

Embedded Networked Sensing – EmNetS

Panneer Muthukumaran
1
, Rostislav Spinar

1
, Ken Murray

1
, Dirk Pesch

1
, Zheng Liu

2
,

Weiping Song
2
, Duong N. B. Ta

2
, Cormac J. Sreenan

2

1 Centre for Adaptive Wireless System,
 Cork Institute of Technology, Ireland

{panneer.muthukumran, rostislav.spinar, ken.murray, dirk.pesch}@cit.ie

2 Mobile and Internet Systems Laboratory,
University College Cork, Ireland

{zl3, wps2, taduong, cjs}@cs.ucc.ie

Abstract

This paper presents the work under investigation within the Embedded Networked Sensing
(EmNetS) project funded by Enterprise Ireland under the WISen industry/academia consortium.
The project addresses four main research areas within the embedded networked sensing space,
namely, protocol stack development, middleware development, sensor network management and
live test bed implementation. This paper will provide an overview of the research questions being
addressed within EmNetS, the motivation for the work and the proposed solutions under
development.

Keywords: Wireless Sensor Networking, Protocol Stacks, Testbed, Middleware, Network
Management.

1 Introduction

The WISen Industry/Academia Consortium has identified wireless sensor networks as a medium term
target for Irish Industry and a range of application domains focusing on Utilities and Resource
Management in the first instance. Market forecasts indicate that the global wireless sensor network
market could be worth $8.2Bn by 2010. The market is currently US-led but there is growing demand
in Europe in particular for applications in the utilities, health-care, and environmental monitoring
domains. The EmNetS project aims to advance research in Ireland in the areas of wireless sensor
networking software and live test bed implementation [1]. The project addresses the need to network a
range of low power heterogeneous sensor devices to be used in the utilities and responsive building
environments. Firstly the project aims at developing a network protocol stack for individual sensor
nodes and for cluster controller/base station type nodes that need to inter-work with other networking
technologies such as local area networks and mobile networks, e.g. GSM. The protocol stack will be
based on the industrial adopted IEEE 802.15.4/Zigbee stack for low power sensing [2]. It is the aim of
the protocol stack development to overcome some of the limitations of IEEE 802.15.4/Zigbee stack
such as scalability, energy efficiency in large scale mesh networks, dynamic address assignment and
energy efficient routing. It is envisaged within the environmental monitoring and responsive building
environments the number of sensing devices can run to the order of hundreds to thousands. The
current sensor networking standards are unable to support such large scale energy efficient
deployments. A further part of the software infrastructure consists of a simple middleware layer that
provides application programmers interfaces to allow rapid development of applications. The
development of such a software platform will ease product development of sensor network
applications. Sensor networks that provide a mission critical role require remote management facilities
in order to monitor the correct operation of the network, query the status of individual nodes, and
provide means to upload software updates. A remote management system is current being developed
that will integrate with the protocol stack within a live system deployment. This test bed deployment

will provide for test and validation of networking protocols, as well as scalability and internetworking
trials within the EmNetS team and the sensor network research community at a National level. This
paper provides a technical overview of the current state of research and development activity within
the EmNetS team. The challenges and proposed solutions under investigation will be presented in each
of the aforementioned areas of research.

2 Protocol Stack Development

Wireless sensing within the responsive building environment has been highlighted as the target
application domain for the EmNetS project. In such sensing environments the area of deployment can
be relatively large, for example the control of HVAC systems in multi-story buildings based on user
location/density. To facilitate such large scale deployments, the sensing devices must cooperate to
efficiently route data from source to a destination data sink which can be many hundreds of meters
apart and contain multiple intermediate nodes. Mesh networking topologies can provide high
redundancy for failed data links, provide scalable network topologies and provide the dynamic
selection of alternative routes for high priority traffic. Within a mesh topology, data can be routed to
fulfil requirements of energy efficiency, throughput, and quality of service (QoS). The deployment of
energy efficient mesh wireless sensor networks is therefore desirable in the provisioning of services
over large sensor fields. To enable energy efficient data transmission over sensor networks requires
the use of energy efficient protocol stacks. Energy efficient algorithms should be present at each layer
in the stack, in particular the MAC and NWK layers and cross layer interaction used to optimise
performance. Techniques in the literature employ the transmission of beacon packets between
transmitter and receiver to facilitate low duty cycle, energy efficient channel access in which devices
transmissions are coordinated. With this strategy, devices can sleep between the coordinated
transmissions, which results in energy efficiency and prolonged network lifetimes. Beacon scheduling
is an important mechanism in multi-hop mesh networks to enable multiple beacon enabled devices
function whilst avoiding beacon and data transmission collisions.

2.1 Distributed Beacon Synchronisation

The IEEE 802.15.4 MAC standard for low duty cycle, low data rate devices is the most significant
commercially adopted MAC protocol to date [2]. The standard however does not specify techniques
by which the synchronisation of beacon packets is to be achieved to enable low duty cycle
functionality. Furthermore, the standard specifies that to enable mesh topologies, the router devices
within the network need to be line-powered and engage in idle listening. Recent proposals exist in the
literature for low duty cycle MAC protocols are based on the channel polling, low power listening
technique [3, 4]. These schemes however suffer from long and variable preambles at the transmitter
side and are best suited for bit streaming transceiver chipsets. The latest trend is toward packetized
radios in which the preambles are a fixed length such as the TI CC2420. A collision-free beacon
scheduling algorithm for IEEE 802.15.4/Zigbee Cluster-Tree Networks is presented in [5]. The
approach called Superframe Duration Scheduling (SDS) builds upon the requirement for beacon
scheduling outlined in the Zigbee specification for Cluster-Tree multi-hop topologies. The SDS
algorithm functions within the coordinator. Although centralised control reduces the computational
overhead and information flow between distributed devices, it can result in excessively data flow of
control traffic toward the coordinator, which results in devices close to the coordinator being
excessively overloaded in relaying this data. A distributed approach may be more attractive. The IEEE
802.15.5 Task Group 5 is discussing the proposal for beaconing scheduling for mesh topologies [6].
The proposal involves making fundamental changes to the superframe structure on the MAC to
provide a beacon-only timeslot in which beacons of neighbouring devices will be transmitted. This
proposal however involves changing the MAC superframe structure, which affect the interoperability
with the current MAC standard. In order to overcome the limitations outlined above, the EmNetS team
propose a distributed beaconing scheduling strategy, in which the coordinator device does not
participate in the beacon scheduling process. The proposed algorithm is depicted in Figure 1. Local
decisions are made at each mesh router device based on information received during the beacon scan.
In this way information is not required to be sent to the coordinator each time a new device requests a

beacon schedule time, hence reducing the control traffic overhead toward the coordinator. When a
node initially starts, it associates with a beacon enabled device, based on for example, the strongest
signal strength (network layer function). If the node is required to transmit beacons it must build a list
of its neighbours and neighbours’ neighbours. It does this by listening for its neighbour’s beacons
(obtain neighbour list) and records the beacon transmit time of each in a Beacon Schedule Table
(BST). The device will then request the neighbours’ neighbour list in the CAP of each neighbour [2].
The list will contain the beacon offset time of the two-hop neighbours relative to the one-hop
neighbour sending the list. This data is also added to the BST. Upon completion of this step the node
will have a complete list of its neighbours and neighbours’ neighbours in absolute values (one-hop
neighbours) and offset values (two-hop neighbours). The device can now determine its own schedule
period. The new device shall remain scanning for beacons to calculate the transmission offset values
between its scheduled beacon time and that of the received beacons and notify each neighbour of this
offset. This may also facilitate the reception of any unheard beacons in the first beacon scan. The new
device will at this stage have bi-directional non-interfering connectivity between it and all one-hop
neighbours in the PAN.

Figure 1 Distributed Beacon Scheduling for IEEE 802.15.4

2.2 Two level Zone based Routing

The communication scenarios in wireless sensor networks can be classified into few-to-many data
dissemination, many-to-one tree based routing, and any-to-any routing topologies [7]. Many of the
routing algorithms in wireless sensor networks are based on network-wide dissemination and the
collection of data from the interested nodes. Tree based routing is used for forwarding data to a
common destination at the tree root. These scenarios make the sink node or root a fixed node and there
is no support for communication between any two independent devices. To implement dynamic
backbone networking inside a wireless sensor network, any-to-any routing would be useful. However
limited memory in wireless sensor networks makes it impossible to maintain routes to every node in
the network. The Zigbee standard uses a variant of the AODV routing algorithm to route packets in
which each node has to maintain a routing table with the entries of destination and next hop in that
route. This method is not suitable for larger networks. For example when a node tries to send to
multiple destination nodes, it requires multiple route entries along the same path. To combat the
limited resources of sensing devices in terms memory and computational complexity, we have defined
a framework for network routing in wireless sensor networks similar to the Zone Routing Protocol
ZRP [8]. In this strategy we divide the network into clusters or zones. A hybrid of proactive and
reactive routing is used for the intra-cluster level and a reactive approach is used at the inter-cluster
level. Each node in a cluster always maintains routes to the destination cluster, rather than to maintain
the entire route for a destination node. This framework works on the basis of “Think Global and Act
Local”. Each node maintains two types of routing tables to perform routing at the two levels. To
perform inter-cluster routing, nodes on the current cluster do not care about the destination node,
instead they try to route the packet to the next cluster which is en-route to the destination cluster. If the
destination node belongs to the current cluster, it routes using the intra-cluster algorithm based on

Scan Neighbour
BCN & request
neighbour list

Required to tx BCN = True

> Time to receive all
BCN and neighbours list
via indirect transmission

Determine
schedulability

and beacon
transmit time

Scan for all
BCN and

calculate tx
offset of

neighbours

Send offset
values to

neighbours and
place in own

neighbour table

Schedule nth
BCN tx

Sleep

Wake at nth
BCN schedule

time

Wake at dest
node scheduled

BCN time if
sending data

Association
Procedure

AODV. The concept is illustrated in Figure 2. The nodes on the edge of the cluster that have
neighbours in other clusters are called Gateway nodes. These gateway nodes forward the data packet
to their neighbour clusters. Gateway nodes broadcast (proactively) their next cluster information to all
nodes inside the cluster. This broadcast enables the nodes within a cluster to build routes to
appropriate gateway nodes depending on the destination cluster. When a data packet is transmitted, it
needs to be supplied with destination cluster address and node address. Nodes send the Inter-Cluster
routing request to all gateway nodes, unless it knows which gateway has a route to the destination
cluster. As the network evolves it is possible that nodes will learn which gateways have paths to the
most recent destined clusters. They forward the route request packet to neighbouring clusters via
neighbour gateway nodes. When this packet reaches a gateway in the destination cluster or a gateway
that has knowledge of the remaining path, a route reply packet is sent back to the source node. The
route reply packet reaches the source node with the next cluster or entire cluster list (optionally). Each
gateway nodes along the path caches the cluster level route. This completes the inter-cluster routing
procedure. The data packet can now be sent to the destination cluster. Inside the cluster, it finds the
destination node using intra-cluster reactive routing. The simplified version of AODV may be used as
a basis of the reactive routing algorithm.

3 Middleware Development

Emnets is developing a simple middleware platform to provide application developers interfaces to
facilitate rapid development of applications in the utilities space; this platform will ease product
development of wireless sensor network. The goals of the middleware are: (1) to develop services
oriented towards rapid applications development; (2) to develop a composition tool for middleware
synthesis; (3) to develop a resource-aware deployment tool for middleware mapping.

Figure 2 Concept of cluster based routing in wireless sensor networks

The middleware will employ a VM-based approach. There are two main advantages of employing a
VM-based approach in the middleware system. Firstly, middleware services do not need to be
rewritten for different platforms as they run transparently over the varied platforms. Secondly, a
virtual machine provides a well-designed instruction set. This enables rapid prototyping of highly
compact application binaries which may result in low energy overheads when they are distributed in
the network [9]. As shown in Figure 3, the middleware system will be decomposed into two layers,
virtual machine layer and services layer. Virtual machine layer resides on top of operating system and
network stack, it utilises a virtual machine to provide APIs to abstract different hardware and/or
system platforms. Services layer resides on top of virtual machine layer and consists of middleware
services. All services provided by the middleware will be implemented in this layer. The middleware
services can be tailored for each sensor node, which is based upon the facts that (1) services can be
realised in different ways based upon hardware components, hardware resources, user requirements,
optimisation criteria, etc. (2) services are required differently by applications running on top of it, the
services running on any specific sensor node do not need to reflect the full requirement specification.
The middleware services may include, just to name a few, service discovery, aggregation, localisation,
synchronisation, adaptation, update, security. New services can be added into the system if they use

C=C5

C=C9

C=C4

C=C2

C=C3

C=C7
C=C1

C=C1
3

C=C1
2

C=C1
0

C=C1
1

C=C0

C=C6

C=C8

Pan

Clusters

Connection between Gateway nodes

Route between Clusters C12 – C7

certain interfaces. There are a number of algorithms and/or models for different services in literature,
thus, instead of developing new algorithms and new models for the services, the proposed middleware
services will be realised using the ones in existence. Similarly, the virtual machine used in the
middleware system will be based upon one of the existing virtual machines for wireless sensor
network (e.g., Mate, Agilla, SensorWare, etc.), and further modification will be applied if necessary.
The middleware system will be built by defining a set of components, dependencies, and the specific
components which can be selected under a certain condition. A key design goal is to develop a tool
capable of selecting components, capturing relationships among components and composing specific
components. For the purposes of selection and composition, each component will have enough
information as its attributes; such information may include functional properties, non-functional
properties, required and/or provided guarantees upon qualities, etc. In order to compose a middleware
system, the following information will be needed by the composition tool: platform description,
middleware services, constraints, and quality criteria. The platform description specifies hardware
components and their resources; middleware services specify the services which run on top of a
particular device; constraints specify the resource constraints of each component; and quality criteria
specify user’s non-functional requirements which may include reliability, usability, performance to
name a few. After reading the information, the composition tool builds a dependency diagram by
satisfying the dependencies of a start component which can be any one of the components selected by
the user. During this process, based upon resource constraints and quality criteria, the composer
selects the most suitable components from a set of different possible components, and also produces
additional components required and necessary glue code to hook all components together [9, 10].
Finally, the system will also provide a mechanism to map the middleware images into the entire
network. Figure 4 depicts the processes of composition and deployment.

Figure 3 Proposed Middleware Architecture

4 Sensor Network Management

The EmNetS project is developing a general purpose remote management system to monitor, manage
and control the behaviors of wireless sensor networks. To date, there has been very little research on
network management and performance debugging for wireless sensor networks. This is mainly
because the original vision for such networks envisaged extremely dense, random deployments of very
inexpensive nodes, operating fully autonomously to solve or avoid faults and performance problems.
However in reality, it is not the case. Many real-world applications, including those for utilities,
require carefully planned deployment in specific locations, and nodes actually are not very
inexpensive. As a result, autonomous approaches will need to be complemented by traditional network
management approaches, but using new algorithms that are cognizant of the severe resource
constraints which characterize sensor nodes.

Some relevant work in this area includes [11], which proposes two simple application-independent
protocols for collecting health data from and disseminating management messages to the sensor
networks. It is limited as a passive monitoring tool only, i.e., it requires a human manager to issue
queries and perform analysis on collected data. In contrast, [12] proposes to reuse the main sensing
application’s tree routing protocol to deliver monitoring traffic. As a result, it might be non-trivial to

Middleware Layer

Virtual Machine

Time
Synchronizer

Group
Manager

Data
Manager

[Service N]

Network Stack
Operating System Hardware

Application Layer

adapt the current monitoring mechanism to different classes of applications. In [13], the authors have
surveyed some existing work in sensor network management. They found that currently there’s no
generalized solution for sensor network management.

Part of the EmNetS project has been targeted to fill this gap in sensor network research. Our goal is to
develop a simple yet efficient, general purpose, policy-based sensor network management system
which should exhibit the following important characteristics: low management overhead, strong fault
tolerance, adaptive to network conditions, autonomous and scalable.

Figure 4 Processes of Composition and Deployment

4.1 EmNetS’s Network Management System

To strike a good balance between scalability and complexity, a hierarchical network management
system would be an appropriate solution. We propose to use several layers of management, in which
the managers in the lowest layer directly manage the sensor nodes in their part of the network. Each
manager passes collected health data to its higher-level manager and at the same time disseminates
commands from the higher-level manager to the nodes it manages. Typically, a management layer of
the proposed EmNetS’s Network Management System (ENMS) consists of the following components
(see Figure 5):

Figure 5 EmNetS’s Network Management System Components

(1) Sensor network models: The models are to depict the actual states of the sensor networks. There
are various possible sensor network models to be captured in our management system, for example
link quality map, network topology map, energy map, etc. An important requirement is that the
network models must be extensible to easily accommodate future classes of sensing applications.

(2) Data collection and dissemination protocols: To collect health data from sensor networks, we are
exploring a combination of energy-efficient application-dependent and application-independent data
collection protocols. The former protocol would use the main sensing application’s tree routing
protocol to deliver health data from the sensor networks. One way to implement this approach is to
piggy-back the health data into the real application data packets. The latter has the advantage of being
independent from the sensing applications, thus can be easily adapted to be used in different
applications. Moreover, when the application fails, the latter protocol can still continue functioning.
We envisage a combined protocol in which the former approach would be used to report network
health data periodically, while the latter is for active node probing and sending management messages
when required.

Sensor Network Models

Data Collection &
Dissemination Protocols

Management Policies

Management Engine

Compose

Constraints Platform Description

Middleware Services

Quality Criteria

Middleware Image

Deploy

 Wireless
Sensor Network

(3) Management policies: ENMS’s management policies will specify tasks to be executed if certain
system health conditions are met, e.g., battery level of node A is now 10%, so node A should go to
sleep mode.

(4) Management execution engine: The management engine uses the data collection/dissemination
protocol to update the sensor network models, and to send commands to sensor nodes. Based on the
collected health data, and the management policies, it will then automatically analyze the current
situation and execute the right management tasks, e.g., re-configuring a network route in case of
congestion. Together with well-defined management policies, an intelligent management engine
would help to achieve the desirable level of autonomy for our ENMS, thus minimizing the need of
human managers.

5 Test bed Implementation

One of the key activities within the EmNetS project is the development of a live system test bed. The
objective of the test bed is twofold. Firstly it provides a hardware platform to validate protocols and
network architectures developed within EmNetS and to execute experiments demonstrating the
suitability of the developed platform for utilities and responsive building applications. Secondly, the
test bed provides network management functionality via a backbone USB/WiFi network for topology
control, network element status indication, performance/fault analysis, configuration and remote
programming of individual devices. The test bed architecture, depicted in Figure 6, is based on the Re-
Mote test bed architecture developed at the University of Copenhagen [14].

Figure 6 EmNetS Test bed

The test bed consists of the following layers –

The Sensor Net layer consists of the sensor devices. The Xbow MICAz and Moteiv TMote are
currently supported. The test bed includes support for software stacks developed in TinyOS versions 1
and 2. Future work in this layer includes the additional support for the Contiki operating system and
the provisioning of more advanced components for testing and debugging. The Hosts PCs consist of
Linux based embedded PC platforms with USB2 connectivity to the sensor nodes in the layer below.
The host PCs contains the mote control host daemon to facilitate mote discovery and issuing mote
commands start, stop and reset for specific network topology control and remote power management.
This layer also contains the Bootloaders for the sensor devices within the testbed. Connectivity to the
upper IP based Server layer is via an Ethernet/WiFi link. Future work in this layer will focus on the
implementation of wireless USB and the provision of application data logging. The Server PC layer
contains the mote control server daemon to bridge the communication between the clients in the upper
layer to motes in layer 1. It also contains an MYSQL based database for central storage of all system
information and a TOMCAT information server to provide client system information, user
authentication and mote information. Connectivity to the top layer is via WiFi link. Further extensions

Client PCs

Server PC

Host PCs

Sensor-Net

in this layer are focused on development of an administrative interface to manage the network users,
reservation of test bed resources and mote information. The Client PC layer forms the top layer in the
sensor test bed in which the user can interact with the system. Each client PC contains a java graphical
user interface which lists the available motes and provides services such as start, stop and reset of the
individual devices. Individual motes can also be reprogrammed with a console window available for
each device. Future directions in this layer include the development of an interactive map showing the
node deployment, a reservation system by which users can reserve network resources for a particular
test and a data logging facility. It is envisaged that the Sensor-Net test bed architecture will evolve
across multiple domains and institutes providing a tool for remote access and the deployment of
networking protocols to further advance wireless sensor network research.

6 Conclusion

The EmNetS project is current undertaking a research programme in the area of embedded wireless
sensor networks and is advancing the current state of the art in energy efficient, scalable networking
protocols, middleware, network management and testbed development. The application domain under
investigation includes the responsive building environment which provides a number of key research
challenges in terms of energy efficiency and scalability. This paper has provided an overview of
current research activities within the programme and highlighted the challenges and solutions under
development.

References

[1] http://www.cs.ucc.ie/emnets/
[2] IEEE 802.15.4 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), 2006
[3] A. El-Hoiyi, J.-D. Decotignie, and J. Hernandez. Low power MAC protocols for infrastructure

wireless sensor networks. In Proceedings of the Fifth European Wireless Conference, Feb. 2004.
[4] Joseph Polastre, Jason Hill & David Culler, “Versatile Low Power Media Access for Wireless

Sensor Networks”, Proc. Embedded Networked Sensor Systems, 2004, pp. 95 – 107
[5] Anis Koubaa, Mellek Attia, “Collision-Free Beacon Scheduling Mechanisms for IEEE

802.15.4/Zigbee Cluster-Tree Wireless Sensor Networks”, Technical Report, Version 1.0, Nov.
2006, http://www.open-zb.net/

[6] Ho-In Jeon, Yeonsoo Kim, “BOP Location Considerations and Beaconing Scheduling for
Backward Compatibility to Legacy IEEE 802.15.4 Devices”, submitted to IEEE 802.15.5 Task
Group 5.

[7] A Holistic approach to multi-hop routing in sensor networks, Alec Lik Chuen Woo, Thesis,
University of California, Berkeley.

[8] The Haas, Z. J., and Peatlman, M. R., “The zone routing protocol (ZRP) for ad hoe networks”,
Internet Draft -- Mobile Ad hoc NETworking (MANET) Working Group of the Internet
Engineering Task Force (IETF), November 1997.

[9] Joel Koshy, Raju Pandey, “VM*: Synthesizing Scalable Runtime Environment for Sensor
Networks”, SenSys’05, San Diego, California, USA, 2-4 November 2005.

[10] Peter Graubmann, Mikhail Roshchin, “Semantic Annotation of Software Components”,
EUROMICRO-SEAA’06, Cavtat/Dubrovnik (Croatia), August 28 – September 1, 2006.

[11] G. Tolle, and D. Culler, “Design of an Application-Cooperative Management System for
Wireless Sensor Networks”, European Workshop on Wireless Sensor Networks, Istanbul, Turkey,
Jan 2005.

[12] S. Rost, and H. Balakrishnan, “Memento: A Health Monitoring System for Wireless Sensor
Networks”, IEEE SECON, Reston, VA, Sep 2006

[13] W. L. Lee, A. Datta, and R. Cardell-Oliver, “WinMS: wireless sensor network-management
system, an adaptive policy-based management for wireless sensor networks”, Tech. Rep. UWA-
CSSE-06-001, The University of Western Australia, June 2006.

[14] http://www.distlab.dk/sensornet

