh Priority Interrupts ' ' Back Off
1 : -
Node C ~
. . . . Priority
acknowledgment is not received the interrupter will enter a Interrupt
back-off phase.
. . . . r====
The basic mechanism can be seen in Fig. 1. Node B has a |T|: |_|
high priority message to send and interrupts Node A who is]
Node D

transmitting lower priority messages.

B. Interrupt Acknowledgment

It is evident that this procedure could be performed with-
out the use of an interrupt acknowledgment. However, the
acknowledgment ensures that the interrupt mechanism works
correctly and prevents potential collisions in the event of
interrupt loss. In addition if multiple nodes attempt to interrupt
simultaneously or nearly simultaneously then at most one will
receive an acknowledgment and the rest will back-off. If all
the interrupts collide then no acknowledgment will be sent and
all the interrupting nodes will back-off.

C. Arbitration

This priority interrupt mechanism can be used with sev-
eral levels of priority allowing multiple interruptions in a
single duty cycle period. Any node that has a message to
send can interrupt an ongoing lower priority framelet trail
from a neighboring node. A node, Node B, that successfully
interrupts another, Node A, can subsequently be interrupted
by a third node, Node C, provided that Node C’s message
priority exceeds that of Node B. In effect this provides priority
arbitration, ensuring the highest priority message gets access
to the channel.

An example of this behavior can be seen in Fig. 4, Node
A initially acquires the channel with a message of priority 3,
Node A is interrupted by Node B whose message priority is
2. Node C then senses a level 3 event and attempts to report
this with a message with priority 3 but finds the channel
occupied by higher priority Node B so it backs off. Finally
Node D, message priority 1, interrupts Node B. This example
is a typical scenario and illustrates how the node with the
highest priority message gets access to the channel without
having to wait for the sender currently occupying the channel
to deliver its message.

D. Summary

The process of interrupting another node takes place very
quickly and the interrupting node can seamlessly take control
of a busy channel to transmit its own high priority message.
Multiple interrupts may take place among a group of nodes

N

Channel
Listen

Priority
X Event

Priority
X Message

Priority
Interrupt

Fig. 4. Priority Arbitration.

(e.g. A interrupts B, which is then interrupted by C etc.). Thus,
it is ensured that at a given time the highest priority message
is very likely to gain access to the channel. For a given
Duty Cycle Period P a node with a high priority message to
send and only lower priority messages to contend with should
always experience delays less than P and on average %. This
observation can be expanded to multi- hop scenarios of h hops;
here these values are o - P and h - & respectively.

V. IMPLEMENTATION

The previously described concepts were implemented in
TinyOS 2.0.2 for Tmote Sky and Tmote Invent sensor nodes
and denoted FrameComm. FrameComm was modified to in-
clude high priority interrupts; we refer to this protocol as
FrameCommHPI.

A. FrameComm

FrameComm [2] is an implementation of a CSMA based
MAC using the framelets scheme. It is similar to LPL (Low
Power Listening), the default power saving protocol that is
part of TinyOS 2.0.2, but it was developed in parallel and has
a few key distinctions. In terms of similarities both concepts
use framelet trails to ensure rendezvous and the listening cycle
length is dictated by the duty cycle and the times ¢ and dg.

LPL however does not implement the listening phase A
in the same manner as FrameComm. LPL repeatedly polls the
CCA to detect if the channel is busy for a fixed time of 11ms.
If during this time a packet is detected the listening phase
is extended to ensure that the packet is received correctly.
FrameComm on the other hand performs a standard listen
for 12ms, which should guarantee interception of any packets
transmitting and performs a brief CCA at the end of the listen

735

period in case another framelet has begun transmitting. If so
the listen period is extended. As a result of the longer listen
period A FrameComm had a longer sleep period A than LPL.
A 2% duty cycle using FrameComm has a period P = 600ms
whereas LPL has a period P = 550ms. Therefore LPL should
theoretically be able to handle more traffic than FrameComm
at the same duty cycle.

Another major difference is the way in which the carrier
sense is performed. Whereas FrameComm uses a full listen,
as described above, LPL merely uses a brief CCA before
beginning its transmissions. The use of this brief CCA is
insufficient to ensure that the channel is in fact clear and a
number of problems arise when LPL experiences contention
for the channel (see Section VII).

Yet another difference between the two implementations is
the back-off strategy. FrameComm makes use of a full listen
and exploits the overheard information to influence its back-
off strategy. LPL does not do this since it does not receive
packets during its carrier sense phase. In addition the back-
off strategy of LPL is unrelated to the duty cycle and results
in numerous back-offs which are not sufficient to remove
unnecessary contention for the channel.

B. FrameCommHPI

When a node has data to send it will pick up any message
currently occupying the channel in its carrier sense phase. The
priority of this message is ascertained by checking its type and
comparing it to that of the message the node wishes to send.
If the node finds that the current message in transit is of equal
or higher priority it begins a back-off, allowing the current
sender to complete the ongoing transmission. Otherwise, the
node generates and sends an interrupt message to the current
transmitter requesting the channel. The interrupt itself is little
more than a CC2420 message header, the fype field denotes
it to be an interrupt and the src field identifies its origin. On
receipt of such an interrupt, the receiver immediately sends an
interrupt acknowledgment and enters a back-off period. The
acknowledgment informs the node that the channel has been
conceded and its high priority transmission commences.

In the absence of an acknowledgment the sender concludes
that the interrupt or its acknowledgment has been lost and
enters a back-off phase before trying again. Since there is still
a high priority message that needs to be sent the length of this
back-off is selected to be shorter than the standard congestion
back-off.

VI. APPLICATION AREAS

There are a number of application scenarios that can benefit
from the outlined priority interrupt mechanism. In particular,
the priority interrupt mechanism can be used to (1) ensure
fast delivery of important application messages, (2) implement
fairness regarding channel access.

We are currently using TinyOS with the FrameComm MAC
layer in a number of different WSN projects. Within these
projects the outlined priority interrupt feature is helpful in
supporting the application scenarios efficiently.

A. Physical Intrusion Detection (Prioritization)

We are experimenting with a physical intrusion detection
system used to secure an office building [17]. A number
of wireless intrusion detection sensors are distributed in the
building and report their observations to a central sink for
data analysis. In addition, each node sends periodic heart-beat
messages to indicate correct operation. The sink generates an
alarm if an intrusion or system failure is detected and security
personnel are informed to deal with the incident.

To ensure timely detection of intruders it is necessary to
transport messages with positive detection events with the
highest priority. Heart-beat messages and network mainte-
nance messages containing routing or key update material are
not time critical. Thus, an efficient network-wide scheduling
mechanism is needed.

Part of the solution is a priority scheduler on each node
which is able to correctly schedule messages locally. However,
a scheduler alone is not sufficient as it is not possible to claim
the channel immediately if another node is already in the
process of transmitting a low priority message. For example,
we frequently observes the case where a key update message
is sent from the sink to all nodes (broadcast, downstream),
blocking the channel needed for an event detection to be
sent to the sink (unicast, upstream). Priority interrupts in
FrameCommHPI allow us in such cases to clear the path for
an important message traveling upstream.

B. Car Park Management (Fairness)

We constructed and evaluated a wireless sensor network
used to monitor the usage of car park spaces [18]. Sensor
nodes are deployed on the ground and employ a magnetic field
detector to decide if a car is parked in this spot. Subsequently,
detection messages are routed towards the sink.

Our study showed that link quality fluctuates heavily and
that for extended periods communication between adjunct
nodes can be disrupted. Thus, a node might have to try several
times to transmit a message successfully to the next hop.
In addition, a node might also have to back off as another
node gained access to the channel first. Thus, messages routed
through particular nodes can experience a very high delay.

Priority interrupts in FrameCommHPI can help to deal
with such situations. The priority of a message can be set
dynamically, representing the time a node has spent trying
to transmit a particular message. Thus, the message priority
increases with successive unsuccessful transmissions or back-
offs. As a result, nodes which have to deal with bad channel
conditions will obtain higher priority in accessing the medium.

VII. EXPERIMENTAL EVALUATION

The primary goal of the experiments is to quantify the
reduction in channel access time for high priority traffic as
a result of using FrameCommHPI.

A. Evaluation Metrics

The main measurement of interest is the node-to-node deliv-
ery latency, ¢, of messages. However, without a common time

736

Fig. 5. Experiment Setup.

source or complex synchronization mechanism it is difficult
to measure this latency. With this in mind it was decided to
measure the latency locally on each node by comparing the
time the node decides to schedule a message for transmission,
t1, and the time the node receives an acknowledgment, o,
(t = to — t1). More specifically, within the TinyOS imple-
mentation we measure the period between the application
calling a send and receiving a sendDone signal. While there
is some overhead associated with a message being sent down
the TinyOS communication stack and the sendDone being
delivered, this time does not vary between experiments or
across nodes. The message size is constant throughout and the
nodes are not carrying out any other operations or activities
that could affect these times. As a result the only variable is
the time taken to access the channel and deliver the message.
The number of packet losses, r, (given in percent) is also of
interest and is determined.

B. Experiment Setup

The experiments were carried out using Moteiv Tmote Sky
and Tmote Invent sensor nodes running TinyOS 2.0.2. A small
tree topology consisting of some leaf nodes, a forwarding node
and base station (sink) as shown in Fig. 5 was used. The leaf
nodes and the forwarding node were duty cycled while the
base station was always on.

Each experiment begins by sending a control message
requesting a number of messages from each leaf node (n;
to n,). The leaf nodes then send a series of messages to the
forwarding node n that sends them to the sink where they are
uploaded to a PC for analysis. The payload of each message
consists of a node ID, a sequence number and the measured
message send time of the previous message. The first 100
messages from each node are taken and from these the average
latency ¢ and loss rate r are calculated. The measurement is
repeated 5 times for each measurement point. A 2% Duty
Cycle was employed giving a Duty Cycle Period, P = 600ms,
for FrameComm and P = 550ms for LPL.

FrameCommHPI’s high priority interrupt feature only
comes into effect when there is contention on the channel.
Thus, a message generation interval of n - 500ms was chosen,
where n is the number of leaf nodes. A fixed generation
interval would introduce a bias towards one node as it would
generate its message first each time, to prevent this the
interval included randomization. The desired average gener-
ation interval, tzr, is included in the control message. Each

1200 T T
Normal
High Priority ===

1000

800

600

400

Latency t[ms]

<o, . <o, oA .
% e k. R X
S o, S o, B
%,) %, % 0,
%72 %y o7 Bz,

Fig. 6. Experiment 1, Latency ¢.

individual interval, txr;, is calculated with the formula txr; =

(rand%tar) + L. This gives a value between 2= and 3‘5",

averaging out to tzr over the course of the experiment.

C. Experiment 1

Initially the experiment was run with a single leaf node
ni generating messages to get a base latency t;, that is
a latency ¢ without channel access delays introduced by
contention. Subsequently, the experiment was repeated with
two leaf nodes generating messages for FrameComm, LPL and
FrameCommHPI. Messages are generated at a random interval
that average at 2 - 500ms = 1000ms. The results are shown
in Table I and Fig. 6, the large values for standard deviation
is due to the scheme being Duty Cycled.

Single Leaf Node: With a single sender LPL slightly
outperforms FrameComm in terms of latency, ¢. This was
expected as LPL has a slightly smaller duty cycle period than
FrameComm. The measured average latency ty FrameComm =
322.81ms and t, 1, pr, = 281.65ms were slightly greater than
the expected g, confirming ¢ as valid metric. With a single
leaf node, no losses were recorded for either protocol.

Two Leaf Nodes: The introduction of a second leaf node
generating messages illustrates the effect of the differences be-
tween LPL and FrameComm and especially FrameCommHPI.

LPL’s message send times are largely unchanged but there is
a significant increase in packet losses. FrameComm’s latency
increases significantly but the packet losses remain low. This
result shows that the current TinyOS LPL implementation
suffers considerable losses where contention is present. The
increased latency with FrameComm can be attributed to nodes
trying to access a busy channel.

When FrameCommHPI is introduced it is clearly evident
that the delay for Node 2, the node generating high priority
messages, is significantly reduced. The average values are only
marginally above the target ¢y Framecomm Set by the single
sender node using FrameComm and is very close to g as
expected. This additional latency can be attributed to the nec-
essary exchange of interrupts and interrupt acknowledgment.

LPL v FrameComm: Fig. 6 shows that latency in LPL is
relatively unaffected by an adding congestion when compared
to FrameComm. This would seem to be in LPL’s favor but

737

Latency ¢ [ms] Loss Rate r [%]
Nodel Node2 Nodel Node2
Average | Std Dev | Average | Std Dev | Average | Std Dev | Average [Std Dev
TPL, sonter 381.65 | 159.52 - - 0.0 0 - -
FrameComm(j sender) 322.81 166.70 - - 0.0 0 - -
LPL(2 senders) 259.50 173.14 250.02 167.87 26.6 6.69 21.0 4.00
FrameComm, senders) 688.98 332.49 655.80 315.73 0.6 0.55 0.4 0.55
FrameCommHPI(; endersy | 1001.93 658.39 327.85 192.58 0.4 0.55 0.4 0.55
TABLE I

EXPERIMENT 1, LATENCY ¢, LOSS RATE 7.

8000 T T T
Normal
.. 7000 2 High Priority == +
o
3 6000
o
o 5000
[}
8 4000
-
& 3000
g
2 2000
-
1000
0 % A % A <
0, 0
Bl . % Yh N
@(9;/) @efg% s(%) &‘9’?93/,) @66; Y
O, 0, (o) 0, 0,
© % %& %:3 %?’3,’0
7
Fig. 7. Experiment 1, Latency Loss Product.

this is not a complete picture as it does not factor in losses.
Fig. 7 on the other hand reflects both latency and losses and
it clearly shows LPL has problems when multiple senders are
present.

While LPL is energy efficient and reliable with a single
sender it suffers considerable losses when the network is
congested. For some applications this may not be an issue
but for those with high priority messages or critical data such
losses would be a concern. Event based systems are most likely
to suffer since it is probable that any nodes in the vicinity of
a high priority event will detect it and attempt to report it,
resulting in contention.

FrameComm continues to be very reliable in the presence
of heavy congestion due to some key differences between its
design and that of LPL. This is mainly as a result of LPL’s
CCA mechanism and its backoff as described in Section V-A.

D. Experiment 2

Experiment 2 examines the behavior of FrameCommHPI
in terms of average latency ¢ with various combinations of
normal and high priority senders. This gives an indication
of how FrameCommHPI performs in a larger scale multi-hop
network with a mixture of priorities, particularly in upstream
forwarding nodes where data converges approaching the sink.
Each run of this experiment had four leaf nodes generating
messages. Messages are generated at a random interval that
average at 4 - 500ms = 2000ms. To begin with all four leaf
nodes sent messages of normal priority. With each subsequent
variant the priority of one sender was increased, giving three
normal and one high priority, then two normal, two high

and finally one normal and three high. The results of this
experiment are shown in Fig. 8. A cumulative distribution for
the latency of both normal and high priority traffic is presented
for each variant of the experiment.

With a single high priority sender an average latency of
very close to g is achieved, despite the extra network traffic.
This value increases with each additional high priority sender,
however even with three high priority senders the average
latency for high priority messages is still half that of when
all messages priorities are equal. A more dramatic jump for
the latency of low priority messages can also be seen. This
is expected as a larger proportion of high priority messages
leads to more interruptions.

VIII. CONCLUSION & FUTURE WORK

In this paper a concept for prioritizing messages using
interrupts in Duty Cycle communication schemes is presented.
An implementation called FrameCommHPI is described and
evaluated along with practical application areas that would
benefit from its use. As the shown, the channel access times for
critical data can be effectively reduced and message transport
latency is improved. In the future, we plan to combine the
presented interrupt mechanism with an adaptive duty cycle
scheme to further improve data delivery latency.

Acknowledgments: Mr. O’Donovan is supported by Mi-
crosoft Research through its European PhD Scholarship Pro-
gramme and the EMBARK Initiative of the Irish Research
Council for Science, Engineering and Technology.

REFERENCES

[1] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for
wireless sensor networks. Proceedings of the 2nd ACM Conference on
Embedded Networked Sensor Systems, 2004.

J. Benson, T. O’Donovan, U. Roedig, and C. Sreenan. Opportunistic
Aggregation over Duty Cycled Communications in Wireless Sensor
Networks. Proceedings Of ACM/IEEE International Symposium on
Information Processing in Sensor Networks (IPSN), 2008.

Tinyos 2.0.2. http://www.tinyos.net.

Moteiv Tmote Sky & Tmote Invent motes. http://www.moteiv.com.

M. Buettner, G. V. Yee, E. Anderson and R. Han. X-MAC: A Short
Preamble MAC Protocol for Duty-Cycled Wireless Sensor Networks.
Proceedings of the 4th International Conference on Embedded Net-
worked Sensor Systems (SenSys), 2006.

R. Musaloiu-E, C. M. Liang, A. and Terzis. Koala: Ultra-Low Power
Data Retrieval in Wireless Sensor Networks. Proceedings Of ACM/IEEE
International Symposium on Information Processing in Sensor Networks
(IPSN), 2008.

738

Pr(t)

Pr(t)

[7]

[8]

[12]

[13]

Normal -
4 Normal & 0 High Priority Senders orma

1.0

0.8

0.2 /

0.0
0 2000 4000 6000 8000 10000 12000 14000

Latency t[ms]

High Priority o
2 Normal & 2 High Priority Senders 9 Ngmz R

1.0 {—- ff"-“

0.8 /
0.6

e/

0
0 2000 4000 6000 8000 10000 12000 14000
Latency t[ms]

3 Normal & 1 High Priority Senders High ,\Plcr,'fr{{}j .

ol

0.8 {

-/

0.0

0 2000 4000 6000 8000 10000 12000 14000
Latency t[ms]

‘ High Priori o
. 1 Normal & 3 High Priority Senders 9 NQ?,{{‘J .
ami -
“ué
0.8 st
f‘

e 06 -~
o f

0.4 Va

0.2

0
0 2000 4000 6000 8000 10000 12000 14000
Latency t[ms]

Fig. 8. Experiment 2, Cumulative Distribution, Pr(¢) v Latency ¢[ms].

K. K. Chintalapudi and L. Venkatraman. On the Design of MAC
Protocols for Low-Latency Hard Real-Time Discrete Control Applica-
tions over 802.15.4 Hardware. Proceedings Of ACM/IEEE International
Symposium on Information Processing in Sensor Networks (IPSN),
2008.

P. Ansel, Q. Ni, and T. Turletti. An Efficient Scheduling Scheme
for IEEE 802.11e. Proceedings of IEEE Workshop on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks, 2004.

A. Firoze, L. Jun and L. Kwong. PR-MAC A Priority Reservation MAC
Protocol For Wireless Sensor Networks. Proceedings of International
Conference on Electrical Engineering (ICEE), 2007.

Y. Xiao. Enhanced DCF of IEEE 802.11e to support QoS. Proceedings
of IEEE Wireless Communications and Networking (WCNC), 2003.

J. W. Fonda, M. Zawodniok, S. Jagannathan and S. E. Watkins. Adaptive
Distributed Fair Scheduling and Its Implementation in Wireless Sensor
Networks Systems. IEEE International Conference on Man and Cyber-
netics (SMC), 2006.

O. Chipara, C. Lu, C. and Roman. Real-Time Query Scheduling for
Wireless Sensor Networks. Proceedings of the 28th IEEE International
Real-Time Systems Symposium (RTSS), 2007.

K. Karenos, V. Kalogeraki and S. V. Krishnamurthy. A Rate Control
Framework for Supporting Multiple Classes of Traffic in Sensor Net-
works. Proceedings of the 26th IEEE International Real-Time Systems
Symposium (RTSS), 2005.

[14]

[15]

[16]

[17]

[18]

739

A. Krohn, M. Beigl, C. Decker and T. Zimmer. TOMAC - Real-
Time Message Ordering in Wireless Sensor Networks Using the MAC
Layer. Proceedings of the 2nd Intern’l Workshop on Networked Sensing
Systems, 2005.

J. Brown, J. Finney, C. Efstratiou, B. Green, N. Davies, M. Lowton
and G. Kortuem. Network interrupts: supporting delay sensitive appli-
cations in low power wireless control networks. Proceedings of the 2nd
‘Workshop on Challenged Networks, 2007.

A. Barroso, U. Roedig, and C. J. Sreenan. Use of Framelets for Ef-
ficient Transmitter-Receiver Rendezvous in Wireless Sensor Networks.
Proceedings of the 5th International IEEE Workshop on Wireless Local
Networks, 2005.

A. Chung and U. Roedig. DHB-KEY - A Diffie-Hellman Key Distri-
bution Protocol for Wireless Sensor Networks. Adjunct Proceedings
(Posters) of the Sth IEEE European Workshop on Wireless Sensor
Networks (EWSN), 2008.

J. Benson, T. O’Donovan, U. Roedig, P. O’Sullivan, C. Sreenan, J.
Barton, A. Murphy, and B. O’Flynn. Car-Park Management using
Wireless Sensor Networks. Proceedings of the First IEEE International
Workshop on Practical Issues in Building Sensor Network Applications
(SENSEAPP), 2006.

