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ABSTRACT
In ad hoc networks that employ source-based on-demand routing,
network nodes can use information contained in packet headers to
populate a link cache. Given sufficient route requests and network
traffic, a link cache will provide a good view of the spatial network
topology in the past. This view can be successfully applied to mak-
ing future routing decisions provided that links are allowed to expire
through a timeout mechanism, so that the cache stays fresh. In this
paper, we further assume that each node has the ability to determine
its location, velocity, and bearing. We propose a link timeout mech-
anism that is based on mobility prediction, and introduce link cache
extensions that incorporate temporal information regarding the fu-
ture state of the network topology. By utilizing spatial and tempo-
ral information, better and more efficient routing decisions can be
made. Furthermore, local repairs can be preemptively initiated in
anticipation of a link break.

1. INTRODUCTION

Wireless ad hoc networks are distinguished from conventional packet
networks by the lack of an established infrastructure of routers. In-
stead, ad hoc networks rely on network nodes to cooperate in for-
warding packets through the network, thus enabling communication
between nodes that are outside each others’ limited wireless trans-
mission range. In addition, the majority of applications envisaged
for such networks require that nodes be mobile. Hence the nodes in
a mobile ad hoc network are required to not only perform a routing
function, but to do so for a network topology that changes dynami-
cally.

Routing protocols for ad hoc networks can generally be classi-
fied as being either periodic or on-demand. Periodic protocols oper-
ate in the same way as well-established protocols such as Distance-
Vector routing and Link-State routing, in that they rely on regular
exchanges of routing information between network nodes, with the
aim of ensuring that each node has a valid route to every possible
destination. On-demand protocols do not maintain complete rout-
ing information, but instead require a node to attempt to discover a
route when that node actually has a packet to send to the destina-
tion. There are several factors to be considered in selecting a proto-
col, including the per-node memory and computation requirements,
aggregate power consumption for wireless communication, and the
impact of delays due to route discovery in on-demand protocols.

On-demand routing protocols for ad hoc networks use caching
in order to avoid having to perform expensive route discovery oper-
ations each time a packet is to be transmitted. In source-based rout-
ing protocols, the complete route is contained in each packet header.
Since each node in an ad hoc network also serves as a router, spatial
information regarding the network can be extracted from source-
routed headers and used to populate a link cache. Given enough
diverse route requests and network traffic, a link cache will provide
a good view of the network topology in the past. This view can
be successfully applied to making future routing decisions provided
that links are allowed to expire through a timeout mechanism, so
that the cache stays fresh. Prior work has studied the choice of link
timeout mechanisms for source-based on-demand routing, compar-
ing a static and adaptive choice of timeout for the Dynamic Source
Routing (DSR) protocol [1]. The static approach assigned the same
timeout value for every link cache entry. The adaptive approach
assigned a timeout based on the stability of the link endpoints, cal-
culated based on the elapsed time since the link was last used and
the last time the link was observed to break.

In this paper, we propose extending the link cache timeout in
the DSR protocol with one based on a link expiration time that uti-
lizes a simple model of mobility prediction adopted from [2]. This
serves to improve network performance in two ways: 1) link cache
management that avoids purging cache entries too early or too late,
2) better route selection by taking advantage of both spatial and
temporal data in the link cache. With this extension, we identify
two features that are especially relevant to the provision of quality
of service in ad hoc networks. Firstly, the ability to select a suitable
route after taking into account predicted route lifetimes, hop counts
and/or delay. Secondly, the use of preemptive localized route repair
to attempt to extend the lifetime of a route that is in active use for a
flow of packets, without having to resort to a source-initiated route
discovery.

Sections 2 and 3 review the background and related work on ad
hoc routing and predictive routing. Section 4 explains the simple
mobility model we are currently using for our protocol. Section 5
presents our predictive on-demand routing protocol enhancements,
followed in Section 6 by details of predictive route repair. Section 7
concludes the paper.

2. BACKGROUND ON AD HOC ROUTING

There are several routing protocols which have been used for wire-
less ad hoc networks: Dynamic Source Routing (DSR) [3], Des-
tination Sequenced Distance Vector (DSDV) [4], and ad hoc On-



Demand Distance Vector (AODV) [5] are some of the more com-
mon protocols.

In DSDV, each node maintains a routing table which holds in-
formation regarding how to reach all other nodes in the network.
This information includes the number of hops to reach each a node,
the next hop on the route to that node, and a sequence number to
distinguish between stale routes and valid routes. This information
is updated in one of two ways. A “full dump” is broadcast from
each node periodically which contains all entries within the send-
ing node’s routing table. This information propagates through the
network with each node updating its routing table accordingly. The
other method of table updates occurs when an entry within a node’s
routing table is changed. In this instance only information which
has been changed since the last “full dump” is broadcast. Routes
generated using DSDV are generally the most optimal which can
be obtained, as each node has a complete view of the network.

AODV routing is similar to DSDV, in that they both use routing
tables which contain the next hop, number of hops and sequence
numbers for nodes of the network. Route discovery is also done
in a similar fashion to that of DSDV. AODV on the other hand
does not keep an entry for all nodes in the network. Instead each
node only stores information regarding routes which that node is
currently involved in, or has been involved in. When a node using
AODV desires to send a packet, it looks up its routing table, if it has
a valid route to the destination, then it sends the packet, otherwise
the node must initiate a Path Discovery process, whereby the node
broadcasts a Route Request (RREQ) packet to its neighbours, who
in turn forward the packet to their neighbours until eventually the
packet reaches either the destination or a node which has a route to
the destination. A Route Reply (RREP) packet is unicast back along
the desired route with each node making an entry in its routing ta-
ble. In the event of a link failure on the route (in which case the
upstream nodes will propagate a link failure notification message
back to the source) or the source itself moves, the source node can
re-initiate the Path Discovery protocol if necessary.

DSR routing does not use any routing tables, but instead con-
tains a cache of complete routes. When a node using DSR wishes to
send a packet to a destination, it looks up its cache to find a route to
that node, if there is one present then it will use this route, otherwise
a Route Discovery process is begun. In the Route Discovery process
the sender broadcasts a Route Request packet to all nodes, looking
for a route to the destination. Each node forwards the packet, and
adds on its own identifier until the packet reaches the destination or
a node which has a valid route to the destination, at which time a
Route Reply message is sent back to the source. This Route Re-
ply contains the list of hops on the route from source to destination.
This route is stored in the route cache of the sending node. If at any
time a link breaks then a Route Error message propagates back to
the source node which truncates all routes which contain the broken
link.

3. RELATEDWORK

A key issue for improving the performance of on-demand protocols
such as DSR is the use of caching to avoid unnecessary route dis-
covery operations that are costly in terms of additional delay and
power/bandwidth consumption. To this end we propose extending
cache entries with information derived from a simple model of mo-
bility prediction, thereby avoiding purging cache entries too early
or too late, and allowing better route selection and maintenance.

In [1], the authors analyze and evaluate a large number of caching

algorithms which utilize various route cache design choices such as
cache structure, capacity, and timeout for the DSR protocol. The
authors found that “by utilizing a cache data structure based on a
graph representation of individual links rather than complete paths
through the network, the routing protocol was much better able to
make use of the potential information available to it.” In regard to
timeouts they concluded that the performance of adaptive caches is
comparable to that of well-tuned static caches, and that when using
no cache timeout the performance is worse than with timeouts. This
suggests the need to remove links at a steady rate so as to keep the
cache fresh (reducing route errors) but also requires that valid links
should not be unnecessarily removed, as this would lead to an in-
crease in route discoveries to recover lost links. This result leads us
to question whether links can be removed from the cache based on
mobility predictions of the nodes.

In [2], the authors exploit the regularity of mobility patterns
as opposed to assuming a purely random pattern, in order to an-
ticipate network topology changes and perform rerouting prior to
route breaks. Spatial locality prediction has been investigated in
conventional cellular networks where mobility models employing
parameter estimates for such things as speed and bearing are used
to improve network capacity and performance. In the wireless ad
hoc network, the idea is to “piggyback” GPS position information
on data packets which can then in turn be used to estimate a Link
Expiration Time (LET) between two nodes. The LET is calculated
frommotion parameters (speed and bearing) of the nodes for a given
transmission range. By predicting expiration times for each link in a
route, Route Expiration Times (RETs) can be established during the
route discovery process and used in route selection. In the proposed
Distance Vector with Mobility Prediction (DV-MP) protocol, routes
are selected from a node’s route table based on stability (longest
RETs). The benefit of prediction is a reduced routing update inter-
val and thus fewer route table broadcasts and exchanges. The trade-
off is that the route with the largest RET may not have the fewest
hops or shortest delay. Of additional interest in the DV-MP proto-
col are mechanisms to switch between an expiring route and a more
stable route in the middle of a flow. The authors also sketch how a
RET can be used by a destination node in an on-demand protocol to
predict when a new route needs to be established for a given flow of
packets. They do not address the use of caching in such a protocol.

In [6], the authors propose enhancement of the route cache by
predicting the spacial locality of network nodes in order to select
a route from the cache based on its likelihood of existence. The
approach, however, relies on a user’s “behaviour model whereby
each user moves among a number of geographic locations (e.g. a
residence, a workplace, a playground, etc.) spending some time
(with a known probability) in each location before moving on.” It is
unclear, however, how the probability parameters in the user’s be-
haviour model can be accurately established without relying on an
extensive mobility history. Furthermore, there would have to be sig-
nificant cooperation of all nodes in the network (each node would
require its own model with appropriate parameters) and in all likeli-
hood, significant overhead in sharing and updating this information
or at least announcing the expected spatial behaviour to other nodes.

In [7], the authors propose an on-demand algorithm that aims
to preemptively initiate route (re)discovery by anticipating that the
current route is about to break. A route is considered likely to break
when the received power on a link becomes close to the minimum
detectable power. When this occurs, a warning message is sent to
the source indicating the likelihood of disconnection, at which point
it can perform route discovery again. The protocol does not con-



sider the use of prediction for other purposes such as cache mainte-
nance, route selection or repair.

4. MOBILITY PREDICTION

With the DSR protocol, spatial information regarding the network
is extracted from a route request packet by each node along a route.
Given that enough diverse route requests and network traffic will
pass through a node over time, the link cache will provide a rea-
sonably good view of the network topology in the past. This view
can often be successfully applied to making future routing decisions
provided that links are allowed to expire through a timeout mecha-
nism (either static or adaptive) so that the link cache is reasonably
fresh. With an additional assumption that each node has the ability
to determine its location either through GPS or some other posi-
tioning system, we can extend the link cache to include temporal or
time-domain information regarding the future status of a link even
if the network topology is dynamic. In this way the link cache will
attempt to provide an accurate view of the network topology in the
future which can be potentially far more useful in a highly mobile
environment or one in which either route requests or traffic through
a node is sparse.

We adopt the mobility model from [2], which assumes a free
space propagation model where the received signal strength is a
function only of the distance to the transmitter (assuming a fixed
radiated power from each node). Thus a link from node i to node j
can be maintained as long as the distance between the nodes is less
than the transmission range, r or equivalently the signal strength
is above some threshold. Next, we assume that all nodes are ca-
pable of determining a position either through GPS or some other
other positioning system and that these positions are time-stamped
so that a velocity and bearing can be computed (typical functions
in an off-the-shelf GPS receiver). Thus associated with node i will
be a coordinate (xi, yi), velocity vi, and bearing θi. The expiration
time for the link between nodes i and j or equivalently the time it
takes (assuming constant velocities and bearings) for the distance
between nodes i and j to exceed r is given by

tij =
− (vxdx + vydy) +

√
(v2

x + v2
y) r2 − (vxdy − vydx)2

v2
x + v2

y
(1)

where

vx = vj cos θj − vi cos θi (2)

is node j’s velocity in the x-direction relative to node i,

vy = vj sin θj − vi sin θi (3)

is node j’s velocity in the y-direction relative to node i,

dx = xj − xi (4)

is node j’s x-coordinate relative to node i, and

dy = yj − yi (5)

is node j’s y-coordinate relative to node i. Compensation of un-
known inaccuracies in position, velocity, and bearing can be accom-
plished through a reduction of Eq. (1). We will ignore this issue for
now.
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Figure 1: Route discovery process through flooding from Node S to
Node C.

S A B C
tS,A tA,B tB,C

D EF G

H I

tS,F
tF,G

tG,H tH,I

tD,E

tB,D
tC,D

Figure 2: Sample link cache for Node S with link expiration times.

5. PREDICTIVE ROUTING

5.1. Route Discovery

When a source node does not have a route to a destination node in
its link cache, it initiates a route discovery by packet flooding as
depicted in Fig. 1. The discovery packet will initially contain the
source’s identification, position, velocity, and bearing as well as the
destination identification and time-to-live (TTL). (We will also use
TTL to scope route repair as will be discussed in Section 6.) Upon
receiving the discovery packet a node will calculate the LET using
Eq. (1) to the previous node which forwarded the discovery packet.
The LET is recorded in the header as well as the node’s identifi-
cation, position, velocity, and bearing. In addition, the node loads
all routing information and LET data contained in the discovery
packet into its cache thereby extracting valuable network topology
data from the flood. Over time, a node’s link cache might resem-
ble Fig. 2. We note that in addition to updating a node’s link cache
through route discovery, LET data may also be updated during route
selection and data transport as described below.

The discovery process continues until the TTL expires. Assum-
ing one or more route discovery packets make it to the destination,
the destination node selects a route (more on the selection process
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Figure 4: Route selection from Node S to Node C made from Node
S’s cache data.

later) and forwards a route selection packet back to the source to
commence data delivery as in Fig. 3. All nodes in the return route
load routing information and LET data contained in route selection
packet into their cache.

5.2. Route Selection and Data Transport

When a source node has a route in its link cache to a destination
node, it initiates a route selection process to the destination as de-
picted in Fig. 4. As the route selection packet hops from node i to
node j, tij is calculated as in Eq. (1) and inserted into the packet
header while vj , θj replaces vi, θi, respectively, in the header. A
route selection acknowledgment is then returned from the destina-
tion node. It is important that in the route selection process, partic-
ipating nodes update LETs for the route since otherwise we would
rely entirely on route discoveries (which we want to minimize) as
a means for updating link cache data. We note that with sufficient
route selection acknowledgments flowing through the network, an
extremely useful spatial and temporal view of network topology can
be formed with only a few additional bits in the packet header and
no periodic table exchanges. As is highly desired, the extent of this
network view scales with route participation: the more a node is in-
volved in routing, the more evolved both in space and time its link
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cache will be. Of course in DSR, new nodes will eventually be in-
cluded in the link cache as routes expire and route discoveries are
forced.

With a link cache built up as in Fig. 2 there may be several
routes to a destination from which a source can choose from. The
first priority in the selection process will be to determine which
routes have a sufficient route expiration time (RET) (equal to the
minimum of the LETs from source to destination) assuming file size
or stream duration is known. From these routes, the second priority
will then be to choose the route with the fewest hops. Thus with the
proposed extensions to the link cache, we now have the ability to
jointly select a route based both on RETs and hop count.

An important issue for ad hoc routing protocols is that of deter-
mining when a route is no longer available. In the DSR protocol,
complete routing (hop) information is stored in the packet header
as in Fig. 5. As the data packet is forwarded to the next (upstream)
node, a link-layer acknowledgment is generated. If a node does not
receive a link-layer acknowledgment, it assumes the next node can
no longer participate in the route and will look in its cache for an
alternate route to any of the upstream nodes. If a suitable upstream
route exists, the route is repaired, and a route repair notification
packet is sent to the source (as described below). If no upstream
route exists, the node notifies the source of the broken link and the
source may re-examine its link cache or re-initiate route discovery.
Depending on the application, end-to-end acknowledgments may
also be generated to verify packet delivery. During data transport,
if a LET for one of the links in the route changes (due to nodes par-
ticipating in a separate route discovery or selection process), a LET
update is sent to all nodes in the current route as in Fig. 6. Finally,
we note that each node in the route will be required to maintain
an estimated round trip time (RTT) for purposes of predictive route
repair to be described below.

6. PREDICTIVE, LOCALIZED ROUTE REPAIR

A route is initially selected based on RET and possibly hop count.
However, due to unexpected changes in a node’s trajectory, a link
may be predicted to break before the original RET. Particularly
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when transporting packet flows such as streaming media, it is de-
sirable to extend the lifetime of the current route if possible by pre-
emptively beginning a local route repair, i.e. upstream from the first
node in the anticipated break. Here, two cases exist: 1) a different
route to the destination exists in the node’s cache and 2) a route does
not exist in the cache and route discovery to all upstream nodes is
locally initiated. In the first case, a route repair notification packet
(Fig. 7) is sent to the source so that future packets may traverse the
new route. If the new RET is not sufficient, the source can initiate
a new route discovery to the destination node. In the second case,
route discovery to a reasonable number (implemented with a small
TTL) of upstream nodes is initiated by the first node in the break,
i.e. localized route repair. Upon possible receipt of one or more
route selection acknowledgments from the upstream nodes, route
repair is made, and a route repair notification packet is sent to the
source with the new routing information. In both cases, participat-
ing nodes update their caches with link data contained in the route
discovery and route repair notification packets.

In order to avoid disruption of a flow, route repair must be pre-
emptively initiated and thus a starting time for the repair must be
computed. As a worst case bound, we assume the time it takes to
perform a route repair, R is no greater than the time it takes to per-
form a route discovery from source to destination. Thus in order for
the source to have new routing information before a link expires,
the first node in the break must initiate route repair within
(RTT× #LET/RTT$ −R) seconds (we have assumed that the
node has an estimate of the RTT). To see this another way, we as-
sume that during a flow, the source sends packets with a period of
RTT, thus RTT× #LET/RTT$ represents the last time the source
will send data before the link expires. Backing this figure up by R
seconds will enable a new route to be in place before the source is
expected to send another packet.

7. CONCLUSION

In this paper, we propose extending the link cache timeout in the
DSR protocol with one based on a link expiration time that uti-
lizes a simple model of mobility prediction. This serves to improve
network performance in two ways: 1) link cache management that

avoids purging cache entries too early or too late, 2) better route
selection by taking advantage of both spatial and temporal data in
the link cache. With this extension, we identify two features that
are especially relevant to the provision of quality of service in ad
hoc networks. Firstly, the ability to select a suitable route after tak-
ing into account predicted route lifetimes, hop counts and/or delay.
Secondly, the use of preemptive localized route repair to attempt to
extend the lifetime of a route that is in active use for a flow of pack-
ets, without having to resort to a source-initiated route discovery.
Future work will focus on a performance comparison of the pro-
posed approach with other existing published proposals, with the
aim of quantifying the degree of performance improvement that can
be expected.
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