A New Model for Updating Software in

Wireless Sensor Networks

Stephen Brown, National University of Ireland Maynooth
Cormac J. Sreenan, University College Cork

Abstract

Wireless Sensor Networks (WSNs) are expected to be deployed for long periods
of time, and the nodes are likely to need software updates during their lifetime,
both for bug fixes and in order to support new requirements. But in many cases
the nodes will be inaccessible or too numerous to be physically accessed. This
drives the need for “over-the-air” support for software updates, and a number of
different systems and supporting protocols for performing these updates have been
developed. These systems have addressed the problem in a number of different
ways, and meet different requirements. This article consolidates this work by deter-
mining an integrated set of necessary WSN software update criteria, and present-
ing a novel model for WSN software update systems.

ireless Sensor Networks (WSNs) have gained

much attention lately due to the recent devel-

opments in systems integration and mobile

wireless. A critical issue in the effective
deployment of these networks is the ability to update software
after deployment.

There are a number of reasons why the software may
require updating in a WSN. The Software Engineering Insti-
tute (SEI) at Carnegie-Mellon University identifies four cate-
gories of software updates for dependable systems, which help
to provide an insight into these reasons: maintenance releases,
minor releases, major releases (technology refresh), and tech-
nology insertion.

Embedded, wireless sensor systems, programmed by spe-
cialists in their own environmental domains rather than soft-
ware engineers, are likely to experience higher levels of
maintenance than normal. Minor releases will be used to
improve data collection and performance. As the needs of
WSN s are likely to develop dynamically over time, major
releases can be expected in response. Finally, due to the
active research on WSNs and related technologies (especially
wireless), and the associated development of new algorithms
and protocols, technology insertion will be an important driv-
er of software updates. In addition, software updating over
the network will be an absolute necessity in the development
and testing cycle for large-scale WSNs [1].

In this article we provide a consolidated set of WSN software
update requirements in the form of criteria to be met, present a
new model that meets these criteria, and validate our model
against some representative systems. This article does not
attempt to provide a detailed comparison of existing algorithms
from the viewpoints of performance, energy efficiency,and so
forth, but rather provides an encompassing framework within
which existing and new research can be placed so that the rela-
tionships between them can be better understood.

The rest of this article is organized as follows. First, the
problems associated with the software update problem in
WSNs are described, and the systems analyzed in developing a

model are detailed. Next, the set of derived criteria for soft-
ware updating is presented. The software update model is
then described, and validated against four different implemen-
tations. In the conclusion, we propose this model as a frame-
work for future research.

Background

The criteria and model presented in this article are based on a
review of the requirements associated with updating software
in WSNs [2-6], developments in the associated areas of han-
dling execution failures in WSN updates [7] and managing
software updates [8], and on a detailed analysis of the follow-
ing WSN software update systems, components, and proto-
cols: Agilla, Maté (Bombilla), COMiS, Contiki, cSimplex,
Deluge, Deployment-Support Networks (DSN),
Zebranet/Impala, Infuse, MNP, MOAP, MANTIS/MOS,
Pushpin/Bertha, REAP/RSN, Reijers’ diff-based optimiza-
tions, Jeong and Culler’s Rsync-based Incremental Network
Programming, ScatterWeb, SensorWare, SOS, Spatial Pro-
gramming, SINA, Szumel ef al.’s Mobile Agent Framework,
Trickle, and XNP (references for these can be found in [9]).
Traditional software update tools are ineffective for WSNs,
as they do not take into account the severe resource con-
straints at individual nodes, or the impact of wireless commu-
nication. As discussed in [8], systems such as HP OpenView,
IBM Tivoli Configuration Manager, and Microsoft Systems
Management Server provide features such as planning, impact
analysis, selective targeting, distributing differential changes,
and patches for size reduction, multicast propagation, and
some support for pervasive and intermittently connected
mobile devices. However, they do this in an environment in
which the target systems have significant resources compared
to a typical Wireless Sensor Node (e.g., storage space, power,
O/S features, etc.), a separate and reliable networking infras-
tructure exists, and manual intervention is a realistic option.
Wireless sensor nodes are characterized by very limited
resources, and by large-scale deployment. Accessing these

42 0890-8044/06/$20.00 © 2006 IEEE

IEEE Network * November/December 2006

nodes in the field to perform software updates can be difficult

or impossible. The nodes can be difficult to locate or inacces-

sible, or the scale of the deployment can preclude individual

access. Remote update poses its own problems, however, due

primarily to resource constraints. Three key issues are:

* Avoiding interference with data collection while sharing the
same communications infrastructure

* Minimizing the cost of upgrades in terms of the impact on
sensor network lifetime

* Avoiding the loss of part or all of a sensor network due to
an upgrade fault

There are two classes of software updates for WSNs: static
and dynamic. A static update involves rebooting the node. The
update itself may be in the form of a single monolithic image,
or incremental in the form of patches to an image, or incre-
mental in the form of full updates to software modules. State
may be transferred to the new software through boot-safe
memory. The operation of an individual node will be inter-
rupted during the update, but acceptable operation of the net-
work as a whole may continue. A dynamic update is made
without stopping execution of a node’s operational software
— though the operation of the software being updated will be
necessarily interrupted. Typically, the old code is marked as
unavailable and unlinked from the system, and the memory is
freed for reuse. Then the new code is loaded into program
memory, linked in, initialized, and marked as available for
use. Typically, support is provided to transfer state to the new
software, and to hide the temporary interruption from other
software components — a difficult area to handle effectively.
Mobile agents are a distinct form of dynamic updates, where
software is moved from node to node to track events and
data. Their inherent support for mobility usually provides for
state transfer, but updating existing agents is more difficult
than injecting new agents.

Remote software updating may be supported in the operat-
ing system (e.g., ScatterWeb, SOS), in a middleware layer
(e.g., Impala, Sensorware, Maté, COMiS), or in application
space (e.g., XNP, MNP, MOAP, Deluge).

Software Update Criteria

Based on a first-principles look at the requirements for updat-
ing WSN software, an examination of partial criteria provided
in a number of articles, and a review of existing WSN soft-
ware update mechanisms, we have developed a set of criteria
for deriving and evaluating WSN software update solutions.
The justification for why these criteria are necessary for a
complete and optimal solution is presented for each.

Functionality. After developing a software update, three
main phases of activity are required before the update can
start executing on the nodes. These are generating the update,
propagating the update to the target nodes, and activating the
update on these nodes. Planning is an important part of the
generation, and feedback from all three phases may be used
to improve the quality of future planning in order to provide
responsiveness to the actual network configuration and condi-
tions. In addition, continuity of service must be ensured, espe-
cially with regards to backwards and forwards version
compatibility of updates. There must be support for both
monolithic and partial updates.

Security. Authentication is required to ensure that no
unauthorized updates can be effected. It may also be needed
to provide fine-grained determination over what software can
be updated by which end users. Privacy is required to ensure
that neither the updated software nor node-specific informa-
tion (e.g., network address, id, passwords, location) can be
intercepted. Data integrity of the update must also be ensured

(e.g., checksum or digital signature). The system must also be
robust against denial-of-service attacks, which may compro-
mise the operation or lifetime of the network.

Performance. This is a key factor for other WSN applica-
tions, and energy/lifetime costs must be balanced against time:
one critical difference with respect to data gathering is that
data transmission must be reliable. There may also be subtle
factors involved in minimizing the impact on overall network
lifetime, avoiding underpowered nodes, and using forward
error correction effectively. The impact on normal operation
must be limited, restricting the use of resources such as mem-
ory, CPU, and network bandwidth. Using broadcasting to
reduce transmission energy introduces potential problems
such as broadcast storms and collisions. The time taken to
reprogram an entire network needs to be controlled. There
should be no inherent limitations on the size of the software
update — implying the need for image fragmentation.

Reliability. Given the inaccessible nature of many sensor
networks and the likelihood of very large-scale deployment,
the reliability of the software update mechanism is critical. It
must be able to complete the update even in the presence of
noncritical failures. In addition, reliability of the updated soft-
ware is an undoubted necessity, and the update mechanism
needs to support both local and network-wide fallback to the
previous version (or a known good image) if a software
update fails. Ideally an update should be autonomous; once
injected, it should handle various error conditions and either
run to a complete installation or reject the upgrade.

Usability. An upgrade system must provide host tools to
support the generation, propagation, and activation of a soft-
ware update. It must support the update of both the O/S and
application software in the target nodes. In addition, main-
tainability is important for practical use: it must be possible to
update the software updating mechanism itself. An additional
need is the ability to monitor the status of an update, and pos-
sibly take corrective action. An accurate mechanism for the
maintenance of software names and version numbers is key
here also.

Portability. Whereas a particular implementation may have
limited portability, the general mechanism should be indepen-
dent of the features of any particular O/S, middleware layer,
or MAC layer. It should also be feasible on a wide range of
WSN platforms: from very resource-limited nodes, to larger
ones with more resources (especially program memory, exter-
nal memory, and CPU).

A WSN Software Update Model

The model presented here has been developed to support the
functionality criteria identified in the previous section (includ-
ing some aspects of security). The rest of the requirements
identified apply across all the functionality activities. Optimal
algorithms are the ones that best meet the needs of perfor-
mance, reliability, and security; optimal systems are the ones
that also best meet the needs of usability and portability.

The high-level data-flow diagram (DFD) shown in Fig. 1
highlights the interactions between the three key elements of
software update functionality: generation, propagation, and
activation.

Generation
On a host system, this functionality is concerned with planning
for the update, generating the update data, and inserting it
into the network (Fig. 2).

Plan for a software update — This may involve running a
simulation (or using a model) to estimate the required power
to do an update, allowing the efficiency of different alterna-

IEEE Network * November/December 2006

43

Generation Host
Propagation Network
Feedback
Node

M Figure 1. WSN software update model.

tives to be explored, or verifying that the update is feasible.
Current network and node configuration data may need to be
fed in. Planning is likely to be a key feature in providing
power-efficient updates.

Build the software update — This may involve converting
the output from the compiler tool-chain into a suitable for-
mat, reducing the image size by reading the old image and
creating a differences script or compressing the new image,
adding forward error correction, and reading a key to sign or
encrypt the image to provide authentication and privacy.

Insert the software update into the network — This involves
running a tool on a management host that communicates the
image to a base station in the network. It may communicate
directly to the base station to do this, emulate a base station,
seed the code propagation directly to selected nodes in the
network, or communicate directly with the targets.

Note that feedback from the monitor activity in the propa-
gation and activation phases may act as feedback for genera-
tion or to future planning. For example, the decision of
whether to generate a full update, or a diff-style update, may
depend on knowledge of which nodes are running which soft-
ware version. Or network-specific parameters, such as net-
work depth, may be determined by this feedback, and used in
planning a future update.

Propagation

This functionality is concerned with transferring the update
from the insertion point through the wireless sensor network
to the desired destination points or targets. This network-wide
functionality is supported by client-server interactions.

Server-Side Propagation — Following download of a software
update, each client may subsequently act as a server, or
source, to other nodes (Fig. 3).

The activities identified in the diagram shown in Fig. 3 are
as follows:

Advertize: Send image metadata — normally via broadcast
to neighboring nodes to minimize transmission energy. The
transmission of duplicates can be avoided by overhearing
other broadcasts. This functionality normally continues indefi-
nitely, using variable timers for increased efficiency, in order
to provide recovery from temporary network partitioning. The
advertize and listen functions can use authentication to
enhance security.

Old s/w
New S/W

Key

Feedback

M Figure 2. Generation.

™\ S/W update metadata
Advertise

Trigger

Client
(target)

S/W update

ransfer/send

B Figure 3. Propagation/server side.

Transfer/send: Transfer the software update to the client —
this needs to handle packet loss and delays at the client end
(especially writing to slow EEPROM memory). The main design
challenge here is preventing network congestion (bandwidth
hogging, collisions/hidden terminal problem, and broadcast
storms). Denial-of-service attacks must be identified and han-
dled here; requests for retransmissions may be a particular
source of weakness. When there are no further transfer requests,
a server may trigger activation, and/or may continue as a server.

Client-Side Propagation — The client side of the interaction
(Fig. 4) is the more complex, as performance concerns mean
that connection state is invariably handled more effectively at
the client.

The activities identified in the diagram (Fig. 4) are as fol-
lows:

Listen: Collect metadata from update advertizements — the
decision can be more efficient if a number of advertisements
are collected first. Also, a node’s own advertising strategy can
be optimized by overhearing other advertisements.

Decide: Compare metadata from the collected update
advertisements with that in the nodes current software. Use
rules (e.g., version comparison) to trigger the fetch function.
Decide can also trigger the server mode, and effect changes in
the advertising. The design challenges here in selecting a
source are avoiding both broadcast storms and excessive
latency, while minimizing energy use and avoiding excessive
delays. Denial-of-service attacks may be identified in the listen
and decide functionality.

Transfer/recv: Transfer the software update from the server
into storage — this needs to rate-limit the server in order to
handle delays in writing so as to slow memory. The main
design challenge here is preventing network congestion (band-
width hogging, collisions/hidden terminal problem, and broad-
cast storms). When transfer is complete (see verify below), the

44

IEEE Network * November/December 2006

Collected

S/W update metadata metadata
/W up p(Listen

Transferred
S/W update

(source)

ETrigger

>~ _Trigger

on the client.

Note: Both Decide and Transfer/receive can initiate server functionality

Load: Copy the code into program memory;
this may involve format conversion. In some sys-
tems, where program memory cannot be easily
written, this may be part of a bootloader; in
other systems, this may be performed inline. The
space for the old code may need to be de-allo-
cated. For a dynamic update, the new code will
need to be linked into the existing image (and
the old code unlinked). This load may be part of
the decode activity for a differences script if the
new image is loaded on-the-fly into program
memory.

Execute: For static updates, the load and exe-

W Figure 4. Propagation/client side.

execution phase of the update can occur. The fetch functionali-
ty will also trigger the nodes’ own advertize in order to further
propagate the update upon completion of a complete image.
The delay time can be reduced for little or no energy cost by
triggering advertize on completion of each download segment,
providing for pipelining (spatial multiplexing) of the image
segments over the network.

Verify: Verify that the download is complete, and trigger
additional transfers if required. This may occur on a packet-
by-packet basis, using positive or negative acknowledgments,
or be a request for missing segments once the initial transfer
has completed. Once complete, the execution phase can be
entered. Efficient handling of lost packets can have a signifi-
cant impact on both the total download time and the network
bandwidth used.

Monitor: This provides feedback on the progress of the
update. This may be used to populate a end-user display, used
as feedback in future update planning, or used to make deci-
sions (e.g., canceling an upgrade, etc.).

Activation — This functionality (Fig. 5) is associated with initi-
ating the execution of the software update on the destination
nodes; it may be triggered locally, through consensus, or from
the host node, based on various rules. The update is checked,
loaded into program memory, and then executed (or made
available for execution).

It is assumed, with no loss of generality, that a node has both
storage memory (to store the update) and program memory (to
store the new S/W) available. In cases where there is no actual
external memory, program memory may be used, or an update
may be loaded in small sections into RAM (acting as storage)
and each immediately loaded into program memory.

Decode: As necessary, decompress the image and decrypt
using the key; these may be done on-the-fly to save memory
space. If the update is a “differences script,” then decode and
execute the instructions against the old software to generate
the new software. The new software may be an entire image,
an application, a software component (or mobile agent), or
just a patch applied to the old image.

Check: Check the new software for security and correct-
ness. For security, authentication and data integrity can be
checked. For correctness, the code can be checked against a
template (for example, make sure that each function has a
return statement). The security checks may be made before
decode. The operating system may be a protected component,
either with password protection, or allowing no updates “over-
the-air.” The following load and execute functions may either
be triggered locally, through a set of rules potentially involv-
ing neighborhood and network-wide status, or remotely from
the host system.

cute functionality is often handled by a dedicated
boot-loader (due to the programming models of
the associated CPU). For dynamic updates, the
activate functionality consists of initializing the
new component, and marking it as available for execution.

Monitor: Following the activation of the new software, its
progress may be monitored for correct operation. Status may
also be returned to the host to provide feedback. Checks may
be embedded in the code (internal consistency checks), or
may be performed externally (ensuring that the code behavior
matches a model). Following a failure of the software, the
new software may be restarted, the system may revert to the
previous software version, or a “known good” image may be
invoked. This will involve collaboration with the compare
functionality to make sure that future update advertisements
are correctly interpreted. If the “known good” image is not
stored locally, there may be direct communication with the
host to acquire it.

Validating the Model

Space does not allow for a full validation of the model against
the many systems, protocols, and mechanisms reviewed in
preparing the criteria and model. Instead, the model is vali-
dated here against three different systems, representing three
different classes of software update: static/monolithic updating
(MOAP), dynamic/mobile agent-based updating (Maté), and
dynamic/component-based updating (Impala). In addition, the
model is validated against a distribution protocol (Deluge).

MOAP

MOAP [6] is a multihop, over-the-air code distribution mech-
anism specifically targeted at MICA2 motes running TinyOS.

Generation — Only static/monolithic image updates are sup-
ported. To build the update, a packetizer converts the soft-
ware image to 16-byte segments. Insert is supported by
delivering the software update to a base station, along with
the software version number.

Transferred
S/W update

M Figure 5. Activation.

IEEE Network * November/December 2006

45

Propagation — To advertize the update, the base station (and,
subsequently, secondary sources) broadcast publish messages
advertising the version number of the new code. This ripple
approach explicitly increases latency in order to reduce trans-
mission energy. Network partitioning is handled by a late join-
er mechanism — nodes continuously send publish messages to
advertise their version. Receivers listen for a period to receive
all subscriptions, in order to optimize the selection of sender.
Decide is implemented by receiving nodes checking the adver-
tised version number. Transfer/client requests the update with
subscribe messages. A link-statistics mechanism is used to try
to avoid unreliable links. If transfer/server receives no sub-
scribe messages within a timeout period, it “commits” by trig-
gering activation. The store-and-forward approach provides a
“ripple” pattern of updates. Once a node has received an
entire image, it becomes a sender in turn. The verify perfor-
mance is enhanced by using a bitmap of received segments to
reduce EEPROM reads. Missing segments are identified by
the receiver using a sliding window, and are re-requested
directly from the receiver using a unicast message to prevent
duplication. NACK-based re-requests reduce both energy
usage and memory space requirements for the sender. Re-
requests are prioritized to reduce delay by quick recovery.
Sliding window acknowledgments reduce power consumption
(reduced EEPROM reads) at the cost of reduced out-of-order
message tolerance. If unicast retransmission requests are not
responded to, broadcasts are used.

Activation — A decode function transforms the downloaded
text records into binary data. The check is provided by the
underlying link mechanisms on a per-packet/segment basis. A
bootloader performs load and execute by transferring the new
image to program memory from EPROM, and then reboot-
ing. The version advertisements provide a limited monitor,
which gives version feedback to neighbors.

MOAP focuses on the performance of the propagation pro-
tocol, and provides limited support for advanced generation
or activation features.

Maté

Maté [10] is a communication-centric WSN middleware layer
for TinyOS, based on a virtual machine (VM) architecture.

Generation — Maté supports code in 24 instruction capsules;
larger programs can be supported using subroutine capsules
(currently limited to four). To generate the update, programs
are assembled, and then insert takes place through the injec-
tion of the new modules (or new module versions) into the
network using the capsule injector to a directly connected mote.

Propagation — Every node broadcasts a summary of 32-bit
capsule version numbers to its neighbors, based on a random
timer, to advertize an update. Code capsules are flooded
through the network via viral programming — code capsules
can be marked as self-forwarding, and such capsules are
flooded throughout the network. This flooding continues even
after the entire network has been updated. Decreasing the
advertisement frequency when an identical vector is heard —
at density-aware transmission rates — can provide an efficient
trade-off between response time and avoiding network satura-
tion. Each node listens for broadcast version vectors. If it
hears a version summary with older capsules than it has itself,
then Decision triggers transfer/send to broadcast the newer
modules. Complete capsules are transferred in each message;
the target VM does a transfer/recv for these. No verify is
required, as code capsules fit into single packets; the continu-
ous flooding handles lost packets.

Activation — When the target VM receives a new capsule ver-
sion, it unloads the previous version, and loads the update.
The new capsule version will be triggered for execute by an
associated event. Neighbors effectively monitor the version
update through the advertisements.

Maté uses “viral code propagation” to deliver mobile code
updates to all nodes; it focuses on the propagation and
mobile-code related activation aspects. It also provides limited
support for advanced generation and activation features.

Impala,/ZebraNet

Impala is the event-based middleware layer of ZebraNet [3],
which uses wildlife tracking as a target application in the
development of mobile wireless sensor networks.

Generation — Impala supports wide range of updates (from
bug fixes, through updates, to adding and deleting entire
applications). It uses version numbering to ensure compatibili-
ty of updates with existing modules. In generate applications
can be formed of multiple modules (with an 8 KB module
limit). Linking takes place on the target nodes, so unlinked
binaries are prepared for injection. To insert the update, it is
sent to the base station.

Propagation — Nodes advertize the version numbers of both
complete applications and their constituent modules. Nodes
listen to their neighbors’ advertisements, and a decide triggers
advertize to increase a backoff timer exponentially if all neigh-
bors have the same software versions — this significantly
reduces management traffic, but can delay updates if network
connectivity to nodes with earlier software versions is lost and
recovered. In transfer/recv, nodes make unicast requests
(using node ID as a tie-breaker) to trigger transmission of
newer modules only, thus saving on network bandwidth.
Transfer/send nodes respond to requests from other nodes, by
transmitting the code for the first requested modules. In
transfer/recv, if memory space is exhausted, then older incom-
plete applications are deleted. Multiple contemporaneous
updates (different versions of the same module) can be pro-
cessed. To verify updates, lists are used to keep track of which
modules have been received; partially received modules are
re-requested on the next advertisement through co-operation
with a decide. When all the modules in a particular update
have been received, activation is triggered.

Activation — Simple sanity checks are performed (e.g., only
valid memory accesses, and a return statement). To load an
update, the old version application is terminated, the modules
in the new version are linked in, and the pointers in the appli-
cation activation table are updated. Code memory manage-
ment is provided in 2 K blocks to cope with multiple
applications each consisting of multiple modules. To execute
after loading, the new application is first initialized. Applica-
tions can continue running while updates are being download-
ed. Monitor is effectively provided to neighbors through the
advertisements.

Impala concentrates primarily on the propagation of the
update, but also provides somewhat more comprehensive sup-
port for generation and activation. The explicit support for
modules can significantly decrease overhead.

Deluge

Deluge [1] is a data dissemination protocol for reliably propa-
gating large amounts of data throughout a WSN using incre-
mental upgrades for enhanced performance.

46

IEEE Network * November/December 2006

Generation Propagation Activation
Build | Insert Decide Verify | Monitor | Decode | Check | Load E::f;
MOAP 4 v 4 v 4 v 4 v v 4 4 v 4
Maté 4 v 4 v v 4 4 v v 4 v v 4
Impala v v 4 4 v 4 v v v v 4 4 v
Deluge 4 v 4 4 4 4

B Table 1. Software update functionality comparison.

Generation — Deluge does not itself support this.

Propagation — A program image is split into fixed size
pages that can be ‘reasonably’ buffered in RAM, and each
page is split into fixed size packets so that a packet can be
sent without fragmentation by the TinyOS network stack.
Nodes advertize using a broadcast containing a version
number and a page bit vector, using a variable period based
on updating activity. Nodes listen to their neighbors’ adver-
tisements, and if the decide determines that it needs to
upgrade part of its image to match a newer version, then,
after listening to further advertisements for a time, trans-
fer/recv sends a request to the selected neighbor for the
lowest page number required and the packets required
within that page. After listening for further requests, trans-
fer/send selects a page, and broadcasts every requested
packet in that page. Verify triggers transfer/recv to either
request new pages, or re-request missing packets from a
previous page. When a node receives the last packet
required to complete a page, verify triggers advertize to
broadcast an advertisement before requesting further pages
to allow parallelization of the update within the network.
Heuristics are used by transfer/send to try and select rela-
tively remote senders (to minimize radio contention).
Incremental updates are supported by advertize, indicating
which pages have changed since the previous image ver-
sion; the decide then triggers transfer/recv to request just
the changed pages.

Activation — Deluge itself does not support this: an associated
bootloader, TOSBoot, allows Deluge objects to be invoked at
boot time.

Deluge concentrates on the efficient propagation of the
update, and includes many optimizations to minimize the
reprogramming time and power used.

Comparison of Functionality Supported

The functionalitiy supported by each of the different WSN
software update systems examined earlier is given in Table 1
for comparison. Note that only the areas of functionality
addressed by each system are identified; the degree of support
is not. A more complete comparison would need to address
the other identified criteria: security, performance, reliability,
usability, and portability.

Conclusions

Efficient software updating is in many ways one of the most
challenging features to provide on a Wireless Sensor Network
(WSN). It requires relatively large amounts of data to be reli-
ably disseminated to the nodes, sophisticated mechanisms to
minimize the cost of this dissemination, and aggregated status
to be returned to a host. It may also require tracking of soft-
ware failures and recovering from these failures in a network-

wide manner. It must provide support to handle network par-
titioning, node failures, software failures, data transmission
failures, and other intermittent and persistent faults. It is a
mission critical application: its failure may cause loss of an
entire WSN.

Dr. G. Parulkar from the National Science Foundation
(NSF) highlighted the need for the consolidation of disparate
solutions in WSN research in his keynote address to the Sec-
ond IEEE Workshop on Embedded Networked Sensors
(EmNetS-II) in Sydney, Australia on May 30, 2005. The work
presented in this article addresses this need by providing a
framework for consolidating research into WSN software
updating. Future work will involve further validation of the
model, and use of the model in integrating the best features
of existing solutions to provide a more comprehensive
approach for software updates.

References

[11J. Hui and D. Culler, “The Dynamic Behavior of a Data Dissemination Proto-
col for Network Reprogramming at Scale,” Proc. 2nd Int'l. Conf. Embedded
Networked Sensor Sys., Baltimore, MD, Nov. 2004, pp. 81-94.

[2] P. Levis et al., ”Tric(le: A Self-Regulating Algorithm for Code Propagation
and Maintenance in Wireless Sensor Networks,” Proc. First USENIX/ACM
Symp. Network Sys. Design and Implementation, San Francisco, CA, Mar.
2004, pp. 15-28.

[3] T. Liu et al., “Implementing Software on Resource-Constrained Mobile Sen-
sors: Experiences with Impala and ZebraNet,” Proc. 2nd Int’l. Conf. Mobile
Sys., Apps. and Svcs., Boston, MA, June 2004, pp. 256-69.

[4] N. Reijers and K. Langendoen, “Efficient Code Distribution in Wireless Sen-
sor Networks,” Proc. 2nd ACM Int'l. Wksp. Wireless Sensor Networks and
Apps., San Diego, CA, Sept. 2003, pp. 60-67.

[5] L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro, “MANNA: A Management
Architecture for Wireless Sensor Networks,” IEEE Commun. Mag., vol. 41,
no. 2, Feb. 2003, pp. 116-25.

[6] T. Stathopoulos, J. Heidemann, and D. Estrin, “A Remote Code Update
Mechanism for Wireless Sensor Networks,” CENS tech. rep. #30, Dept.
Comp. Sci., UCLA, Nov. 2003.

[7] P.V. Krishnan, L. Sha, and K. Mechitov, “Reliable Upgrade of Group Com-
munication Software in Sensor Networks,” Proc. Tst IEEE Int'l. Wksp. Sensor
Network Protocols and Apps., Anchorage, AK, May 2003, pp. 82-92.

[8] C.-C. Han et al., “Sensor Network Software Update Management: A Sur-
vey,” Intl. J. Network Mgmt., no. 15, 2005, pp. 283-94.

[91 S. Brown and C. Sreenan, “A Survey of Software Updating in Wireless Sen-
sor Networks,” Tech. rep. UCC-CS-2006-13-07, Dept. Comp. Sci., University
College Cork, Ireland, July 2006.

[10] P. Levis and D. Culler, “Maté: A Tiny Virtual Machine for Sensor Net-
works,” Proc. 10th Int’l. Conf. Architectural Support for Programming Lan-
guages and Op. Sys., San Jose, CA, Oct. 2002, pp. 85-95.

Biographies

STEPHEN BROWN (stephen.brown@nuim.ie) is a senior lecturer in computer science
at the National University of Ireland, Maynooth, where he was acting head of
department for several years. Previously he worked for Digital Equipment Corpo-
ration. His research interests are in embedded networked systems, with a partic-
ular emphasis on wireless sensor networks. He is a member of the Institute of
Microelectronic and Wireless Systems in Ireland, and an IEI Charfered Engineer.

CORMAC J. SREENAN [M] is a professor of computer science at University College
Cork, where he also served as head of department from 2000 to 2004 inclusive.
Previous|y he was a researcher at AT&T (Bell) Labs, New Jersey. His research
interests are in mobile and multimedia networking. He holds a Ph.D. in computer
science from Cambridge University, and is a member of ACM and a Fellow of
the British Computer Society.

IEEE Network * November/December 2006

47

