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Abstract—The capabilities of a sensor network are system influences the degree to which task scheduling is
strongly influenced by the operating system used on the performed by the system or by the systems programmer.
sensor nodes. In general, two different sensor network oper Obviously, the last point is subjective as it depends on the

ating system types are currently consideredevent driven and -
multi-threaded. It is commonly assumed that event driven quality and knowledge of the programmers. Nevertheless,

operating systems are more suited to sensor networks as the issue has strong impact in real world application
they use less memory and processing resources. However, if designs.

factors other than resource usage are considered important Currently, operating systems for sensor nodes follow
a multi-threaded system might be preferred. This paper  ajther one of two different design concepts. Operating

compares the resource needs of multi-threaded and event . . .
driven sensor network operating systems. The resources systems following the first design approach are called

considered are memory usage and power consumption. €vent drivenEach operating system process is triggered
Additionally, the event handling capabilities of event driven  in response to an event (e.g. a timer, an interrupt indicat-
and multi-threaded operating systems are analyzed and ing new sensor readings or an incoming radio packet).
compared. The results presented in this paper show that  The tasks associated with the event are executed and
for a number of application areas a thread-based sensor thereafter the node is sent to an energy-efficient sleep stat
network operating system is feasible and preferable. .
Index Terms— Sensor Networks, Sensor Network Oper- or the n_ext event is processed. As e_vents are process_ed
ating Systems, Performance Evalu’ation, TinyOS, MANTIS. sequentially, expensive context switching betwe.en teisks |
not necessary. An example of such an operating system
is TinyOS [1]. The second approach follows the classic
multi-threadedoperating system design. The operating
. INTRODUCTION system multiplexes execution time between the different
Wireless sensor networks consist of battery poweredhsks, implemented as threads. While switching from one
sensor nodes used to gather information about a monthread to another, the current context has to be saved and
tored physical phenomenon. To ensure long periods dhe new context must be restored. This consumes costly
unattended network operation, the energy consumption agesources in the constrained sensor node. An example of
the sensor nodes must be very low. The operating systesuch an operating system for sensor nodes is MANTIS
used for the sensor nodes influences energy consumpti¢).
on two levels. First, the design of the operating system Currently it is assumed that an event driven operating
defines the minimum resource requirements such as CP$ystem is more suitable for sensor networks because less
speed and memory capacity that the sensor hardware musisources are needed resulting in a more energy-efficient
provide. Second, the operating system design influencesystem. However, the exact figures are unknown and
the usage pattern of the CPU and thus defines how oftethierefore determined and presented in this paper. On the
energy-efficient sleep periods can be activated. As thether hand it is claimed that a multi-threaded operating
sensor node must provide a service, the operating systesystem has superior event processing capabilities. Again,
design can not be focused solely on energy efficiencyan in depth analysis is currently missing and is there-
Sensor readings and incoming messages must be handlede shown in the paper. For comparison purposes, the
promptly by the sensor node. The responsiveness of thevent-based systefiinyOSand the multi-threaded system
node must be sufficient to handle events and requestdANTISexecuting the same sensor network applications
according to their deadlines. on theDSYS243] sensor platform are used. The contri-
Application responsiveness is influenced by the operbutions of the paper can be summarized as follows:
ating system design in two ways. First, the responsive- 1) Comparison of the memory requirements of the
ness depends on the task scheduling capabilities of the  event-based TinyOS and multi-threaded MANTIS
operating system. Second, the design of the operating  operating system.
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2) Comparison of the event processing capabilities oprogramming concurrent (sensor network) applications
the event-based TinyOS and multi-threaded MAN-with threads as opposed to event handlers is easier for
TIS operating system. the programmer. The proto-threads in CONTIKI allow
3) Comparison of the energy consumption of thea combination of both benefits. However, an objective
event-based TinyOS and multi-threaded MANTIS performance comparison of an event-based and multi-
operating system. threaded system is not provided.
The results presented in the paper can be used to decideln [11] it is argued that TinyOS, in contrast to MAN-
which type of operating system should be used for allS, has a problem with multiplexing long running tasks
specific sensor network application. The results also sho@nd short running tasks. However, an in-depth analysis
that for a number of application areas a thread-based an analytical evaluation or by measurement - of the
sensor network operating system is actually feasible antisk handling problem is not given. It is argued that both
even preferable. operating systems should be combined to overcome the
The rest of the paper is organized as follows. TheeXisting problems. As a solution, the complete TinyOS
next section describes related work in the research are¥perating system is executed as a thread in MANTIS. If
of operating systems for sensor networks. Secfigh Ilfasks in TinyOS need to be able to preempt other tasks,
gives an overview of the operating systems TinyOS andhey can be executed in a separate MANTIS thread. Very
MANTIS. SectiorI¥ describes the sensor platform, appli-similar earlier work [12] uses the AvrX [13] as a multi-
cation scenarios and their implementation as used for théreaded extension of the TinyOS scheduler. In this work,
comparative experiments. Sectida V]V VI presenthe event processing capabilities of the basic TinyOS and
the experimental comparison of the operating systemdhe modified AvrX extended TinyOS are investigated (a

Sectior[YIl] concludes the paper. very similar experimental setup to the setup described in
SectiorIV is used for evaluation). However, an analysis of
Il. RELATED WORK other parameters such as power consumption and memory

usage is omitted. The differences of a generic thread-

Historically, there has _been much del_Jate on WhetheIBased system are also not investigated. In summary, the
an event-based or multi-threaded architecture is morg

- . . . . esearch focus of [11] and [12], is to integrate multi-
efficient. To decide which operating system archltecturekhreaded features in TinyOS.

should be used, the specific application environment o In [14] TinyOS is compared with eCos, an embedded

interest has to be considered as each application envr%ﬂulti-threaded operating system. eCos is not specifi

ronment dlc_tates very specm_c cc_)nstraln_ts. Unfortunatelyca”y a sensor network operating system as many of
results obtained for one application environment are nor:,

. . . the core operating features are designed for more com-
mally not directly applicable to another environment. P 9 9

Thus. a comprehensive study coverina a multitude oPleX embedded processors. The paper does evaluate both
o prenenst ay 9 memory, processing performance and power efficiency.
application scenarios is required.

Preliminary results of our research presented in thisFOr processing performance the number of clock cycles
y res . . P . required to process kernel functions are summed up, but
paper were published in [4]. This paper describes th

erformed experiments in much areater detail. In addi(_?:lctual application performance is not investigated. The

Ei)on the resuIFt)s and their im Iicagons are anai zed an ower performance is compared theoretically based on

di ' d P y he memory requirements of each operating system, but
scussed. o : no investigation into operating system power-management
Besides our preliminary work, no published researchl? analyzed in this paper

exists that prese_nts a comprehensive comparison of even “To our knowledge, this is the first work that provides

based and multi-thread sensor network operating systems

taking event processing. enerav consumotion and memor?)ecific data to determine the effectiveness of both an
g€ P 9, 9y P . .event-based and a multi-threaded operating system in a
usage into account. The lack of such a study is the main

motivation for the work presented in this paper. Existingrange of application scenarios.
work targets only a subset of aspects investigated in this
paper. For example papers analyzing or describing one
specific operating system (e.g. [5], [6], [7], [8], [9]), or Two different sensor network operating system types
publications comparing only one aspect (e.g. memonare currently consideredvent driverandmulti-threaded
usage in [6]). As each single existing analysis is basedo compare both operating system concepts, a well known
on different assumptions and experimental setups, it iand widely used implementation of each was selected,
not possible to extract an objective comparison. namely TinyOSand MANTIS The following paragraphs

As previously mentioned, the choice of operating sys-describe the basic functionality of each operating system,
tem design has an impact on the way an application igspecially regarding power consumption and event pro-
programmed. In [10] the event-based system CONTIKI[7]cessing which are the parameters of interest in our study.
uses a programming concept called “proto-threads” whiclit has to be noted that the terms event, task and thread are
allows the programmer to develop a program using aised differently within the literature describing TinyOS
multi-threaded programming syntax. It is argued thatand MANTIS. Thus, definitions are given below to avoid
an event-based system is more power efficient but thatonfusion:

IIl. SENSORNODE OPERATING SYSTEMS
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. 1: conponent _A
« Event: An environmental occurrence. 2:  task do(){...}
« Interrupt: An interrupt triggered by an event. b ‘é\‘l’m”g( ﬁ){}}
o Event-Handler:A system function, invoked in re-
sponse to an interrupt. g int_A

o TinyOS TaskA deferred procedure, usually triggered 7. post task(A)
by an event-handler.
. : 8: TOSH task
« MANTIS Thread:A portion of the MANTIS OS & TRHSInataskO = o)
that can run independently of, and concurrentlyio: TosH_ sl eep()
with, other portions of the OS, typically invoked in

response to an interrupt. Fig. 1. TinyOS structure

A. TinyOS B. MANTIS

] ) The MANTIS operating system [2] is a light-weight
The TinyOS [1] operating system was one of thepyti-threaded operating system capable of multi-tasking
first operating systems specifically designed for wirelesgrocesses on energy constrained distributed sensor net-
sensor networks. The inventors felt that an event driveRygrks. The system provides a classical multi threaded
light-weight kernel was the best solution to handling agystem in the context of wireless sensor networks.

“large number of concurrent flows and juggle numerous ggch task the operating system must support can be
out-standing events”. implemented - using standard C - as a separate MANTIS
The operating system and specialized applications argread. A simplified view of this thread structure is shown
written in the programming language nesC and are organ Fig.[d. A new thread is initialized and thread processing
nized in self-contained components. A simplified view ofijs started (line 1). Processing might be halted using the

this component structure is shown in Ai§. 1. Componentsunction mos_semaphore_waithen a thread has to wait
consist of interfaces in the form @ommandandevent for a resource to become available (line 3). An interrupt
functions. Components are assembled together, conne¢fandler (line 4) using the functiomos_semaphore_post
ing interfaces used by components to interfaces providegine 5) is used to signal the waiting thread that the
by others, forming a customized sensor application. Theesource is now available and thread processing is re-
resulting component architecture facilitates event-dasesumed. While a thread is waiting on a resource to become
processing by implementing event-handlers and TinyOQvailable, other threads might be activated or, if no other
tasks. TinyOS tasks are deferred function calls and argrocessing is required, a power saving mode is entered.
placed in a simple FIFO task-queue for execution (se®ower saving is handled by a thread called idle-task
Fig.0, line 8). TinyOS tasks are taken sequentially fromwhich is scheduled when no other threads are active.
the queue and are run to completion. Once runningThread scheduling is performed within the kernel function
the TinyOS task can not be interrupted (preempted) bylispatch_threadshown in Fig.[R, line 6. This function
another TinyOS task. Event-handlers are triggered iearches a data structure calteddyQfor the highest pri-
response to a hardware interrupt and are able to preemgiitized thread and activates it. When ttlispatch_thread
the execution of a currently running TinyOS task (seefunction is called, the current active thread is suspended
Fig. [, line 5). Event-handlers perform the minimum calling PUSH_THREAD_STACKline 7) which saves
amount of processing to service the event. Further noCPU register information. The highest priority thread
time-critical processing is performed within a TinyOS js then selected from theeadyQ (line 8) and its reg-
task that is created by the event handler. After all TinyOSster values are restored by tfROP_THREAD_STACK
tasks in the task queue are executed, the TinyOS systefunction (line 10). Before thalispatch_threadfunction
enters a sleep state to conserve energy (seélFig. 1, line 1().called, thereadyQ structure is updated. Threads that
The sleep state is terminated if an interrupt occurs.  are currently sleeping or that are waiting on a semaphore
Functionality in TinyOS is distributed among many (resource) are excluded from theadyQ The scheduling
components. Each function (e.g. sensing or packet forthrough thedispatch_threadunction can be initiated by
warding) is normally segmented into a series of subiwo different meansDispatch_threadis called when a
steps, (task, command and event hander functions). Thusemaphore operation is called (e.g. to let the current
functionality can execute concurrently by multiplexing thread wait on a resourcd)ispatch_threads also called
these atomic sub-steps. When used correctly, this agperiodically by a time slice timer to ensure processing of
proach leads to an efficient system structure. On thell threads according to their priority.
other hand it is difficult for the programmer to achieve Like all multi-threaded operating systems, MANTIS
a proper division of functionality. The programmer mustwas developed with a complement of built-in mem-
be familiar with the internal affairs of all low level ory protection techniques such as binary and counting
components in the system. Additionally, it can be difficult semaphores to manage and coordinate threads. MANTIS
for some programmers to handle functionality in suchthreads are implemented in the MANTIS kernel with
sub-steps. a static thread table, which stored priority and state
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thread_A

1: .

2: whil e(running) In many cases, a sensor network is used to collect
3 <+ mos_senaphor e_vai t (AL); . .. periodically obtained measurement data at a central point
a4 int A (sink or base-station) for further analysis. The sensor
5. ...;nps_semaphore_post(Al);... nodes in such a network perform two major tasks. Sensor
6: di spat ch_t hr ead() nodes perform the sensing task r?md they are u_sed to
7:  PUSH_THREAD_STACK() forward the gathered data to the sink. If the sink is not

8: CURRENT_THREAD = readyQ get Thread() i ; P

o CURRENT THREAD. st at e=RUNNI NG in d|r_ect radio range of a node, other nodes c_Iose_r to

10:  POP_THREAD_STACK() the sink are used to forward data. The execution time

of the sensing task will depend on the nature of the
physical phenomenon monitored and the complexity of
the algorithm used to analyze it. Therefore, the position
of the node in such a network and the complexity of
information for each MANTIS thread and a pointer to the sensing task define the operating system load of the
the thread stack. Typically only 12 MANTIS threads cansensor node. The complexity of the sensing task is varied
be either queued or active at any one time and willin the experiments and hence the application scenario is
consume 120 bytes of SRAM [2]. The heap space ofonsidered abstract, as it can be compared with many
each thread is managed by the kernel memory managaetifferent real-world deployment scenarios.
The memory manager assigns thread space according to aThe complexity of the sensing operation depends on
best-fit policy. Thread heaps will, by default, be assignedhe phenomenon monitored, the sensor device used and
in the lowest possible memory address spaces, ensurife data pre-processing required. As a result, the opgratin
that a thread heap space doesn’t collide with the processgystem can be stressed very differently. If, for example, an
heap. ATMEGA128 CPU with a processing speed 4ffhz is

By defining processes as threads, algorithms can bgopnsidered (a currently popular choice for sensor nodes),
represented in a more intuitive sequential fashion ag simple temperature sensing task (processed through the
processes don't need to be segmented into specific statpalogue to Digital Converter) can be performed in less
when waiting for a system event to occur. Compared tQhan 1ms [15fl. In this case only a6bit value has to
TinyOS, functionality is multiplexed by the OS, not by the pe transferred from the sensing device to the CPU. If
programmer. Thus, MANTIS has the potential of beingthe same device is used in conjunction with a camera,

Fig. 2. MANTIS structure

easier for programmers to use. image processing might take some time before a decision
is made. Depending on camera resolution and image
IV. EVALUATION SETUP processing performed, a sensing task can easily take more

For the evaluation of event processing capabilitiesthan100ms [16]. Other application examples documented
power consumption patterns and memory usage ah the literature are situated in between these values. For
TinyOS and MANTIS, both operating systems wereexample if a sensor value needs to be cryptographically
ported to the same sensor platform, the DSYS25 [3]secured before transmission, the sensing task is prolonged
Additionally, measurement facilities are integrated intbo by 5ms [17]. Thus, combined with a simple sensor, a
operating systems which allow us to observe the requiredensing task can be arouh@ins. Note that a long sensing
parameters without altering the system behavior. To actask can be split-up into several sub-tasks. However, in
tually perform the comparative evaluation, an abstracpractice this is often not possible due to two factors.
application scenario is defined and implemented on th&irst, many data-processing algorithms are difficult or
sensor nodes. This abstract application scenario corrémpossible to be split into separate tasks. For example
sponds to a broad spectrum of real-world sensor networkome image processing algorithms cannot be divided, as
deployments. explained in [16]. Second, it is difficult from a program-

In the following paragraphs, the selected abstract apming (or programmers) perspective to handle and manage
plication scenario is motivated and described. Thereaftesuch divided entities. The experimental evaluation spans
the DSYS25 sensor-node platform, the ported operatinthe task sizes describetts...100ms). Thus, the abstract
systems and the measurement hooks are explained. Trapplication scenario corresponds to a wide range of real
evaluation setup is used for the experiments described world application scenarios.

the remaining sections of the paper. The following paragraphs give an exact specification of
the abstract application scenario used, which is defined
A. Application Scenarios by its topology, traffic pattern and sensing pattern. The

To evaluate operating system performance, an applic@pplication scenario is then implemented on the DSYS25
tion context must be defined. Subsequently, the operatingensor platform for evaluation.
system performance of a sensor node supporting the given
scenario can be investigated. Obviously, to obtain useful

results, it is important that the investigated application 1This calculation is based on the amount of processing tirsessary
to process an analog sensor reading taken from the Atmega ABE

Scenar!o corregponds to real-world deployment and usagihc is typically used to process signals from analog sensoch as a
scenarios of wireless sensor networks. temperature sensor.

© 2008 ACADEMY PUBLISHER



JOURNAL OF NETWORKS, VOL. 3, NO. 3, MARCH 2008 61

° n=3 TABLE |
""""" ./\.nZZ EVALUATION SETUP
————7/—'——-\———————————————————74———‘\———————_»
° ° ° ® n=1 _
Task | Duration|  Clock cycles | Frequency |
Fig. 3. Binary Tree Forwarding| Fixed: Fixed: Variable, Poisson:
1ms 1, = 4000 An = (2" =1)-f
nel,....8
T0p0|ogy: The sensor network is used to forward Sensing | Variable:| Variable: Fixed, Periodic:
sensor data towards a single bas_e—statlon in the network. It 100ms, | 1o = 400000, | f, =11
is assumed that a tree topology is formed in the network. 75ms, | ls = 300000
To simplify the evaluation process, a binary tree shown 50ms, | Ls = 200000
. . . . e . 10ms, ls = 40000
in Fig.[d is assumed. Dependlng on the_posmom the Smes, 1. = 20000
tree, a sensor nodg might process varying amounts of lms 1. = 4000

packets. Leaf nodes put less demand on the processor.
Nodes closer to the root are more involved in packet
forwarding and these nodes have to multiplex packet
forwarding operations with their sensing operations. The
position in the tree has therefore - besides other param-
eters - a significant impact on the event processing and
energy consumption properties of the node.

Sensing PatternA homogeneous activity in the sensor
field is assumed for the abstract application scenario.
Each sensor gathers data with a fixed frequeficyrhus,
everyt, = 1/f, a sensing task of the duratidp has to
be processed. As mentioned, the duratigns variable
betweenl; = 4000 and [, = 400000 clock cycles
depending on the type of sensing task under considerati
(Which corresponds tams/100ms on a4 M Hz CPU).

Traffic Pattern: Depending on the position of a node
s; in the tree, varying amounts of forwarding tasks have to )
be performed. It is assumed that no time synchronizatiof: Evaluation Platform
among the sensors in the network exist. Thus, even if The DSYS25 [3] is a sensor platform developed as
each sensor produces data with a fixed frequency, dafzart of the D-Systems project at University College Cork
forwarding tasks are not created at fixed points in timeand the Tyndall Institute. The hardware platform is an
The arrival rate\,, of packets at a node at tree-leveis =~ ATMegal28L micro-controller based Lego-like 25mm x
modeled as a Poisson process. As the packet forwardigbmm stackable system. Its modular nature lends itself to
activity is related to the sensing activity in the field, the development of numerous layers for use in different
is given by: application scenarios. Layers can be combined in an inno-

vative plug and play fashion and include communication,
An=(2"=1)- fs (1) processing, sensing and power. The sensor hardware is

This equation is a simplification; queuing effects anddep;fteim FlgEl4.d. 5 . ¢
losses are neglected, but nevertheless provides an a&:curatT e chosen Nordic nRF2401 transceiver performs com-
method to scale the processing performance requiremer}rt']c,umcatlon ta_lsks such as address and C.R.C. computation,
of a sensor network application. It is assumed that thergemgthe m|cro-controlle_r from these activities. Thhet

; : ' . . Micro-controller can be either used for processing other

duration (complexity),, of the packet forwarding task, is tasks or can be sent to an energy saving sleep mode
I, = 4000 clock cycles. This is the effort necessary to '
read a packet from the transceiver, perform routing and o
re-send the packet over the transceiver. This is a commdn: OS Ports and Measurement Facilities
processing time and was obtained analyzing the DSYS25 The goal of the study is a comparison of operating
sensor nodes using the Nordic radio [18]. system concepts. To provide a fair comparison our exper-

Summary: The abstract scenario described above isment hinges on a number of important setup/experimental
used in SectioflV, SectidnVl and Sect[onlVIl to compareparameters.
event processing capabilities, energy consumption and Firstly, conceptual differences rather than functional
memory usage of the two operating systems. For thdifferences between the two operating systems must be
evaluation, a single DSYS25 sensor node is fitted withmeasured. For example the networking stack used in
the operating systems under investigation and the pack&inyOS and MANTIS provide different functionality (e.g
forwarding tasks and sensing tasks are generated sudfMAC protocols, duty cycles ....). Thus, a direct com-
that the nodes activity corresponds to a place in the treparison of the operating systems might be caused by
topology. The parameters defining the abstract applicatiofunctionality unrelated to the operating system. To avoid

Fig. 4. DSYS25 Sensor Hardware

are set for all following experiments according to the
Qalues or ranges listed in Tablk | (Set for thé/Hz
CPU used in the DSYS25 platform).
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TABLE Il

this problem, the operating systems are reduced to their MEMORY USAGE

bare minimum and simple components emulating the

behavior of the aforementioned abstract application arg Operating System] Programmable Flash] Required RAM (B)

implemented. Memory (kB)
Secondly, in measuring the performance of each appli- Jm’%z 131 gg?

cation it is imperative that the performance of the abstra :

application is not hindered. The experiment revolves

around a setup in which tasks are dispatched up untjlits 1o be woken again by the appropriate interrupt.

the end time of the experiment. Performance is evaluated The time from waking a thread until its completion is

as to how timely each task is completed with respecteasyred during the experiments. Thus, an analysis of the

to this clock. However in measuring clock cycles Weeyent-processing capabilities of MANTIS is possible. If

take away processing resources from the tasks and woulgh thread is active, MANTIS activates an idle thread. The

therefore provide imprecise measurements. This overheagie thread is used to implement the power management

is carefully calculated with an additional hardware timercapabilities of the operating system. The idle thread de-

and subtracted from the results. cides which power saving mode has to be activated. Power
TinyOS: In case of TinyOS, the abstract application issaving is terminated when an interrupt occurs. The time

implemented using nesC, the programming language uségbm activating the idle thread until an interrupt occurs

in TinyOS. The packet processing task and the sensing measured. Thus, the power management capabilities of

tasks are initiated by an interrupt. For the experimentMANTIS can be investigated.

the interrupt is not generated by the transceiver or sensor The following Sectiond V[YI[ VIl detail how each

hardware, instead, the interrupt is generated by a timeperformance result was measured and the findings and

The timer intervals are configured by the parametergelevance of these results.

given for the abstract application\(, f,, see Tabldll) .

Within the interrupt routine for the transceiver, a TinyOS V. MEMORY USAGE

task for packet for_wardmg is created and .queued N The memory footprint of the operating system has to be
Fhe task list. The size of the.packet forwarding tdsk g gmal as possible. Additional memory increases the cost
IS set to 400(.) clock cycles (implemented as_as_semblec;f the sensor nodes and the more memory is integrated in
NOOP operations, to ensure cycle accurate timings). "E'he hardware, the more energy is consumed by the system.
the interrupt routine of the sensor, the sensing task iﬁ”| practice, not each reduction of memory requirements
cregted. The sensi_ng .task has t_he size (compleXity) |eads to a cheaper and more energy-efficient system. A
defined by the application scenario. sensor built out of standard components normally uses a
The TinyOS is modified such that essential parameteréhip combining CPU and memory. Whether the system
can be measured during the experiment. The task creatiQxes the available memory or not has little impact on the
time in the interrupt routine is recorded. When a taSkpower consumption of the chip. Thus, improvement can
finishes, the task duration from creation to completion iSonIy be expected if memory (and CPU) requirements can

known. Additionally, idle times of the CPU are recorded. he yeduced to a point where a simpler CPU/memory chip
The time from the completion of the last task to theig gyailable.

occurrence of a new event is measured. The records of
these two parameters - task execution time and syste
idle time - enables us to analyze event processing an i ]
power consumption capabilities of the operating system. !N order to determine operating system memory usage,
MANTIS: The thread-based architecture of the MAN-"/€ US€ the GNU project binary utility avr-size [19]. Avr-
TIS operating system requires a syntactically different'2€ 'S a_flz_a_sh_|mage read_er_ t.he.lt outputs the program size,
implementation of the abstract application. The sensin@nd the initialized and uninitialized memory size.
task and the packet forwarding task are implemented as
MANTIS threads. Again, the interrupts initiating packet B- TinyOS
processing and sensing are generated by a timer, not The TinyOS operating system core consists of an ab-
the hardware. The timer intervals are configured by thesolute minimum of functionality. Simple algorithms such
parameters given for the abstract applicatiap, (fs, see as the FIFO queuing algorithm are used to implement
Tablefl). Following an interrupt, the appropriate intetrup core TinyOS features such as the task scheduler, in order
routine is called. Within the interrupt routine, the neces-to maintain compatibility with very limited processors. A
sary thread for processing is activated. MANTIS allowsstructure is provided to multiplex many timed events with
for a prioritization of threads. The packet processinga single hardware timer (see Sectlad IIl). All additional
thread is configured to have a higher priority than thefunctionality is provided by the application code in the
sensing thread. The size of the packet forwarding threatbrm of a component-based architecture. The TinyOS core
I, is set to 4000 clock cycles The sensing thread has thelements alone do not form a useful system. Thus, it is
size (complexity)ls defined by the application scenario. necessary to analyze the memory usage of the TinyOS
When a thread completes execution, it is set to sleep amaperation system combined with specific application code.

—+

. Measuring memory
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Operating system and application code are compiled int®. Discussion and Findings

a single binary file which is executed on the sensor The initial build of each operating system highlights
node. Depending on the application used, the executabjge huge memory savings gained by using TinyOS in
requires an extremely small memory space. The abstragbmpination with the nesC compiler. By compiling only
application scenario presented in Seclioh IV is used fofhe necessary functionality the nesC compiler can build
the evaluation. extremely optimized binary images. A direct memory
Memory requirements of the OS/Application are fur- comparison between the operating systems is not fair if no
ther reduced by a specialized custom compiler (nesCoptimization is performed for MANTIS. Thus, the MAN-
provided with the TinyOS framework. The nesC compilerT|s operating system was optimized manually for the
exploits the component-based architecture to include onlgxperiment by removing all non-essential functionality.
components required by the application’s wiring schemarhe results are shown in Tabld Il. With this optimiza-
in the compiled program image. The nesC compiletjon, the MANTIS operating system takes nearly a third
can further deduce and remove any unused componegktra programmable memory space the TinyOS operating
functions within the application configuration [20]. A system. Both operating systems statically allocate almost
TinyOS program image therefore contains no prograngqual amounts of RAM, however both applications will
code unrelated to the target application. require more memory to cater for the stack (local/non
The necessary memory space for TinyOS providing thetatic memory). Furthermore the MANTIS scheduler dy-
abstract application functionality is shown in Talile 11.€Th namically allocates a memory pool to store the stack and
programmable flash memory, represents the amount gfrocessor registers for each thread. If there is insufficien
space to store the application code. The RAM field reprememory to store both the threads and stack, then during
sents the amount of statically compiled memory/variableshe course of execution, memory will be corrupted and
required by the application at runtime. Both applicationshe application will fail.
will require more RAM to assign memory space for local The experimental results show that an optimization
variables which are dynamically allocated at run-Ame method, comparable to the nesC features in TinyOS,
would be desirable for the MANTIS operating system.
If a standard Atmel 128 processor is used to realize such
C. MANTIS a system, the applications realized with either operating

MANTIS OS provides more core functionality. The op- SyStem can be accommodated easily in the mendfy
erating system core must provide functionality to handig® More constrained platform is selected, such as the PIC
multiple threads. Furthermore, preemption and context® Micro processor [21], a TinyOS implementation might
switching must be implemented within the operatingP® the only option to realize such a system.
system core. This includes semaphores, timer structures
and memory management. Semaphores must be imple- o ] .
mented to ensure that critical sections of code cannot be Many monitoring tasks in sensor networks require a
used by multiple threads at the same time. A memory€SPONSive network reaction as sensing data has to be
manager must be set up to dynamically assign S-RAMEPOrted in a tlme_ly fashion. If the op_eratlng syste_m
address space during thread initialization. Three differe ©f @ sensor node is not capable of quickly responding
hardware timers are required to implement time-slicing{® €vents, such tlmg—qutlcal _appllcatlons are difficult to
general purpose timers and a sleep timer. As such thb_.und. Furthermore, it is deswabl_e_to_ have sensor nodes
complexity of the MANTIS kernel requires considerable that react to evgnts in a _determlmstlc and constant way.
overhead in code size, memory requirements and proce§_ensor nodes with a pred|ctable and constant performan_ce
sor complexity. An application is implemented as a set off@n be used as building blocks for sensor network appli-
MANTIS threads. Kernel and application are compiledcat'oﬂs tha’g require more deterministic network behawqr_.
into one binary file executed on the CPU. To be able to  ThiS section investigates the event processing capabili-
compare the memory footprint of MANTIS with TinyOs, ties of the TinyOS and MANTIS operating system while
the abstract application scenario is used for evaluation, SUPPOrting the abstract application scenario (see Section

The MANTIS OS framework does not provide any . The aver_age proqessmg time requwgd t(_) handleth_e
tools to optimize memory size at compile time. Thus, it isPacket forwarding task in the abstract application scenari
left to the programmer to decide which operating systerﬁs mvest_lgate_d. AQd!tlonaI.Iy, the standard d.eV|at|othf;t. .
elements should be included in the binary. In practice, it iPTOC€SSIng time is investigated to determine the stability
very difficult to determine which elements are necessar?’ Processing times.
and a tool - comparable to nesC in TinyOS - would be )
very useful. A. TinyOS

The necessary memory space for MANTIS to provide The simple TinyOS scheduler schedules tasks to run
the abstract application functionality is shown in TdRle Il atomically with a FIFO queuing algorithm. Tasks will

VI. EVENT PROCESSING

3The Atmega 128 is capable of supporting 128kB of programenabl
2By dynamic memory, we refer to memory assigned by a stack, noflash memory, and 4096B of Static Random Access Memory(SRAM)
the more common term of heap memory allocation. [15].
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execute atomically with respect to one another, and caand packet forwarding have deterministic time bounds,
only be preempted by an asynchronous event (an evedeadlines regarding packet processing can be met.
spawned from a hardware interrupt). The scheduling al-
ggnthm is very simple, and. it can therefore schedule tgsk&_ Measuring Event Processing Capabilities
with a minimum processing overhead. By scheduling _ _ ]
tasks to run atomically, TinyOS precludes any potential 10 ascertain the operating system responsiveness, ex-
deadlock errors or any potential inter-task race condition Periments with the network model and experiment setup
greatly simplifying the task of programming the appli- shown in Sectio_IV=A are carrled'out. Two tasks, a
cation. However, atomic/non-preemptive task schedule$eNsing task and a packet processing task are executed
can result in non-ideal situations. A long TinyOS taskconcurrently on the same processor. In this model, the
(e.g. a sensing task) is occupying the CPU. Periodiélengthily) sensing task and the packet-processing tas_,k
interrupts occur that signal the arrival of packets. Thefompete for CPU resources on the sensor node. It is
packets are read from the radio in the interrupt routinéssumed that the packet-processing task within the nodes
(interrupting the long TinyOS task) and a TinyOS taskhas priority so that dgadlmes regardmg packet fo'rwardlng
for the packet processing is created to be processed afté@n be met. Thus, in the MANTIS implementation, the
the long TinyOS task. Packet processing is deferred if@cket processing task has a higher priority than the sens-
a non-predictable way and deadlines regarding packéfd task. In the TmyOS_ |mplemen_tat|on, no p_r|or|t|zat|on
processing can be missed. Thus, if an application requird§ implemented as this feature is not provided by the
more precise control of the task execution schedule, th@P€rating system.
existing TinyOS scheduler is not suitable. Task Execution TimeTo characterize processing per-
The task-blocking problem can be tackled with a num-formance of the operating system, the average task execu-
ber of different solutions. The functionality of the high- fion time £; of the packet forwarding task, is measured.
priority tasks can always be programmed into an interrupPUring the experiment/ number of packet processing
handler. However code executed in an interrupt handlefMese; are recorded. To do so, the task start tiegg..
will block all other activity and should therefore be used@nd the task completion time;,, are measured and the
sparingly. A more viable solution would be to segmentPacket processing time is recordedeas: ¢stop — estart.
the long sensing task into a series of sub-tasks, such thit €ase TiNYOS is used.,, is the time when the packet
higher priority TinyOS tasks will not be blocked for the Processing task is completed and is removed from the task
full duration of the long task execution time. However, asduéue. When MANTIS is used,,, is the time when the
described in SectiodfiTV3A the segmentation of processindj’aCket processing thread finishes and is sent into the wait

functions is often not possible or simply not done by theState- In both cases, the start time,,. is recorded in the
interrupt routine when the packet processing is initiated.

programmer. : X -
The average task execution tintg is calculated at the
end of the experiment as:
B. MANTIS
_ _ B = 2 )
In the multi-threaded MANTIS operating system, all ¢ J

processes are defined as individual MANTIS threads | order to investigate how deterministic the packet

which can be preempted at any time during the coursgrgcessing time is, the standard deviation of the average

of execution. MANTIS thread preemption provides agyeacution time is also calculated.

significant scheduling advantage, as all higher priority

tasks can be executed on demand. Thus, it is easier )

to ensure that deadlines of high priority tasks are metP: Evaluation

However, MANTIS thread preemption facilitates extra In the experiment, the average task execution tihe

processing cost, as the MANTIS scheduler must swafs determined for TinyOS and MANTIS supporting the

active/idle threads in addition to managing a memoryabstract application scenario. The average task execution

pool to store the state of inactive threads. These extréime E; is shown in Fig[hb.

costs add to the overall processing time needed to realize Where MANTIS is used, it can be observed that the

the task functionality. In the MANTIS operating system average packet processing time is independent of the

the processor will consume approximately 1200 clocksensing task execution time. Furthermoig, is also

cycles from the time the interrupt occurs until the time thevery independent from the position of the node in

tasks starts executing. The significance of this overheathe tree. Only under heavy load, the average processing

depends on the length of each process and the number fifine slightly increases. This is due to the fact that under

context switches. heavy load packet forwarding tasks have to be queued
A long sensing task, implemented as low priority (see Figlb a)).

MANTIS thread can be interrupted for packet process- Where TinyOS is used, the average processing time

ing. Packets arrive at the radio triggering interrupts. Anfor the packet forwarding task’; depends on the length

interrupt causes a high priority MANTIS thread to be of the sensing; of the sensing task. In addition, under

activated for packet forwarding. As context switch timeheavy load the queuing effects of the packet forwarding
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Fig. 5. Average packet processing timig , scheduled with a sensing task of execution time

tasks also contribute somewhat to the average processingquired. For such an application, the MANTIS operating
time (see Fig[l5 b)). system would generally be more suitable, especially if
The thread prioritization capability of MANTIS is processing intensive sensing tasks have to be supported
clearly visible in the experiment results. Packet proeessi concurrently. However, in the particular case of small
times are independent of the concurrently executed ansensing tasks, TinyOS is the better choice. The same
lower priority sensing task. In TinyOS, sensing and packestability in packet processing time can be achieved while
forwarding task delays are coupled, and the influence opacket processing requires less time. Thus, a higher
the sensing activity on the packet forwarding activity isthroughput can be achieved.
clearly visible. Our findings regarding event processing of event-based
In the case of small sensing tasks with < 5ms,  and multi-threaded sensor network operating systems can
TinyOS outperforms MANTIS. MANTIS has to perform be summarized as follows:
a context switch (either from the idle task or a running , A multi-threaded system is preferred if long (sens-
sensing task) and this overhead adds to the average ing) tasks have to be supported concurrently with the

execution timek;. o packet forwarding tasks.

Fig. @ shows the standard deviation of the packet , ap event-based system is preferred if short (sensing)
forwarding task execution timé&; for a sensing task of tasks have to be supported concurrently with the
lengthl, = 75ms. In the case where MANTIS is used, the packet forwarding tasks.

standard deviation in the task processing time is very IOWWhile these conclusions are not surprising, they neverthe-

The standard deviation is noticed only for a high syste . o .
load. This is caused by packets queuing and waiting rt]less provide quantitative results on which to support the

be processed. If TinyOS is used, a huge variation inch0|ce of operating system.
the processing times is observed. This variation increases

considerably with the size of the sensing task. This is due VIl. ENERGY CONSUMPTION

to the fact that a packet processing task in TinyOS has The lifetime of a sensor network is related to the
to wait for a sensing task to finish. However, for smallenergy consumption of the sensor nodes. Therefore, the

sensing tasks, as shown in Hig. 6, the standard deviatidask of reducing a sensor node’s power consumption is of

of E, is very small. paramount importance. Operating systems for sensor net-
_ . o works achieve low power consumption rates by exploiting
E. Discussion and Findings processor idle times. Available idle time can be used to

It is evident that MANTIS provides better stability put the CPU in an energy-efficient power saving mode.
and predictability of packet processing time than TinyOSDepending on the processor used, different power saving
Additionally, MANTIS decouples the packet processingmodes might be available. The different power saving
time from the sensing time delay. modes vary in the time and energy necessary to enter

However, if small sensing tasks are used, TinyOS isand leave the mode and the power spent in the particular
able to provide a similar stability in the packet processingnode. Thus, to determine the energy efficiency of sensor
times. In fact, in the case of small processing timespetwork operating systems, it is necessary to investigate
TinyOS is capable of processing incoming traffic fasterthe available idle times during system operation.
as there is no operating system overhead in the form of This Section investigates the available idle time in
context switches. TinyOS and MANTIS while supporting the abstract appli-

If a sensor network with a controlled and predictablecation scenario (see SectlonIV-A). First, the ratio betwee
network performance has to be implemented, a deteiidle and active time is determined as this number dictates
ministic packet forwarding behavior of sensor nodes ishow much energy can possibly be saved. Second, the
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Fig. 6. Standard deviation of packet processing tife scheduled with a sensing task of execution time 1ms andls = 75ms.

distribution of idle time periods is analyzed as the lengtiTHREAD_STATE_IDLE will become active very soon
and variation of available idle periods determines whichand no long idle period can be expected. The idle mode

power saving mode can be used by the processor. can be activated without a transition phase but is not
very energy-efficient. The sleep mode has a transition
A. TinyOS phase before the actual power saving starts. This simple

i . . licy helps t timi ti
TinyOS executes all pending tasks sequentially (Sego icy helps to optimize power consumption and depends

. . . i ery much on the type and specification of the CPU
Sect|onm]). A processing .task Is_only mtgrrupted by used. However, a better policy might be available if, for
hardware interrupts which in turn process interrupt Ser'example application layer knowledge is used to predict
vice routines. Thus, the TinyOS operating system spenqale time's.
almost all processing activity in the execution of the
application functionality. Little processing effort is et
on operating system related functionality. C. Measuring Power Efficiency

As soon as the task queue is emptied an_d no events To measure the power efficiency of each operating
have to be processed, the TOSH_sleep() routine is called, o L .
tem, we use the abstract application scenario in Section

In this routine it can be decided how the CPU shoul ys : ;
to evaluate each operating system under varying

spend the available idle time. More specifically, it ca . 2
be decided which power saving mode will be used. Heréjegrees of duress. Both operating system applications

o . . : . Must process a sensing task and a number of packet
Itis theoreucglly poss_lble to use an algorithm to IOer'thorwarding tasks. The frequency of packet forwarding
hOV\.' long the idle pepod will be and to 5?'60‘ thg POWET, sk increases progressively as the position of the sensor
saving mode accordingly. Such an algorithm might takenode reaches the root of the network topology, i.e. the
application layer knowledge into consideration. However,hurnber of child nodes increase T

the current implementation of TinyOS only considers the In evaluating power efficiency. the aforementioned op-

simplest available power saving mode and optimization . o e
. . erating system specific power management policies are
options are not exploited.

ignored (In fact, only MANTIS currently implements
such a policy). This study investigates the available idle
B. MANTIS times for power management purposes, not the different
The drawback of a multi-threaded operating systempower management policies available. An efficient power
is that a considerable part of the CPU processing time ig1anagement policy must be tailored to the particular
needed for the organization of the system itself. A contex€PU used and can take application layer information into
switch between different threads requires the operatingccount. However, the results presented can be used to
system to save the context information. This operatinglesign appropriate power management strategies.
system overhead can not be spent for power efficient Idle time: The first parameter measured is the per-
sleep times. The question is how much overhead has toentage idle time. The percentage idle time indicates
be allocated for the operating system itself. how power efficient the system can be. The longer the
If no MANTIS threads are scheduled for executionidle time the more energy-efficient the system. In the
and no events have to be processed, the system esxperiment, the abstract application scenario is executed
ecutes a so-called idle-task. The function of the idle-by the sensor node running TinyOS or MANTIS. The
task is to determine which power saving mode shouldluration of the experimerit’ and the duratiori;, of &
be activated. For this decision, the idle-task uses threaidle time periods during the experiment is recorded
state information. If all threads are waiting for a servicedefined asi = isiop — 9start - IN Case of TiINYOSj s are
to respond, i.e the radio to return an acknowledgmenis the point in time when to TOSH_sleep() is called. In
message, then it is in a THREAD_STATE_IDLE and thecase of MANTIS, i, is defined as the point in time
idle-task will activate a CPU idle mode as soon as allwhen the idle-task begins executiap,,, is for TinyOS
threads finish processing. If however, all threads are imnd MANTIS the point in time when the system resumes
a THREAD_STATE_SLEEP then there are no threadsoperation by processing an interrupt. All idle periogs
waiting on a service to complete, and the CPU will enterare summarized and the percentage idle time,the
a sleep mode once all threads finish processing. Thipercent of experimenttime, in which the processor is idle,
simple policy is used as it is assumed that a thread invhich is calculated as follows:
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) the sensing task, the more likely it is that a sensing task
I, = 2k 100 (3) is running when a packet arrives.
T As expected, MANTIS proves to be less energy-
The percentage idle time is compared with the theefficient than TinyOS. However, in the case of low system
oretical maximal percentage idle timé;***. I;*** is  activity both systems have roughly the same energy
calculated by taking only application processing of theefficiency. For example for a leaf node with= 1 and
abstract application scenario into account. Thif§* a sensing task with the size &f = 1ms TinyOS is only
represents the percent of running time the processor woulg.09% more energy-efficient than MANTIS. In the worst
be idle for an ideal operating system which would have n@ase, for a node at positiom = 8 and a sensing task
operating system processing overhegd** depends on with the size ofl, = 1ms TinyOS is 7.6% more energy-
the task sizeg, and/, of sensing and packet forwarding efficient.
task, the frequency of the sensing tgékthe CPU speed  |f TinyOS is used, the length of the sensing task has
sepu @nd the positiom of the node in the abstract appli- Jittle impact on the idle time measured. This is due to the
cation scenariol;"** is calculated using Equatioll(1): low operating system overhead introduced by TinyOS. As
previously mentioned, TinyOS spends nearly all available
CPU time for application processing, not for operatin
s+ (27 = 1))) -100 - (4) system related tgrs)ks. P ) P ’
The theoretical maximum available idle tinfg*** and
the measured idle time for TinyOS and MANTIS with a
long sensing task of;, = 75ms is shown in Fig[B a).
Y max In Fig.[d b), the resulting operating system overhéad
Iy = L™ — L ) is shown. As we can see, MANTIS has an increasing
Idle Periods: The second parameter of interest is theoverhead with the increasing activity of the system. The
average length of the idle periods. This parameter TinyOS operating system overhead on the other hand is
shows which sleep modes a CPU could use. Long continot very dependent on the load of the system.
uous idle periods allow for deep sleep modes. Again, it Fig.[ shows the average length of the idle peridgs
is necessary to record the duratignof all K idle time  and the standard deviation &f for a short sensing task
periods during the experiment. The average length of thwith the lengthl; = 1ms. MANTIS has slightly shorter

[s

Scpu

I]zn,a;c — (1 _

The operating system overhedfl is calculated using
Equation [B) and Equatiofl(4):

idle period7, is calculated as: idle periods as it has a higher operating system overhead.
' Despite this difference, both operating systems achieve

I — >k (6) Ver similar sleeping periods. Also, the standard dewviatio

b k in the idle period length is not very different. Thus, both

The standard deviation of the idle period length is alscoperating systems can make use of available power modes
calculated to determine the stability of the idle periodin the same way. As shown, the thread-based MANTIS

lengths. operating system does not fragment unnecessarily the
available idle times. This effect however might be present
D. Evaluation in other thread-based operating system where a periodic

. . . . context switch to a kernel-thread is performed.
In the first experiment, the percentage idle time P

is determined for TinyOS and MANTIS supporting the ) ) o
abstract application scenario. The idle tifieis shown E. Discussion and Findings
in Fig.[. It can be confirmed that the multi-threaded MANTIS
The time spent in idle mode drops for both operatingis not as power efficient as the event-based TinyOS
systems exponentially with the increasing node positioroperating system. However, the difference between both
in the tree described by the parameterThis behavior operating systems under specific conditions is not very
is expected as the number of packet tasks increasésg. If the system is not loaded (leaf node with= 1
accordingly (See Equatioill(1)). Less obvious is the facand a sensing task with the sizelgf= 1ms) a difference
that the available idle time drops faster in MANTIS thanof only 0.09% in idle time is measured. Still, even if the
in TinyOS. The fast drop in idle time is caused by thesystem is in a heavy load situation (leaf node with- 8
context switches in the MANTIS operating system. Theand a sensing task with the size f = 75ms) only a
more packet forwarding tasks are created, the more likely.05% difference in the idle time is encountered. Thus, if
it is that a sensing task is currently running when a packean application is implemented where sensors are inactive
interrupt occurs. Subsequently, a context switch to thdor long periods and suddenly an event is detected that
higher prioritized forwarding task is needed. leads to an activity increase in the sensor field MANTIS is
When MANTIS is used, the length of the sensing taskcomparable to TinyOS in power efficiency. Additionally,
has a significant impact on the idle time. If TinyOS is as detailed in Sectioi-VI, MANTIS would be able to
used, the length of the sensing task does not influendeandle such bursty activity in a more deterministic way.
idle time that strongly. Again, the difference is down to The experiments also show that the idle-times are not
the necessary context switches in MANTIS. The longemore fragmented in MANTIS than in TinyOS. Thus, the
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common argument that a multi-threaded operating systemperformance parameters memory usage, event processing
leads to high fragmentation of sleep times is proverand energy usage into account. Based on the presented
wrong in the case of the MANTIS operating system. Bothstudy we conclude that an event driven operating system
operating system types are able to exploit the same energgy often, but certainly not always the best choice. Classic
saving modes provided by the hardware. thread-based operating systems are of use for many sensor
Our findings regarding power efficiency of event-basechetwork application scenarios.
and multi-threaded sensor network operating systems can
be summarized as follows:
. . A. Results
« The processing overhead resulting from a more com-
plex threaded scheduler reduces the amount of time Memory Usagelf memory efficiency is a primary goal
that a sensor node can sleep. The reduction depen@$ the target application then TinyOS would be the better
heavily on the system activity. operating system. In the experiment, the application sce-
« A multi-threaded scheduler has little impact on hownario was compiled to a binary image 4kB less in TinyOS
fragmented a sleep schedule is. All energy savinghan MANTIS. While these memory requirements will
modes provided by hardware can be accessed. have no impact on processors such as the Atmega 128, if
the application is to be compiled for a more cost effective
VIIl. CONCLUSION but less capable processor such as the PIC16 [22] then

Most sensor network application scenarios used toda§nly TinyOS could be used. While both operating systems
are built using event-driven operating systems. The vadtin @ Vvery light-weight scheduler, the TinyOS scheduler
majority of these deployments use the event driven (ant§ Smaller in code size as it does not provide a thread
well established) operating system TinyOS. HoweverSWitching capability.
alternative operating system concepts such as the clas- Event ProcessingThe processing time of packet for-
sical thread-based system exist. A well known eXamp|é{var_ding tasks in the absftract application_ scenario depends
of a multi-threaded operating system is MANTIS. We Mainly on the complexity of the sensing task, not on
believe a study, as presented in this paper, is needed pstwork activity. This dependency can be summarized as:
decide objectively which operating system type should « If the sensing task is small (e.f}. = 1ms, n = 1),
be used for a particular application scenario. This de- MANTIS has an17.15% longer average packet for-
cision is currently made on mainly subjective grounds warding task execution time than TinyOS. MANTIS
for event driven systems and TinyOS. We believe this  and TinyOS have variation in the task execution time
paper presents the first objective comparison between inthe same order (Variation MANTI8us, Variation
both main operating system concepts, taking the important ~ TinyOS 454 us).
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« If the sensing task is large (e.. = 75ms, n = 1)  resulting from the non-preemptive scheduler, could lead
TinyOS has ar204% longer average packet forward- to a congested network. This in turn would consume
ing task execution time than MANTIS. TinyOS has a probably more energy retransmitting lost packets.
much higher variation in the task execution time than
TinyOS (Variation MANTIS34us, Variation TinyOS
58ms). B. Application Scenarios

As a consequence, TinyOS is the preferred operating |t was shown in SectiodS]\_VI_MII that neither operat-
system in the case where no long sensing task has t0 By system would be optimal for all application scenarios
supported (Or in case the sensing task can be divided igs poth operating systems target different performance
small sub-tasks). In case long sensing tasks are executgghjectives. In TinyOS for example, a key design metric is
MANTIS would be the preferred system to achieve agocysed on compiling small application images, however
deterministic and fast packet processing. Ultimately, thgpe light-weight multi-threaded kernel in MANTIS is

application requirements for the message forwarding peigesigned to provide predictable performance for more
formance of the network dictate which operating systenprocessing intensive applications.

can be used. _ o . To measure the operating system performance for a
_ TinyOS has a high variation in the packet forwardingange of applications scenarios, the experiment evaluatio
times as a pending packet task has to wait for a sensingseq 5 range of sensing tasks sizes. These tasks times
task to finish. Especially when long sensing tasks argere chosen to model a spectrum of sensor network
present, this delay is visible in the variation of the 5ppications. Examples of such task times can be found
forwarding times. _ in literature, for example encryption algorithms such as
Energy Usage:The energy usage of nodes in the ab-TjnySec can take up tams to encrypt a byte of data
stract application scenario depends mainly on the networtgw]_ A structural monitoring application presented in]23
activity, not on the complexity of the sensing task. This;gas a wavelet decomposition algorithm that takes.s
dependency can be summarized as: to compress vibration data readings, before transmitting
o If there is low network activity ¢ = 1, Is = data over the network. It can be concluded from our
Ims), TinyOS has ar0.09% longer idle time than experiment that TinyOS would provide a more efficient
MANTIS. Thus, TinyOS is more power efficient. scheduler for processing these applications. Such small
The fragment size of idle periods is of the sametask times achieve a better average response time and also
order for both operating systems (Idle Time Lengthmore predictable response time in TinyOS due to the low
for TinyOS is499ms and Idle time for MANTIS is  processing overhead of the scheduler.
490ms). Image processing algorithms used in target tracking
« If there is low network activity § = 8, I, = 1ms),  applications would be represented by the larger sensing
TinyOS has art% longer idle time than MANTIS. tasks in the application scenario. Image processing al-
Thus, TinyOS is more power efficient. The fragmentgorithms are very processing intensive and difficult to
size of idle periods is in the same order for bothrealize on a sensor network. In [16] an object detection
operating systems (ldle Time Length for TinyOS is algorithm is used that can take up2é0ms on a 128x128
3.8ms and Idle Time for MANTIS iS3.9T)’LS). pXx image,GO_Sms on a 64 x 46 image and6ms on
As a consequence, TinyOS is the preferred in all operating 32 x 32 pixel image. Scheduling a processing task
conditions as it is more power efficient. The MANTIS of this magnitude in a non-preemptive scheduler such
operating system is not far behind in terms of poweras in TinyOS can provide very ineffective schedules.
efficiency, especially if a low network activity is present. We see from SectioRVIID that high priority tasks such
The more responsive MANTIS is not as power efficientas a packet forwarding task can take a furthers to
as the necessary context switches reduce the available idheocess when scheduled with7ams Sensing task. An
time. Especially when a large amount of network trafficobvious solution is to try and segment the sensing task,
is present, the context-switch overhead is prominent. so that the high-priority task does not get delayed by
Summary: The difference in memory usage of the the full duration of the sensing task. However in [16],
two operating systems is a (nearly) static parameter anthe authors maintain that “Image processing operations
does not depend on the particular application scenariare typically long-running and not suitable for sequen-
supported. In most cases, this small difference wouldial decomposition”. In that paper, the authors realized
not be the deciding factor in choosing one of the op-their application on the TinyOS operating system with a
erating systems. If a deterministic behavior regardingledicated ASP (application specific processor). The ASP
packet forwarding times is required, AND a complicatedprocessed all image algorithms to alleviate the CPU of
sensing task is carried out at the same time, MANTISall long sensing tasks and facilitate responsive procgssin
would be the better choice. This has to be paid withof high-priority tasks. Adding an extra processor for all
an additional energy consumption, but in some cases image processing sensor networks, considerably increases
deterministic network behavior would be preferred over ahe cost of the sensor node platform. It might therefore
low energy consumption. If a TinyOS application requireshave been more feasible to implement such algorithms
a long sensing task, the poor packet processing timesith a multi-threaded operating system such as MANTIS.
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C. Further Study

Both operating systems leave room for further study.

Our work described in [24] shows how preemptive
scheduling capabilities can be added to TinyOS in order to
tackle the performance problems described in Seéfidn Vlﬁg
The established event driven processing concepts can
be retained while adding preemption through context
switching. Established TinyOS programming conventions
can be used which ensures that existing application code7)
can be re-used. Preemption features can be integrated
seamlessly in existing TinyOS infrastructures.

Our work described in [25] shows how overheads]isg]
due to context switching can be significantly reduced
within the MANTIS operating system. Thus, the problemsgg
described SectiopMIl can be diminished. The overhead
can be reduced to such an extent that in usual sensor

[13]
(14]
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L. Barello, “Avrx real time kernel.” http://barellog¥/avrx/, 2006.
S. Li, R. Sutton, and J. Rabaey, “Low power operatingtays
for heterogeneous wireless communication systemsfankshop
on Compilers and Operating Systems for Low Pqwsgr. 1-16,
September 2001.

] Atmel Corporation Atmegal28 Datasheetev n ed., March 2006.
] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Waryibr Estrin,

and M. Srivastava., “Cyclops: In situ image sensing andrimée
tation in wireless sensor networks,” In proc. 3¢ international
conference on Embedded Networked Sensor Systpms192—
204, November 2005.

C. Karlof, N. Sastry, and D. Wagner, “TinySec: A link ky
security architecture for wireless sensor networks,2i¥ ACM
Conference on Embedded Networked Sensor Sygieni262—-175,
November 2004.

Nordic SemiconductorDatasheet NRF24Q1rev 1.1 ed., June
2004.

] “The gnu project, http://www.gnu.org/,” 2006.
] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
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network application scenarios the modified MANTIS has

a similar overall performance to TinyOS.
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