
Adding Preemption to TinyOS

Cormac Duffy∗, Utz Roedig†, John Herbert∗, Cormac J. Sreenan∗

∗Computer Science Department, University College Cork, Ireland
†InfoLab21, Lancaster University, Lancaster

ABSTRACTEvent-driven operating systems suh as TinyOS are the pre-ferred hoie for wireless sensor networks. Alternative de-signs suh as MANTIS following a lassial multi-threadedapproah are also available. Event-based systems are gen-erally more energy e�ient than multi-threaded systems.However, multi-threaded systems are more apable than event-based systems of supporting time ritial tasks as task pre-emption is supported. Timeliness an be traded for energye�ieny by hoosing the appropriate operating system. Inour reent work we have shown that the multi-threaded sys-tem MANTIS an be modi�ed to be as energy e�ient asTinyOS. As a result, the modi�ed MANTIS an be used to�t both sensor network design goals of energy e�ieny andtimeliness. This solution is not onsidered optimal as mostexisting sensor network appliations and software librariesare developed for TinyOS. Therefore, we present aTinyOS modi�ation that adds preemption while retainingthe existing TinyOS struture and features.
1. INTRODUCTIONSensor nodes must be designed to be energy e�ient in or-der to allow long periods of unattended network operation.However, energy e�ieny is not the only design goal in asensor network. For example, timely proessing and report-ing of sensing information is often required as well. Thismight be needed to guarantee a maximum delivery time ofsensing information from a sensor, through a multi-hop net-work, to a base-station. To be able to give suh assuranes,network omponents with a deterministi behavior will berequired. The operating system running on sensor nodes isone suh omponent.Event-based operating systems are onsidered to be thebest hoie for building energy e�ient sensor networks asthey require little memory and proessing resoures. Hene,the event-based TinyOS [1℄ is urrently the preferred op-erating system for sensor networks. Event-based operatingsystems are not very useful in situations where tasks have
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EmNets ’97 June 25-26, 2007, Cork, Ireland

Copyright 2007 ACM 978-1-59593-694-3/07/06 ...$5.00.

proessing deadlines. As tasks are proessed sequentially,prioritizing important tasks to meet proessing deadlines isnot possible. Multi-threaded operating systems are moresuitable if suh requirements must be ful�lled. Thread pre-emption and ontext swithing enables suh systems to pri-oritize tasks and meet deadlines. The MANTIS [2℄ operatingsystem is a multi-threaded operating system designed speif-ially for wireless sensor networks. MANTIS has a relativelyhigh proessing overhead for thread management. This pro-essing overhead is diretly related to redued energy e�-ieny beause of the relative inrease in CPU ativity.This reates the dilemma that both design goals - en-ergy e�ieny and timeliness - an only urrently be opti-mized independently. One is fored to hoose whih goal isof higher importane in the onsidered appliation senario.Therefore, it would be good if the dilemma ould be resolvedby either making MANTIS more energy e�ient or TinyOSmore responsive.Our previous work [3℄ onentrated on the �rst option:A MANTIS kernel modi�ation to inrease power e�ieny.As the results show, MANTIS an be modi�ed to be aspower-e�ient as TinyOS without impating vital kernelfuntionality. Thus, the modi�ed MANTIS an be used tosolve both important sensor network design goals. The re-sult of this previous work also shows that the ommon beliefthat �multi-threaded operating systems are not suitable forresoure onstrained sensor networks� is not neessarily true.The modi�ed MANTIS provides a solution for our pre-viously outlined dilemma but has other onsiderable limi-tations. The sensor network ommunity seleted TinyOSas the defato standard with most existing appliations, li-braries and devie drivers available for TinyOS. Therefore,to avoid re-oding existing software and allow re-usage of ex-isting TinyOS infrastrutures it is worth exploring the se-ond option: A TinyOS modi�ation to inrease system re-sponsiveness. This paper presents a modi�ation that addspreemption to TinyOS whih results in a responsive systemthat retains its existing struture and features.The next Setion of the paper presents related work. Se-tion 3 desribes brie�y TinyOS and explains its limitationsin terms of responsiveness. Setion 4 explains in detail ourTinyOS modi�ations to add preemption. Setion 5 presentsan evaluation of the modi�ed system. It is shown how exist-ing appliations an take advantage of the new preemptivesheduler. Setion 6 onludes the paper.
2. RELATED WORKIn [4℄, the TinyOS operating system is exeuted within a

88

multi-threaded AVRX kernel as part of a onurreny anal-ysis study. Thus, any TinyOS task ould be preempted byanother AVRX thread. This solution has some drawbaks.The solution is bound to AVR based miroproessors. Fur-thermore, the AVRX kernel provides many threading fea-tures not neessarily needed for event-based programming.The system has memory requirements of both, TinyOS andthe AVRX kernel.A similar approah with omparable limitations an beseen in [5℄. Here, the TinyOS operating system is exeutedas a thread within the multi-threaded MANTIS operatingsystem. The resulting TinyMOS system has a large memoryfootprint (see Setion 5). Many ontext swithes (for exam-ple, introdued by time-sliing) reate a signi�ant proess-ing overhead (see [3℄). In addition, TinyOS and MANTISprogramming semantis are mixed whih makes TinyMOSusage di�ult.A di�erent approah is desribed in [6℄. Here, a multi-threading library for TinyOS alled TinyThread is presented.The TinyThread library provides TinyOS programmers witha thread programming abstration but does not enable taskpreemption. A thread sheduler in the form of a TinyOStask is periodially plaed in the task queue. Threads arethen sheduled and run to ompletion or until they blok.This approah allows users to multiplex standard TinyOStasks and threads, but does not failitate preemption andannot provide any degree of performane ontrol. Further-more, threads are programmed in a di�erent fashion to nor-mal TinyOS ode whih does not allow a seamless integra-tion of TinyThreads with existing TinyOS appliations.The approah presented in this paper di�ers from the de-sribed existing works in major aspets. Thread preemp-tion is added natively to TinyOS. Context swithing is onlyused to failitate task preemption and not to introdue athread programming abstration. Standard TinyOS pro-gramming onventions are used suh that preemption fea-tures are seamlessly integrated.
3. THE TINYOS ARCHITECTUREThis setion �rst desribes the basi TinyOS funtionalitya�eted by our modi�ations. Thereafter, the limitations ofTinyOS motivating our modi�ations are disussed.
3.1 Basic FunctionalityThe TinyOS system and speialized appliations are writ-ten in a omponent based programming language alled nesC.The omponents are self ontained modules of ode that in-terat with eah other through strit interfaes. A ompo-nent interfae is haraterised by a number of event handlingfuntions. Event-based appliations are implemented as se-ries of event-handlers and tasks. TinyOS tasks are deferredfuntion alls that are plaed in a simple FIFO task-queuefor exeution. TinyOS tasks are taken sequentially from thequeue and are run to ompletion. One running, a TinyOStask an not be interrupted (preempted) by another TinyOStask. Event-handlers are triggered in response to a hard-ware interrupt and are able to preempt the exeution of aurrently running TinyOS task. Event-handlers perform theminimum amount of proessing to serve the event. Furtherproessing is performed within a TinyOS task that is nor-mally reated within the event handler. After all TinyOStasks in the task queue are exeuted, the TinyOS systementers a sleep state to onserve energy. The sleep state is

Idle Idle

time

Task
Processing

Interrupt
Processing

T2

E1 E2 E4E3

T4T1 T3

A)

Idle Idle
Task
Processing

Interrupt
Processing

T2

E1 E2 E4E3

T4T1 T3

B)

Idle Idle
Task
Processing

Interrupt
Processing

T2

E1 E2 E4E3

T4T1

T3 C)

Idle Idle
Task
Processing

Interrupt
Processing

T2

E1 E2 E4E3

T4T1A T3

D)

T1BFigure 1: TinyOS task proessing optionsterminated when an interrupt ours.
3.2 TinyOS LimitationsA new TinyOS task is normally posted to the shedulerfrom within an interrupt and usually proesses data thatwas obtained during the interrupt routine. For example,the interrupt ould signal sensor ativity or the arrival ofa network paket; the orresponding task will then proessthe sensor reading or handle the inoming data paket. Anew task is inserted at the end of the FIFO task queue andit is exeuted as soon as all other tasks in the queue havebeen proessed. Fig 1 A shows an example of four eventsreating four di�erent tasks during interrupt handling toproess the data. The problem is that some tasks might be ofhigher importane than others and it is desirable to shedulethem before all others. For example, it might be desirableto handle a network paket before proessing new sensorinformation in order to assure paket forwarding deadlines.This limitation of the FIFO task sheduling in TinyOS 1.0was reognized and thus the new version TinyOS 2.x o�ersthe option to alter the task sheduler whih allows us toprioritize spei� tasks. For example, as shown in Fig 1 B,task T3 an be queued before T2 to prioritize proessingof the third event. Our TinyOS modi�ation presented inthe next setion will make use of this feature introdued inTinyOS 2.x.The possibility of re-ordering tasks improves the event-handling apabilities of the operating system. However, asevere limitation of the system still exists. If a task is ur-rently exeuting, a new task reated during an interrupt willbe exeuted after the urrent task �nishes proessing. Thetime at whih this new task will be sheduled annot beontrolled in TinyOS 2.x as it is impossible to preempt theurrently running task. In the example Fig 1 B, task T3 isprioritized but still has to wait for T1 to �nish before it isexeuted. Some tasks an have a long proessing durationwhih will defer the exeution of an important task for anunaeptably long period of time.Currently, this limitation an be addressed in two di�er-ent ways. One option is to move task proessing funtion-ality in the interrupt proessing routine (see Fig 1 C). Theurrently running task is preempted and high priority pro-essing is performed in the interrupt ontext. This solution

89

is not optimal as interrupts are disabled in TinyOS whileexeuting an interrupt. For example, if in Fig 1 C E4 wouldour earlier during proessing of T3 in the ontext of E3 thehandling of E4 would be deferred to the end of T3. If E4 hasa higher priority than E3, ontrol over exeution times willbe lost at this point. Another option is to split longer tasksinto smaller subtasks. For example, in Fig 1 D task T1 issplit in two smaller tasks T1A and T1B . T1A is posted beforetask T1B and therefore task T3 an be sheduled before T1B .This solution is not always optimal, as not all tasks an besplit-up easily into several sub-tasks [7℄. In addition, theprogrammer has to ensure that task-splitting is organizedsuh that all proesses an meet their deadlines, whih isquite di�ult to ahieve in a pratial senario.
4. THE TINYOS MODIFICATIONSTo mitigate the TinyOS limitations desribed in the previ-ous setion priority sheduling and task preemption is addedto the TinyOS 2.x operating system.
4.1 Priority SchedulingTinyOS 2.x failitates omponent-based shedulers thatan be inluded in the operating system if required. The �rststep in our TinyOS modi�ation is the development of a newpriority based sheduler omponent to replae the providedstandard TinyOS 2.x FIFO sheduler. Depending on theperformane requirements of the user appliation, this newPriority Level Sheduler (PL sheduler) an be wired intothe appliation to failitate greater ontrol over whih tasksare proessed �rst. The PL sheduler provides �ve di�erentpriority levels:

• (P1) High Priority Preemptive
• (P2) High Priority Non-Preemptive
• (P3) Basi Priority (Used for standard TinyOS tasks)
• (P4) Low Priority Non-Preemptive
• (P5) Low Priority PreemptiveIn eah level, tasks are sheduled in a FIFO manner. Thebasi priority level must always be supported as all standardTinyOS tasks are queued here by default. The adjaentpriority levels provide a non preemptive higher and lowerpriority queue. Thus, tasks in either of these queues will besheduled aording to their priority but will not preemptany atively running task resulting in a behavior as shownin the example Fig 1 B. The high priority preemptive taskand the low priority preemptive task queues an be used toshedule preemptive tasks. A high priority preemptive taskwill preempt any running task from the lower priority tasklevels and any task from these levels an preempt a runninglow priority preemptive task. Implementation details of thepreemption mehanism are desribed later.In pratie not all levels of priority are neessary and assuh alloating a task queue for �ve di�erent priority levelsan reate a bloated sheduler. The omponent arhitetureof TinyOS failitates ounting up the number of tasks atompile time. The PL sheduler an determine exatly howmany queues are required and the ode elimination featuresof the nesC ompiler remove redundant interfaes for taskpriorities not used. If more than �ve priority levels are re-quired, the PL sheduler an be extended to provide these.

Idle Idle

time

Task
Processing
Context 2

Interrupt
Processing

T2

E1 E2 E4E3

T4T1

T3

A)

Task
Processing
Context 1

preempt()

Idle Idle

Task
Processing
Context 2

Interrupt
Processing

T2

E2 E4E3

T4T3

B)

Task
Processing
Context 1

Idle Idle

Task
Processing
Context 2

Interrupt
Processing

E1 E3

T1 T3

C)

Task
Processing
Context 1

grace period t for T3Figure 2: Modi�ed TinyOS task proessing optionsHowever, we believe that �ve levels are su�ient to supportommon sensor network senarios.
4.2 PreemptionTask preemption is failitated by the PL sheduler forsituations in whih a ooperative task shedule will not meetthe appliation's temporal requirements.
4.2.1 Conceptual IdeaTask preemption requires ostly ontext swithes that haveto be supported by the operating system. These ontextswithes must be implemented arefully to avoid a signi�-ant inrease in system overhead and energy onsumption.Our previous researh [3℄ on optimizing preemptive shedul-ing for the multi-threaded MANTIS system highlighted thatit is of paramount importane to redue the number of on-text swithes. With this design requirement in mind thePL sheduler avoids preemption where possible using twodi�erent priniples.As a �rst priniple, a ontext swith is only performed ifit is neessary to math proessing deadlines. An exampleof this behavior is illustrated in Fig 2. Task T1 is exeut-ing with basi priority P3 and a task T3 with priority P1(high priority preemptive) is sheduled at the end of the in-terrupt routine E3. A ontext swith is now neessary toproess the high priority task T3. Thereafter, the ontextis swithed bak and the original task T1 exeutes to om-pletion (see Fig 2 A). If the same high priority task T3 issheduled in a senario where the system is idle (see exam-ple Fig 2 B), no ontext swith is performed and the taskexeutes immediately. In this ase the high priority task T3will be exeuted in the standard ontext. In other words,a ontext swith is not assoiated with the priority level ofa task, it is assoiated with the need for preemption. Thismehanism redues the number of ontext swithes om-pared to existing preemption tehniques in multi-threadedsystems where the exeution of a higher prioritized threadis normally bound to a ontext swith (for example, [5℄).As a seond priniple to redue ontext swithes, a grae

90

Algorithm 1 Priority Task Struture1: Module SomeComponentC{2: uses interfae PriorityTask<HighPreempt>;3: }4: Implementation{5: event void someEvent(){6: all PriorityTask.postTask()7: }8:9: event PriorityTask.runTask(){10: //task ode11: }12: }13: Configuration SomeComponent{14: }15: implementation{16: omponents new PriorityTask() as PremptingTask;17: omponents SomeComponentC,18: SomeComponetC.PriorityTask->PremptingTask;....19: }period t for preemption is used. It is assumed that manyhigh priority tasks need to be exeuted within a spei� timeframe but not neessarily immediately. A timer is used tomark the latest possible point in time when the task mustbe exeuted to math deadlines. If urrently running lowerprioritized tasks omplete before the grae period t, all tasksan be exeuted without preemption. Suh a shedulingsituation is depited in Fig 2 C. Task T1 is exeuting withbasi priority P3 and a task T3 with priority P1 (high prioritypreemptive) is sheduled at the end of the interrupt routine
E3. Task T3 has a grae period of t and thus, preemption isnot neessary to shedule the high priority task in time.The PL sheduler requires memory for three separate staksto store the proessing state of the three preemptive taskpriority levels (P1, P3, P5). As there are only three preemp-tive priorities only three staks need to be alloated. Thenumber of required staks is dependent on the number ofpreemptive priority levels and not on the number of tasksused. Due to the �xed number of staks used, a alulationof required stak sizes is simpli�ed. In pratie, the bulk ofall tasks will be run in the same stak as regular TinyOStasks are defaulted to the basi priority level P3.
4.2.2 Implementation SpecificsA omponent spei�es a priority task by wiring a prioritytask interfae to the PL sheduler omponent and by im-plementing the interfae event runTask(). This proedureonforms to the TinyOS Enhanement Proposal (TEP) 106on tasks and shedulers.An example of an implemented priority task an be seenin Alg. 1. For a omponent to use a priority task it mustimplement the PriorityTask interfae and speify the taskpriority as one of the interfae parameters (Alg. 1, line 2).The interfae provides a postTask ommand whih is thesame as the basi task syntax post [task name℄ (Alg. 1, line6) and the runTask event handler whih stores the task fun-tionality (Alg. 1, line 9). The event handler is invoked bythe sheduler when the task is sheduled to be proessed.Eah task must then be wired up to one of the �ve parame-terized taskPriority interfaes provided by the PL Sheduler(Alg. 2, link 2-6). The wiring proess is somewhat simpli-�ed by the generi PriorityTask omponent (Alg. 1, line 16),whih uses the interfae parameter information to determinethe task priority and uniquely wire eah task to the appro-priate sheduler interfae.

Algorithm 2 Priority Sheduler Struture1: Module PLSheduler{2: provides interfae TaskPriority<HighPreempt>[id℄;3: provides interfae TaskPriority<HighNonPreempt>[id℄;4: provides interfae TaskBasi[id℄;5: provides interfae TaskPriority<LowNonPreempt>[id℄;6: provides interfae TaskPriority<LowPreempt>[id℄;7: }The PL sheduler, is an extension of the TinyOS 2.x FIFOsheduler. Depending on the number of task priorities ofthe operating system, up to �ve di�erent task queues areinitialized. A bit �eld is initialized to keep trak of whihtask priorities are either preempted or atively proessing.On reeiving a posted task the sheduler �rst ensures thatthe task has not already been posted (TinyOS TEP 106 re-quirement). Seond, the sheduler heks if the task will bedelayed by a lower priority task atively running. If preemp-tion is required, the sheduler will perform a ontext swithor set a grae period timer to delay the ontext swith. Thegrae period time t is a �xed global value for all tasks in theurrent implementation.The ontext swith requires that the urrent registers aresaved to the urrent stak and the stak pointer register isthen direted to the next stak ontext ontaining the pre-empted queue sheduler. The preempted queue shedulerexeutes all tasks sequentially starting from the highest pri-ority task down as far as the priority of the preempted task.The sheduler an therefore proess multiple high prioritytasks waiting on the preempted task to �nish requiring only2 ontext swithes to exeute a set of high priority tasks.When there are no more tasks enqueued waiting on the pre-empted task, the ontext is swithed bak to the preemptedtask ontext and the preempted task an �nish exeuting.The stak size of the required staks is urrently spei�edand alloated at ompile time. To obtain a good estimateof the required stak size, a tool as proposed in [6℄ an beused.Unlike preemptive multi-threaded systems suh as [5, 6℄thread bloking proedures are not neessary. The PL shed-uler shedules and exeutes all tasks aording to the event-based arhiteture.
4.3 Race ConditionsThe PL sheduler adheres to all the �nalized TinyOS 2.xTEP spei�ations on TinyOS tasks and shedulers with oneexeption: tasks are not guaranteed to exeute in a sequen-tial manner. Only tasks within the same priority are guar-anteed to exeute sequentially. A higher priority task anpreempt a lower priority task and modify shared memoryreating a rae ondition. Currently, the TinyOS nesC om-piler is not designed to detet suh rae onditions. Thus,the programmer must be aware of these additional program-ming ompliations introdued in using a preemptive shed-uler.In TinyOS, the defato method to prevent rae onditionsis to enlose the rae ondition sensitive ode in an atomistatement. The atomi statement prevents rae onditionsby disabling hardware interrupts, whih are the only eventsthat an ause rae onditions in the TinyOS onurrenymodel. However, in the modi�ed TinyOS, rae onditionsan also our when a task preemption ours. To ensurethat the atomiity of atomi setions is preserved, the PL

91

Sheduler heks that the ative task is not exeuting atomiode before preempting.
5. EVALUATIONThe usability of the PL Sheduler to extend existing appli-ation ode to provide preemption is evaluated. In addition,the modi�ed TinyOS is ompared with the existing solutionsTinyMOS [5℄ desribed in the related work setion.
5.1 Usability EvaluationTmote Sky nodes with a 2420 radio transeiver are usedfor the evaluation. To test the TinyOS modi�ation a slightlymodi�ed version of the well known TinyOS 2.x RadioCount-ToLeds appliation is used. The appliation periodiallybroadasts a 3 bit message to other nodes every tblink =

250ms and displays any reeived messages by toggling theLEDs. The RadioCountToLeds appliation uses the stan-dard TinyOS ommuniations stak to send and reeive mes-sages. After reeiving a message, the 2420 radio stakposts a task reeiveDone_task() to signal to higher levelomponents that a message has been reeived. In addition,a timer is used to post a omputationally expensive task ev-ery tcomp = 1000ms. This task requires 100ms to �nish onthe Tmote Sky node. This omputational expensive task isnot part of the standard RadioCountToLeds appliation andis used to visualize the advantage of preemption features.
Standard TinyOS.In the standard TinyOS system, theomputational expensive task bloks the task posted by the2420 radio stak that �nally proesses inoming messages.Therefore LEDs are toggled with a delay of 100ms if theomputational expensive task was just sheduled. Delayedtoggling of LEDs is obviously not a serious problem but thisdemonstrates problems in TinyOS driven sensor networks ifthey are to be used in time ritial appliation senarios.
Modified TinyOS.In the modi�ed TinyOS a low priority
P5 is assigned to the omputationally expensive task. Thisis done by re-wiring this task to the orret priority levelof the PL sheduler. The rest of the appliation remainsunaltered. Now the omputationally expensive task is pre-empted by the 2420 task posted after reeiving a radiomessage as standard TinyOS tasks run in priority level P3.The LEDs now toggle state as in the original RadioCount-ToLeds appliation; the omputationally expensive task isexeuting in the bakground. Only a small modi�ation isneessary to ahieve the desired appliation behavior.
5.2 Comparative EvaluationThe previously desribed RadioCountToLeds appliationwas implemented using the TinyMOS onept. In the Tiny-MOS variation the omputationally expensive task is imple-mented as a MANTIS thread running at a lower prioritythan the thread arrying the TinyOS system. Thus, theresulting appliation has the same behavior as the systemusing the modi�ed TinyOS with the PL sheduler.However, both solutions di�er in important aspets. First,the omputational expensive task has to be implemented us-ing MANTIS semantis. A programmer has to be familiarwith both TinyOS and MANTIS syntax to develop the ap-pliation. A seamless integration of preemption features inTinyOS is not ahieved. Seond, the TinyMOS solution has

a signi�antly higher proessing overhead as more ontextswithes than in the presented PL sheduler solution are re-quired. This additional overhead translates to an inreasein energy onsumption as less idle-time is available for sleepperiods. However, as shown in [3℄ this proessing overheadan be redued to aeptable levels. Third, the TinyMOSsolution has a larger memory footprint. Adding the Tiny-MOS solution to the modi�ed RadioCountToLeds applia-tion inreases the ode size by 10926 byte, the RAM size by267 byte. Adding the PL sheduler solution to the modi�edRadioCountToLeds appliation, inreases the ode size by864 byte and the RAM size by 30 byte. Spae neessary forstaks is not inluded here for either solution. The presentedTinyOS modi�ation has a signi�antly smaller memory re-quirement than TinyMOS (92% less ode size inrease, 89%less RAM size inrease).
6. CONCLUSIONAs it is shown in the paper, it is possible to add pre-emption to the TinyOS system without introduing over-heads used in multi-threaded systems. The established eventdriven proessing onepts an be retained while adding pre-emption through ontext swithing. Established TinyOSprogramming onventions an be used promoting reuse ofexisting appliation ode. Thus preemption features an beintegrated seamlessly in existing TinyOS infrastrutures.
7. REFERENCES[1℄ J. Hill, R. Szewzyk, A. Woo, S. Hollar, D. Culler, andK. Pister, �System arhiteture diretions for networkedsensors,� in ACM SIGOPS Operating Systems Review,vol. 34, pp. 93�104, Deember 2000.[2℄ H. Abrah, S. Bhatti, J. Carlson, H. Dai, J. Rose,A. Sheth, B. Shuker, and R. Han, �MANTIS: Systemsupport for multimodal networks of in-situ sensors,� in2nd ACM International Workshop on Wireless SensorNetworks and Appliations, pp. 50�59, September 2003.[3℄ C. Du�y, U. Roedig, J. Herbert, and C. J. Sreenan,�Improving the Energy E�ieny of the MANTISKernel,� in Proeedings of the 4th IEEE EuropeanWorkshop on Wireless Sensor Networks (EWSN2007),Delft, Netherlands, Jan. 2007.[4℄ J. Regehr, A. Reid, K. Webb, M. Parker, andJ. Lepreau, �Evolving real-time systems usinghierarhial sheduling and onurreny analysis,� in24th IEEE Internation Real-Time Systems Symposium,pp. 25�36, Deember 2003.[5℄ E. Trumpler and R. Han., �A systemati framework forevolving TinyOS,� in IEEE Workshop on EmbeddedNetworked Sensors, pp. 61�65, May 2006.[6℄ W. P. MCartney and N. Sridhar, �Abstrations forsafe onurrent programming in networked embeddedsystems,� in Proeedings of the 4th internationalonferene on Embedded networked sensor system,pp. 167 � 180, Otober 2006.[7℄ M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garia,J. Warrior, D. Estrin, and M. Srivastava., �Cylops: Insitu image sensing and interpretation in wireless sensornetworks,� in In pro. 3rd international onferene onEmbedded Networked Sensor Systems,, pp. 192�204,November 2005.

92

