
Bayesian Constraint Acquisition

Steve Prestwich 2019

(Work done partly with Barry, Gene and Dave)



Overview

Modeling a combinatorial problem is a hard and error-

prone task requiring expertise.

Constraint acquisition (CA) can automate this pro-

cess by learning constraints from examples of solutions

and (usually) non-solutions.

I describe a new statistical approach based on sequen-

tial Bayesian hypothesis testing (sequential analysis)

that’s orders of magnitude faster than existing meth-

ods.

It’s also the first robust CA method: it can learn con-

straints correctly from noisy data.

1



Constraint programming

Constraint Programming (CP) is a powerful approach
to modelling and solving decision and optimisation prob-
lems. It draws on techniques from AI, OR, graph the-
ory etc to provide a wide range of variable types, con-
straints, filtering algorithms, search strategies and spec-
ification languages.

A constraint satisfaction problem (CSP) has a set
of problem variables, each with a domain of possible
values, and a set or network of constraints imposed on
subsets of the variables. A constraint is a relationship
that must be satisfied by any solution.

But modelling an application as a CS[O]P remains a
task for experts [Freuder, Puget, O’Sullivan].

2



Constraint acquisition

This modelling problem, and the successes of Machine

Learning at automating a wide variety of tasks, has

inspired the field of CA (closely related to Constraint

Learning, Constraint Synthesis, and Empirical Model

Learning).

In CA we’re given examples of solutions and non-solutions

(positive and negative examples, successes and failures)

and the aim is to learn a constraint model that repre-

sents them.

3



The goal might be automated problem modelling, to

use the model as an explanation of the problem, to

enable classification of partial assignments, to speed

up the solution of future problems, or to find instances

that optimise some objective.

CA has been identified as an important topic, and recog-

nised as progress toward the “holy grail” of computing

in which a user simply states a problem and the com-

puter proceeds to solve it without further programming.

4



Active CA methods are guided by interaction with a

user or other oracle, while passive methods learn au-

tomatically (I’ll only talk about passive CA).

Several CA systems have been devised, many based on

version space learning or inductive logic program-

ming. They usually require a set of candidate con-

straints, also called a bias, that may or may not occur

in the model we are trying to learn.

5



Short survey

(Insight UCC is well-represented!)

Conacq [Bessiere et al.] is based on version spaces and

has passive and active versions.

QuAcq [Bessiere et al.] is an active system. Multi-

Acq [Addi et al.] is a related method that can learn

more constraints from an example. T-QuAcq [Addit et

al.] uses time-bounding to reduce runtimes. MQuAcq

[Tsouros et al.] improves QuAcq and MultiAcq by re-

ducing the number of generated queries and the com-

plexity of each query.

6



ModelSeeker [Beldiceanu & Simonis] needs only a few

positive instances, and finds high-level descriptions us-

ing global constraints.

The Matchmaker agent [Freuder & Wallace] interacts

with a user who diagnoses why an example is not a

solution.

The framework of [Vu & O’Sullivan] learns several types

of constraint model by expressing CA as a constraint

problem.

7



Tacle [Kolb et al.] learns functions and constraints from

spreadsheets.

Valiant’s method [Valiant] learns SAT instances from

positive examples only, and has been extended to first

order logic using inductive logic programming.

There’s also work on learning soft constraints, prefer-

ences and SAT modulo theories.

8



CA via classification

Recently an alternative approach has emerged (though

it’s not always presented as a CA method): train a clas-

sifier to distinguish between solutions and non-solutions,

then derive a constraint model from the trained classi-

fier.

I call this ClassAcq. It’s already been done for decision

trees, SVMs and neural classifiers, but there are many

other classifiers with interesting properties that might

be used.

I’ll show that applying the ClassAcq idea to a Naive

Bayes (NB) classifier leads to a fast robust CA method.

Then I’ll enhance the method using sequential analysis.

9



CA by Naive Bayes

NB classifiers are based on an assumption of indepen-

dence between variables, which at first glance seems to

make them unsuitable for learning constraints between

variables!

But to learn binary constraints we could combine pairs

of variables into single features, which is essentially how

a Pairwise NB classifier works.

More generally, we could consider variable tuples of ar-

bitrary size to learn non-binary constraints. We use this

constraints-as-features idea as follows.

10



Suppose the training data is a set of instances of the

form ~x = 〈x1, . . . , xN〉, where each variable xi can in

principle have any domain, and each instance is in class

C+ (solutions) or C− (non-solutions).

We require a set of candidate constraints, also called

the bias, that may or may not occur in the model we

are trying to learn.

We derive binary features ci: for any example ci = 1 iff

candidate i is violated by that example. This transforms

the training data into a set of binary vectors, each bit

or feature corresponding to a candidate.

11



example

Take a vertex colouring problem with nodes x, y, z, arcs

x–y and y–z, colours x ∈ {R,G}, y ∈ {R,G}, z ∈ {G,B},

bias {x 6= y, x 6= z, y 6= z}, and training examples C+ =

{RGB,GRG,GRB} and C− = {RRG,GGB,RGG}, or in

feature space {000,000,000} and {100,100,001}.

Which candidates in the bias are constraints? x 6= y

and y 6= z are violated by solutions but x 6= z isn’t, so

we might conclude that those 2 are constraints.

(We used only C+ but most methods also use C−.)

12



Because the features are binary we use Bernoulli NB. It

selects a class using the maximum a posteriori rule:

argmaxk



p(Ck)
N
∏

i=1

p(xi|Ck)





ie select the class k that is the mode of the posterior

distribution, where p(C) is a prior class probability and

p(x|C) is the conditional probability of observing x in

class C. In our application an example is a solution iff:

∏

i

p(ci = 1|C−)

p(ci = 1|C+)
<

p(C+)

p(C−)

13



In general we don’t know p(C−) or p(C+) because there’s

no guarantee that these probabilities are reflected in

the training data. Eg given a tightly constrained prob-

lem we might generate training data with similar num-

bers of solutions and non-solutions to facilitate learn-

ing. And we rarely know how tightly-constrained an

unknown constraint model is.

So we assume an uninformed prior p(C+) = p(C−) = 1.

Then an example is classed as a solution iff

∏

i

p(ci = 1|C−)

p(ci = 1|C+)
< 1 or

∑

i

ln

(

p(ci = 1|C−)

p(ci = 1|C+)

)

< 0

14



This linear constraint mimics a NB classifier given ci

values: given any previously unseen example, we can

compute the ci then test the linear constraint; if it is

satisfied then the example is classified as a solution; if

it is violated the example is classified as a non-solution.

The constraint can also be used to check whether a

partial assignment to the ci can be completed to obtain

a solution, or to find an assignment that optimises some

objective, by enumerating combinations of values for

the unassigned ci.

15



We now have a constraint model derived from NB: are

we done? No!

It only has 1 big linear constraint on binary variables

(ci), plus a lot of “reification constraints” linking the ci

to the problem variables. This is not what we wanted.

Instead we’d like to learn which candidates i are in the

model.

16



Luckily, in practice the coefficients of ci for actual con-

straints are quite large positive values, while those for

non-constraint candidates have positive or negative val-

ues close to 0. We can exploit this:

• Force ci = 0 for candidates i with large coefficients,

thus insisting that those candidates are satisfied:

these are the learned constraints.

• Simply ignore all other candidates because there is

insufficient evidence that they are constraints. This

approximation turns out to work fine.

17



In fact there’s no need to generate a feature-based

dataset, which is fortunate as the bias might be large.

We can discard NB and the ci leaving a simple test: for

each candidate i compute

Ki =
p(viol(i)|C−)

p(viol(i)|C+)

where viol(i) means that candidate i is violated by an

example. Then candidate i is accepted as a constraint

if and only if Ki > κ for some threshold κ.

(Conditional probabilities are estimated by counting oc-

currences in the data.)

18



The method has two parameters: an additive smooth-

ing constant often used to avoid zeroes and infinities

in Bayesian methods, and κ (I’ll discard these later).

The test has a straightforward intuition: a constraint

should be satisfied by all solutions (or most if we accept

the possibility of error) but might be violated or satisfied

by many non-solutions.

We call this CA method BayesAcq (cf ConAcq etc).

19



CA by sequential analysis

Ki can be viewed as a likelihood ratio called a Bayes

factor, so the BayesAcq test can be viewed as an ap-

plication of Bayesian hypothesis testing (BHT):

• the violations of candidate i by examples are the

observed data

• non-solutionhood of an example (membership of

C−) is the null hypothesis H0

• solutionhood (membership of C+) is the alternative

hypothesis H1

20



The Bayes factor measures the relative plausibility of

hypotheses H0 and H1 based on the observed data for

candidate i. If H0 is sufficiently more plausible this

fits one definition of a constraint: a relation that is far

more likely to be violated by a non-solution than by a

solution.

Seems nice but a bit academic: how can we exploit this

connection?

21



BayesAcq calculates Bayes factors using all available

examples, but this is not always necessary! In sequential

BHT, or sequential analysis, the sample size is not

fixed in advance, and a stopping rule can be used to

accept or reject a hypothesis much earlier.

As samples arrive the Bayes factor is updated and mon-

itored: if it becomes large enough then the null hypoth-

esis is accepted, while if it becomes small enough the

alternative hypothesis is accepted.

Early stopping has been used many times...

22



• Clinical trials can be halted as soon as it becomes

obvious that an experimental treatment is harmful,

or that one treatment is much more successful than

another.

• In manufacturing, product lots are tested for de-

fects: lots should be accepted or rejected after as

few tests as possible, to save time and costs.

• A similar approach (Banburismus) was developed

independently by Turing for fast decryption.

23



Similarly, we can speed up CA by using fewer examples

when testing candidates.

I use a simple algorithm invented by OR pioneer Abra-

ham Wald in 1945: the Sequential Probability Ratio

Test (SPRT). It implicitly uses Bayesian updates but

(probably because of the primitive state of computing

in the 1940s) avoids divisions via an approximation.

I’ll use a manufacturing example to illustrate SPRT...

24



Products are sampled and tested one by one (m =

1,2, . . .), counting the number dm of defects found so

far.

If at any point dm < Am the lot is accepted and the

algorithm halts (Am is an acceptance number).

But if at any point dm > Rm the lot is rejected and the

algorithm halts (Rm is a rejection number).

Otherwise the algorithm continues indefinitely.

25



Am and Rm increase with time, eg

accept

R

A

m

d

If we cross the A-line we accept the lot, if we cross the

R-line we reject it, otherwise we continue sampling.

26



SPRT has 4 probability parameters p0, p1, α, β which

specify how to compute Am, Rm:

Am =
ln β

1−α

ln
p1
p0

+ln
1−p1
1−p0

+m
ln

1−p0
1−p1

ln
p1
p0
−ln

1−p1
1−p0

Rm =
ln 1−β

α

ln
p1
p0

+ln
1−p1
1−p0

+m
ln

1−p0
1−p1

ln
p1
p0
−ln

1−p1
1−p0

This specifies the sampling plan.

(Nice algorithm! Any ideas for other applications?)

27



We can apply SPRT to BayesAcq to get a sequential

version: SeqBayesAcq. It’s potentially faster because

it adaptively reduces the number of examples used for

testing a candidate. (In particular: assuming no data

errors, we can stop testing a candidate as soon as we

encounter a solution that violates it.)

It has only 2 easy-to-understand parameters A,R (if we

don’t expect any data errors then set R = 1) and uses

only integer arithmetic.

For each candidate i we test whether it is violated by

each of a random sequence of examples...

28



• On observing some number A of non-solutions on

which it does not hold, accept it as a constraint.

• On observing some number R of solutions in which

it does not hold, reject it.

• If neither threshold is reached before the examples

are exhausted, reject the candidate.

29



pseudocode

SeqBayesAcq(R,A)
for each candidate c in the bias

r ← 0 a← 0
repeat

randomly choose an example e without replacement
(if impossible then reject c as inconclusive)

if c is violated in e

if the example is a solution
r ← r +1
if r ≥ R reject c as a constraint

else
a← a+ 1
if a ≥ A accept c as a constraint

We can prove that SeqBayesAcq is an instance of SPRT:

any reasonable choice of A,R (1 ≤ R < A) corresponds

to at least one meaningful choice of SPRT parameters.

30



Inconclusive candidates

In experiments some candidates were rejected as incon-

clusive when they should have been learned. This was

caused by an insufficient number of violations, even on

datasets of several thousand examples. It occurs with

candidates that are hard to violate, eg with high arity.

We modify SeqBayesAcq slightly: instead of rejecting

all inconclusive candidates, we accept those for which

r = 0 and a > 0 and reject others.

SPRT is often modified to handle inconclusive cases,

yielding a Truncated SPRT that accepts or rejects

them on the basis of a limited number of samples.

31



Required datasets

Different CA methods require datasets with different

characteristics (eg ModelSeeker only needs a few solu-

tions).

SeqBayesAcq works best on datasets that are large (like

most other methods) and balanced (or nearly so): they

have a similar number of solutions and non-solutions.

But does it work? We incorrectly assumed feature in-

dependence in NB, discarded inconclusive candidates,

and used Wald’s approximation: can it possibly be ac-

curate after all this fudging?

32



Experiments

I’ll test BayesAcq and SeqBayesAcq on standard and

new benchmarks with mostly default parameter set-

tings. The bias is usually all possible {≤, 6=,≥} con-

straints on the variables.

They’re implemented in C and executed on a 2.8 GHz

Pentium 4. I’ll compare times with published results on

machines with similar speed: not generally recommended

but the differences in speed dwarf any likely differences

in machine performance!

33



9× 9 Sudoku

In one paper QuAcq took 2810s, and a time-bounded

version called T-QuAcq took 69s.

In another paper QuAcq took approximately 800s and

MultiAcq approximately 900s.

MquAca+FindScope 2 maxB took 85s and beat 5 other

methods.

Conacq took 16s to generate background knowledge

and approximately 2s for acquisition.

BayesAcq took 0.4s and SeqBayesAcq 0.05s.

34



10× 10 Latin square

QuAcq took 7200s and T-QuAcq 120s.

In a comparison of 6 methods the fastest was MquAca+

FindScope 2 maxB with 114s.

BayesAcq took 0.6s and SeqBayesAcq 0.06s.

(We used a 20 × 20 Latin square to further compare

the two Bayesian methods: BayesAcq took 19s and

SeqBayesAcq 0.3s.)

35



Golomb rulers

The largest case usually tested is N = 12. QuAcq took

11972s and T-QuAcq 1184s.

In another paper QuAcq took 2257s and MultiAcq took

2335s.

BayesAcq took 0.07s and SeqBayesAcq 0.05s.

On a smaller instance (N = 8) Conacq took 2193s.

T-QuAcq was also tested on larger Golomb rulers and

failed to converge when N = 20. But for N = 27 both

SeqBayesAcq and BayesAcq took 3s (on this dataset

all quaternary constraints are “inconclusive”).

36



Bandwidth vertex colouring

A popular benchmark is the RLFAP. With 25 variables

& 25 values MultiAcq took 1441s, MAcq-co took 142s,

QuAcq took 35s.

Another paper improved QuAcq from 1653 to 151s.

Another paper tested 4 variants of QuAcq on a larger

example with 50 variables & 40 values, all taking over

200s.

We use an almost identical but larger problem: band-

width colouring with 100 variables & 75 values. BayesAcq

took 0.24s and SeqBayesAcq 0.023s.

37



Large random 3-SAT

The benchmarks are too small for a real comparison
between SeqBayesAcq and BayesAcq, so we compare
them on bigger problems: random 3-SAT with 5 clauses
and 1000 examples.

learning time (seconds)
V bias size BayesAcq SeqBayesAcq

50 1.6× 105 1.8 0.02

100 1.3× 106 16 0.1

150 4.5× 106 56 0.5

200 1.1× 107 123 0.9

250 2.1× 107 243 1.6

Both can handle large biases, and SeqBayesAcq scales
better.

38



Even larger random 3-SAT

1000 variables, 50 clauses, and a bias of 1.3 × 109.

BayesAcq took 16259s while SeqBayesSeq took 78s

(about 200× faster).

This further illustrates the improved performance of

SeqBayesAcq over BayesAcq.

It also shows that both can handle biases that are much

larger than those used in most CA papers (usually at

most tens of thousands).

39



Robust CA

Current CA systems are not robust under errors. For

systems based on version space learning, if training ex-

amples are misclassified they may become inconsistent,

causing the version space to collapse. (Rough version

spaces are designed to be robust but do not seem to

have been applied to CA.)

Statistical approaches seem particularly appropriate for

noisy data! On the 20× 20 Latin square and the 250-

variable random 3-SAT example we deliberately mis-

classified 10% of the examples: SeqBayesAcq learned

the correct constraint model for a range of R values.

40



Conclusion

SeqBayesAcq is an application of sequential analysis

to CA. In experiments it learns several examples accu-

rately, is orders of magnitude faster than existing meth-

ods, and is the first to handle noisy data sources.

It’s amenable to parallelisation: candidates are tested

independently, so we could partition the bias into dis-

joint subsets and test them on (say) a GPU.

In future work I’d like to try using other classifiers for

CA, eg based on few-shot learning.

THE END

41


