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Abstract

The future of wireless networking is envisioned as an

integrated system of wireless radio access technologies

with heterogeneous features. This heterogeneity combined

with the characteristic diversity of provided services cre-

ate promising opportunities for improving the utility of both

operators and users. In this paper, we investigate the op-

portunity to reduce the average cost of streaming sessions

by benefiting from the system embedded heterogeneity and

streaming application buffering capability. First, we ana-

lyze the optimal streaming strategy for a theoretical infinite

session. Based on this analysis, we propose pseudo-optimal

and greedy-optimal adaptive media streaming algorithms

for heterogeneous wireless networks. The performance of

these algorithms is compared to a naive greedy streaming

approach using NS2 simulations. The results show that the

greedy-optimal algorithm reduces the average session cost

down to 73.9% of the average cost incurred on using greedy

algorithm. This cost saving is realized at an insignificant

increase in signaling load and session blocking probabil-

ity. Hence, we strongly recommend the developed greedy-

optimal algorithm for media streaming in next-generation

heterogeneous wireless networks.

1. Introduction

The mobile industry has witnessed a dramatic techno-

logical evolution over the past fifteen years. Currently, 3G

technologies, such as UMTS and CDMA2000, enable uni-

versal digital packet-switched voice and data services. In

parallel, disruptive access technologies, such as HiperMan,

WiMAX, WiFi, and HiperLan, support cheaper and higher

data rate service within their limited coverage. Hence,

the integration of these technologies is foreseen as a pos-

This research was made possible thanks to the Science Foundation of

Ireland.

sible approach to provide high data rate services to users

in densely populated areas, where short-range technologies

are becoming increasingly pervasive [1]. Additionally, this

integration is strongly propelled by the interest in introduc-

ing new services such as gaming, conferencing, and me-

dia streaming. This combination of applications and access

technologies boost the system characteristic diversity creat-

ing a real heterogeneous system.

The embedded system heterogeneity creates promising

opportunities for both network operators and system users

to improve their utility. For example, the users can benefit

from the cost diversity in different networks to reduce their

bills. For In [2], Liang et al. employ proactive document

prefetching in cheap networks using a probabilistic frame-

work. This excessive interest in cheaper networks com-

bined with the interest in supporting QoS requirements of

real-time applications in these networks represent the main

drives for adopting more advanced pricing schemes. In [3],

Badia et. al. propose a rate-dependent pricing scheme for

WLANs to support voice over IP QoS requirements. In this

work, we investigate real-time media streaming in heteroge-

neous settings considering rate-dependent pricing schemes.

Streaming applications have a special buffering capabil-

ity by which the application can save future parts of the

stream to be played-out later. Combining this buffering ca-

pability with the cost and resource variation of wireless ac-

cess technologies in integrated systems, one can clearly an-

ticipate a possible opportunity for cost savings by buffering

the stream in cheaper resource-rich intermittent technolo-

gies, e.g. WLANs in a 3G-WLAN integrated system. In

this paper, we launch a new initiative toward investigating

the optimal cost streaming strategy in heterogeneous sys-

tems. We propose new heuristic rate control algorithms for

streaming applications in heterogeneous networks based on

the optimal streaming policy of a theoretical infinite session.

The proposed algorithms, especially the greedy-optimal al-

gorithm, have shown noticeable savings in the average ses-

sion cost in comparison to a natural naive greedy stream-

ing strategy. Using NS2 simulations, we show that this cost
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savings are realized at the expense of insignificant signaling

and session blocking probabilities.

The rest of this paper is organized as follows. Section 2

presents important background and related work. The sys-

tem model, problem statement, and the optimal streaming

strategy guidelines are developed in Section 3. We then

present the proposed media streaming algorithms for het-

erogeneous wireless networks in Section 4 followed by their

performance evaluation in Section 5. Finally we conclude

and present future research work directions in Section 6.

2. Background and Related Work

Audio and video streaming popularity is significantly

growing in both wired and wireless domains. Many tech-

niques at different system levels have been proposed in the

literature [4] to improve the user streaming experience. Ini-

tial playout latency has been proposed in order to avoid

playout interruption due to transmission errors. Adaptive

media playout is also proposed to decrease initial latency

and compete transmission delay jitter [5]. Layered video

compression is another technique that enables the user to

have different levels of stream quality of service (QoS).

Last but not least, rate control enables changing the stream-

ing rate according to the available system resources. Note

that rate control can be source-based, receiver-based, or hy-

brid [4].

Few papers have addressed media streaming in hetero-

geneous systems. Many of these papers [6, 7] focus on im-

proving the session quality through adjusting the streaming

rate according to the available network resources. In [8],

using an experimental testbed, the authors demonstrate the

possibility of performing seamless policy-triggered vertical

handoff (VHO) using Mobile IPv4 while running video ses-

sions. These papers mainly focus on benefiting from band-

width variations during VHOs ignoring other aspects of sys-

tem characteristic diversity. On contrary, we additionally

consider cost changes that naturally accompany VHOs.

In this work, we investigate possible average session cost

reduction approaches as a novel research issue in hetero-

geneous wireless systems. The cost reduction is feasible

by controlling the streaming speed to buffer data in the

cheaper intermittent network and minimize the utilization

of the expensive one. Practically, stream rate control can

be performed using real-time streaming protocol (RTSP)

[9]. Additionally, proactive VHO algorithms, e.g. [10],

combined with the media independent handover framework

IEEE 802.21 [11] are strongly recommended for efficient

stream control framework. Using this framework, the appli-

cation can track the received signal strength of the current

base station to predict the network transition instant. Hence,

most of the stream control signaling is transmitted over the

cheap network to reduce signaling cost.

3. Problem Statement and Solution approach

In this section, we present the theoretical basis for our

proposed algorithms. We first present the system model fol-

lowed by the original problem formulation. We then present

an optimization framework for a theoretical infinite session

whose solution is used to establish the main guidelines for

our proposed heuristic algorithms.

3.1. System Model

In our model, we assume a two-tier integrated wireless

system composed of networks Nx for x ∈ {u, i}, where u

and i correspond to the technologies that provide universal

and intermittent coverage respectively. Each network has

a non-decreasing rate-dependent cost profile [3], denoted

as χx(rx) where rx represents the data service rate in net-

work Nx. Typically, rx is non-negative and upper-bounded

by a maximum service rate of rxmax in network Nx, i.e.

rx ∈ [0, rxmax]. Note that the design of the network cost

profiles in heterogeneous integrated systems is a non-trivial

task because the cost plays a role in inter-network handoff

decision.

Figure 1 shows a typical scenario for a streaming session

in a two-tier heterogeneous system. Generally, we assume

that the session duration follows a generic heavy tailed dis-

tribution [12]. Clearly, during the session lifetime, the user

encounters different events including session start, techno-

logical transitions, and session end as it traverses dual and

single coverage zones at ti’s. The durations spent by the

user in different coverage combinations τi are assumed to

have generic phase-type (PH) distributions. Note that τi

represents the residual time distribution of τi. To this end,

it is worth noting that the parameters of these distributions

can be estimated using the user mobility information that

are collected on the run using similar framework to that

proposed in [13] for mobility modeling in heterogeneous

systems. At the aforementioned instants, the streaming ap-

plication buffer status, denoted as xk, is governed by the

following differential equation

xk+1 = xk + (rx − ro)(tk+1 − tk) , (1)

where ro represents the average play-out data rate. That is

to say that the buffer status at any instant equals the buffered

information at the previous instant in addition to the differ-

ence between the downloaded and consumed data.

3.2. Original Problem

Based on this model, our goal is to find the optimal

streaming policy in each network that minimizes the aver-

age session cost Jav . In this context, the average session
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Figure 1. Streaming Session

cost is expressed as

Jav = E

[

J

T

]

= E

[∑n

i=0
Ji

∑n

i=0
τi

]

, (2)

where J represents the total session cost and Ji represents

the session cost during the time interval [ti+1, ti), i.e. τi. To

this end, it is worth noting that there are practical bounds on

the streaming rate in each stage. These bounds are an upper

bound, rimax determined by the network as the maximum

average download rate per user and a lower bound rimin de-

termined to satisfy the play-out quality by maintaining the

buffer level above a pre-specified initial play-out latency, ρ.

Our objective is to determine the optimal streaming pol-

icy that minimizes (2) such that the aforementioned con-

straints are satisfied. To this end, the presented problem

fits sequential decision stochastic programming, whose so-

lution is based on computationally expensive scenario gen-

eration techniques. Clearly, mobile devices with their lim-

ited processing capacities are not capable of handling these

computations within the required VHO delay. Hence, in

the following analysis, we simplify the original problem as-

suming infinite session duration, i.e. T → ∞ or n → ∞,

seeking intuitions to develop a heuristic solution for the op-

timal streaming policy. This approach is mainly propelled

by the interest in reducing the average cost of long sessions

for which cost saving benefits are viable.

3.3. Theoretical Session

Under the infinite session duration assumption, the pro-

cess turns to be a delayed Markov regenerative process [14]

in which transition instants to a specific network Ni rep-

resent regenerative epochs at which the process satisfies

Markov property. In [14, Theorem 7.6-7], it is shown that

under bounded cost assumption, there exist a stationary pol-

icy π∗

s that minimizes the average cost. Additionally, it is

also shown [14, Theorem 7.5] that the average session cost

given a specific initial state x for any stationary policy πs is

expressed as

Jav =
EπS

[Jτ |x]

Eπs
[τ |x]

, (3)

where Jτ represents the total cost incurred during a regen-

erative cycle duration τ . That is to say that the optimal av-

erage session cost estimated over the entire session duration

under a specific stationary policy equals the optimal average

session cost estimated over one regenerative cycle using the

same policy. Hence, our objective is to determine a station-

ary policy π∗

s that minimizes eq. (3).

In a two-tier integrated system, each cycle composes of

two stages spent in unique and dual coverage zones. Hence,

the denominator of eq. (3) equals the expected value of the

sum of the unique and dual coverage zone residence times.

Clearly, this value only depends on the user mobility pa-

rameters. Hence, the expected regenerative cycle duration

represents the expected value of the sum of two PH distribu-

tions. According to properties of PH-type distributions [15],

this sum is also a well-defined PH distribution. The math

details of this operation is omitted here due to page limits.

However, interested readers are referred to [15]. To sum up,

minimizing the average session cost implies minimizing the

numerator of eq. (3).

Generally, the numerator of (3) can be expressed as

Eπs
[Jτ |x] = E[Jτ |x]

= µdχd(rd) + µuχu(ru)

=
∑

i=d,u

µiχi(ri) ,

where µi represents the mean zone residence time in Ni.

Generally, this problem fits the constrained dynamic pro-

gramming framework [16]. However, this type of problems

is usually associated with overwhelming computations that

may not fit the real-time decision requirement in the con-

sidered problem. Nevertheless, we benefit from the prob-

lem characteristics, specifically the non-decreasing nature

of the cost functions χi(ri), by solving the unconstrained

version of the problem and then tune the solution of the un-

constrained problem version to fit the original problem con-

straints. This tuning is simply done by setting the estimated

streaming rate to the nearest feasible value if it falls outside

the acceptable solution domain. Consequently, the prob-

lem degenerates to the basic dynamic programming prob-

lem [16]

min
ri

∑

i=d,u

µiχi(ri) .
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Following the dynamic programming solution frame-

work, the problem is solved sequentially backward consid-

ering one stage each step. Due to the monotonic nature of

the cost profile, the minimization of the last stage implies

streaming at the minimum possible rate, i.e. stop stream-

ing that consequently results in zero cost. However, stop-

ping streaming may lead the buffered content to drop be-

low ρ and consequently contradicts with the QoS constraint.

Hence, the rate choice at this stage is mainly determined by

the lower bound constraint. That is to say

xdu + (ru − ro)µu ≥ ρ ,

where xdu represents the expected buffer level at the net-

work transition. Hence, the practical minimum streaming

policy for the last stage is

ru = ro +
ρ − xdu

µu

. (4)

Proceeding to the next stage, we need to estimate rd that

min
rd

µdχd(rd) + µsχs(ro +
ρ − xdu

µu

) . (5)

For purpose of illustration, we assume that χd(rd) = bdrd

and χu(ru) = aur2
u + buru in which au, bu, and bd can

be tuned to fit different cost profiles. Substituting in (5),

differentiating w.r.t rd and equating with zero, the optimal

streaming policy in the dual coverage zone can be expressed

as

rd =
1

µd

(

bu − bd

2au

+ (ρ − x0) + ro(µd + µu)

)

. (6)

Consequently, the streaming rate in the unique coverage

stage can be expressed as

ru =
bd − bu

2au

.

To this end, it worth noting that the selected rate should

also satisfy the non-negativity nature of the streaming rates.

For example, if bd < bu, the streaming rates degenerate to

ru = 0 and rd = 1

µd
((ρ − x0) + ro(µd + µu)). Clearly,

(4) and (6) define the optimal streaming strategy for an infi-

nite session. This strategy has two main components

• In the dual coverage, the developed policy suggests

buffering sufficient data to minimize the usage of the

expensive resources during this cycle.

• In the unique coverage, the application should stream

at a rate that satisfy the QoS condition by the end of

the expected residence time.

4. Streaming Algorithms

In this section, we present possible streaming strategies

in next-generation heterogeneous wireless networks. First,

we introduce a greedy media streaming (GMS) algorithm as

a natural behaviour for the users in the heterogeneous set-

tings. We then propose the pseudo-optimal media streaming

(POMS) and greedy-optimal media streaming (GOMS) al-

gorithms following the aforementioned optimal streaming

guidelines. The main difference between both algorithms is

that GOMS applies the same optimal framework in a greedy

fashion.

4.1. GMS Algorithm

The main idea of GMS algorithm is to take an advantage

of the cheap network by streaming at the maximum possible

rate whenever this network is visited. In the expensive net-

work, the application stops the streaming process provided

that the buffered data is more than ρ. If ρ is crossed, GMS

starts to stream at the nominal rate; i.e. ro. Note that if the

application is started in the expensive network, it streams at

the stream average rate; otherwise, it streams at the cheap

network maximum service rate.

4.2. POMS Algorithm

POMS algorithm follows the guidelines presented in

Section 3.3. Hence, the application sets the streaming rate

on switching to the expensive network, rpo
u , to

rpo
u = min

(

rumax, max

(

0, ro +
ρ − xdu

µu

))

. (7)

In (7), the max and min functions are introduced to satisfy

the non-negative rate and maximum streaming rate condi-

tions. If the buffered data drops below ρ, the application

requests streaming at the stream average rate; i.e. ro. This

situation occurs when the reduced streaming rate estimated

by (7) and the buffered data are insufficient to satisfy the ap-

plication consumption during its residence in the expensive

network.

On moving to the cheaper intermittent network, the ap-

plication sets the streaming rate to the value that enables

buffering the expected data consumption in the expensive

network. Hence, the application sets the streaming rate to

r
po
d = min

(

rdmax, max

(

0,
(ρ − xud) + ro(µd + µu)

µd

))

,

(8)

where xud represents the buffer status when the user moves

from the unique to dual coverage. Similar to the unique

coverage case, the application requests rate adjustment to
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Table 1. Simulation Parameters
Param. Value Param. Value Param. Value

rdmax 2MBps rumax 50 KBps ro 25 KBps

au 3.2e-9 bu 0 bd 70e.6

µT 22min θT 1.11 ρ 6 sec

the average rate if the streaming rate drops below a super

buffering threshold, denoted as ρ. It is worth noting that ρ is

chosen to ensure that the buffered stream is at least the ex-

pected application consumption in the expensive network.

Hence, ρ can be expressed as

ρ = ρ + µu .

This rate adjustment rule is introduced to avoid the buffer

depletion below the designated buffered data amount deter-

mined by the optimal streaming guidelines.

The aforementioned rules define POMS behaviour on

network switching and buffer depletion. In case of session

start, POMS sets the initial streaming rate to ro if the ses-

sion starts in the expensive network. On the other hand, if

the session starts in the cheaper intermittent access technol-

ogy, the application streams according to (8) after replacing

µd with µd, which represents the mean of the dual coverage

residual time. To this end, it is worth pointing out that des-

ignated streaming rates under this policy implicitly adapts

to the user mobility variation through the mean values of

the unique and dual coverage zone residence times.

4.3. GOMS Algorithm

GOMS algorithm applies the same streaming rules of

POMS in a greedy fashion. That is to say on moving into the

cheaper intermittent network, GOMS sets the streaming rate

to the network maximum service rate until it crosses ρ be-

yond which the application streams at the average streaming

rate ro. The key idea behind the greedy-optimal algorithm

is to enforce the optimal streaming policy guidelines. Note

that POMS may not have enough time to buffer the amount

suggested by the optimal policy guidelines especially with

the well-known high variability in mobility pattern statis-

tics.

5. Numerical Results

In order to asses the performance of the proposed algo-

rithms, we simulate a 3G-WLAN integrated system using

NS-2 [17]. Table 1 shows the default values of the system

parameters. We adopt zone residence time model [13, 18]

for mobility simulations. The parameters of the proposed

cost profiles provide cost incentive for the users to persist

on using the 3G technology for low data rate applications.
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The chosen maximum network service rates represent pos-

sible rate allocation strategy of CDMA2000 and 802.11g.

The session has a hyper-exponential distribution with mean

µT and coefficient of variation θT . In the following fig-

ures, we compare the performance of the GMS, POMS,

and GOMS algorithms for different mobility patterns that

scans the complete mobility spectrum from random walk-

ers to fluid-flow travellers. In the figures, 0 and 1 on the

abscissa correspond to random-walk and fluid flow respec-

tively. Additionally, each point represents the mean of 1000
sessions with its corresponding 95% confidence interval.

Figure 2 plots the average session cost versus different

mobility patterns. Clearly, the optimized streaming algo-

rithms reduce the average session cost for the complete mo-

bility spectrum. More importantly, the optimal policy en-

forcement in GOMS significantly reduces the average ses-

sion cost. Hence, we highly recommend the optimized al-

gorithms to the natural naive GMS policy. The decreas-

ing trend in the session cost as the pattern changes from

random-walk to fluid flow mobility is a natural consequence

to the corresponding drop in the variability of the residence

times and the increase in the frequency of dual coverage vis-

its as the mobility becomes less random, i.e. toward fluid-

flow mobility.

Figure 3 plots the executed VHO versus the mobility pat-

terns for the presented algorithms. In this context, executed

VHO corresponds to a situation in which an active appli-

cation requests resource allocation during session activity

when it moves to a new network. Note that the applica-

tion may not request any resource allocation as it moves to

the expensive network when it has buffered data. Clearly,

the figure shows a natural increasing trend in the VHO rate

as the user mobility pattern changes from random walk to
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domness

fluid flow due to the frequency increase of zone transitions

toward fluid-flow. Additionally, the figure shows that the

greedy algorithm results in the lowest VHO rate in both

networks due to the same reasons mentioned for GMS re-

duced HHO rate. The figure also shows a noticeable differ-

ence between the VHO rate in the 3G network for GOMS in

comparison to POMS. This difference is interpreted by the

success of the greedy behaviour in buffering sufficient data

and consequently, the application rarely performs VHOs to

the 3G network. In contrast, POMS in many situations per-

forms this type of VHOs at a reduced rate to satisfy the

second component of optimal policy. Finally, we would

like to point out that the fewer VHOs in WLAN produced

by POMS in comparison to GOMS has two possible rea-

sons. The first is the persistence of GOMS on using WLAN

in each visit at least in the nominal rate. Note that POMS

may not persist on WLAN usage if it has enough buffered

data, which may have been accumulated from a previous

prolonged WLAN visit. The second reason is the higher

forced termination probability of POMS as will be shown

later. It is worth noting that similar results are obtained for

horizontal handoff (HHO) signaling load. However, they

are omitted due to page limitation.

Figure 4 plots the RTSP signaling in 3G and WLAN

networks for the presented algorithms versus mobility ran-

domness. For all the presented algorithms, the noticeable

gap between the RTSP signaling in both networks is due

to adopting a proactive VHO strategy. Hence, most of the

RTSP messages are transmitted in the cheaper network just

after moving into the dual zone or proactively before leav-

ing the WLAN. Clearly, GMS results in the fewest RTSP

signaling load for the same aforementioned reasons. Addi-

tionally, the higher RTSP signaling of GOMS in WLAN is
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Figure 4. Session RTSP signaling versus mo-

bility Randomness

due to the algorithmic multiple rate adjustments, i.e. reduc-

ing the streaming rate to the average rate after buffering the

recommended amount. However, it is worth noting that this

increase has insignificant cost as it is transmitted over the

cheaper network.

Figure 5 plots the forced termination probabilities due to

both VHOs and HHOs for different algorithms versus dif-

ferent mobility patterns. As a natural consequence for the

fewest executed handoffs performed by GMS, it also has

the lowest forced termination probabilities. On contrary,

POMS results in the largest blocking probability as a nat-

ural consequence for performing more blockable handoffs,

i.e. executed HHOs and VHOs to the cellular network. For

similar reasons, GOMS represents a compromised approach

for the two other approaches.

6. Conclusion and Future Work

The service integration of wireless access technologies

combined with the huge characteristic diversity of differ-

ent applications create a new heterogeneous networking

paradigm that opens the door to novel research opportuni-

ties. In this paper, we investigate the optimal cost streaming

strategy for media streaming in this networking paradigm.

Additionally, we propose adaptive rate media streaming al-

gorithms for heterogeneous systems. The proposed greedy

optimal algorithm shows significant cost reductions to the

natural naive greedy streaming approach at the expense of

slight increase in signaling load and session blocking proba-

bilities. Hence, we foresee the greedy-optimal algorithm as

an initial promising heuristic solution for media streaming

in next-generation heterogeneous wireless networks. As fu-

ture work, we are interested in addressing several questions
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including how does it perform under different network set-

tings and how far it performs in comparison to the optimal

streaming mechanism for heterogeneous wireless networks.
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