Centre for Data Analytics

Solving Logic Grid Puzzles with an Algorithm that Imitates Human Behavior

Guillaume Escamocher Barry O'Sullivan

September 19, 2019

PTHG-19

- Third Workshop on Progress Towards the Holy Grail
- Stamford, CT
- Eugene Freuder

Holy Grail of programming¹

The user states the problem, the computer solves it.

¹E. C. Freuder, In Pursuit of the Holy Grail, Constraints, 1997

Holy Grail Challenge

Goal Achieving the Holy Grail of programming on the logicgridpuzzles.com website.

The Challenge: For puzzles at the website:

- 1. Accept as input the description and clues in English.
- 2. Transform the input into an appropriate CSP model.
- 3. Solve the CSP appropriately.
- 4. Provide an appropriate English language explanation of how the solution was obtained.

Partial Entry We only partially address Step 1.

Centre for Data Analytics

Solving Logic Grid Puzzles with an Algorithm that Imitates Human Behavior

http://ucc.insight-centre.org/gescamocher/Grail.zip

Guillaume Escamocher Barry O'Sullivan

September 30, 2019

Formal Definition

Logic grid puzzle

- k categories
- n elements in each category
- clues

Solution

A matching of the elements into k-tuples respecting all clues.

A valid logic grid puzzle has exactly one solution.

Running example

Categories

- First Name: "Angela", "Donald", "Leo"
- Country: "Germany", "Ireland", "United States"
- Year of Birth: "1946", "1954", "1979"

Clues

- 1. The person from the "United States" was born in "1946".
- 2. "Leo" is younger than the person from "Germany".
- 3. "Donald" was born in "1946" or he is from "Ireland".

Solution

- \langle "Angela", "Germany", "1954" \rangle
- \langle "Donald", "United States", "1946" \rangle
- ("Leo", "Ireland", "1979")

Outline

Definition

Implementation

Step 1: Acquisition (partial) Step 2: Modelling Step 3: Solving Step 4: Explanation Bonus Features

Results

Conclusion

Step 1: Acquisition (partial)

- User is asked to enter the puzzle.
- Clue \Leftrightarrow Set of constraints
- For each constraint, the user picks among the options offered by the program.
- Input files for the website puzzles can be found at http://ucc.insight-centre.org/gescamocher/Grail_Input.zip

Step 2: Modelling

Grid

Each pair of elements from different categories is represented by a cell. Solving a puzzle is filling each cell with *yes* if the two elements are to be matched, or with *no* otherwise.

			Country			ar of Bi	rth
		Germany	Ireland	NSA	1946	1954	1979
ame	Angela						
st N	Donald						
Ϊ	Leo						
r of Birth	1946						
	1954						
Yea	1979]		

Our implementation

- Array of integers.
- Each cell is initialized at 0.
- Value set to 1 (resp. -1) when cell determined to be yes (resp. no).

Step 3: Solving

One rule, one cell

At each step, the algorithm uses one inference rule to fill one cell of the grid.

Goal: to reason like a human

- same inference rules
- same order

Inference Rules

- Clues rules (58): information that can be derived from the clues.
- Consistency rules: information that can be derived from just the current state of the grid.
 - Basic consistency rules (2): easy, humans love them.
 - Advanced consistency rules (3): tedious, humans try to avoid them.

Clues Rules (standard example)

			Sport Last		Last	Championshi	
		Baseball	Basketball	Football	2008	2018	2019
c	Celtics						
Tean	Patriots						
	Red Sox						
onship	2008						
Champi	2018]		
Last (2019						

- Clue: The "Football" team playing near Boston has won a championship more recently than the "Celtics".
- Constraint: "Football" is after "Celtics" in the "Last Championship" category.

Clues Rules (standard example)

			Sport		Last	Champ	ionship
		Baseball	Basketball	Football	2008	2018	2019
۶	Celtics						
Tean	Patriots						
	Red Sox						
onship	2008			•			
Champi	2018]		
Last (2019						

- Clue: The "Football" team playing near Boston has won a championship more recently than the "Celtics".
- Constraint: "Football" is after "Celtics" in the "Last Championship" category.
- Rule: we know that "Football" is not the first element in the "Last Championship" category.

Clues Rules (easy example)

			Sport		Last Championshi		ionship
		Baseball	Basketball	Football	2008	2018	2019
۶	Celtics		Y				
Tear	Patriots						
	Red Sox						
onship	2008			•			
Champi	2018						
Last (2019						

- Clue: The "Celtics" are a "Basketball" team.
- Constraint: "Celtics" is "Basketball".
- Rule: we know that "Celtics" is "Basketball".

Clues Rules (hard example)

			Sport		Last	Champ	ionship
		Baseball	Basketball	Football	2008	2018	2019
E	Celtics		Y				
Tear	Patriots						
	Red Sox						
onship	2008			•			
Champi	2018]		
Last (2019						

- Clue: Either the "Red Sox" are a "Baseball" team, or they last won a championship in "2008".
- Constraint: "Red Sox" is "Baseball" xor "Red Sox" is "2008".

Clues Rules (hard example)

			Sport		Last Championshi		ionship
		Baseball	Basketball	Football	2008	2018	2019
۶	Celtics		Y				
Tean	Patriots						
	Red Sox			•			
onship	2008			•			
Champi	2018]		
Last (2019						

- Clue: Either the "Red Sox" are a "Baseball" team, or they last won a championship in "2008".
- Constraint: "Red Sox" is "Baseball" xor "Red Sox" is "2008".
- Rule: we know that "Football" is not "Red Sox".

Basic Consistency Rules

			Sport		Last Champio		ionship
		Baseball	Basketball	Football	2008	2018	2019
E	Celtics		Y				
Tear	Patriots						
	Red Sox			•			
onship	2008			•			
Champi	2018]		
Last (2019						

• If there is a *yes* in the grid, cells in the same row and column can be filled with *no*. This corresponds to the *Arc Consistency* inference rule².

²M. H. Sqalli and E. C. Freuder, Inference-Based Constraint Satisfaction Supports Explanation, AAAI 1996

http://ucc.insight-centre.org/gescamocher/Grail.zip

Basic Consistency Rules

			Sport			Last Championship		
		Baseball	Basketball	Football	2008	2018	2019	
E	Celtics	•	Y	•				
Tean	Patriots		•					
	Red Sox		•	•				
onship	2008			•				
Champi	2018]			
Last (2019]			

• If there is a *yes* in the grid, cells in the same row and column can be filled with *no*. This corresponds to the *Arc Consistency* inference rule².

²M. H. Sqalli and E. C. Freuder, Inference-Based Constraint Satisfaction Supports Explanation, AAAI 1996

Basic Consistency Rules

			Sport			Last Championship		
		Baseball	Basketball	Football	2008	2018	2019	
E	Celtics	•	Y	•				
Tean	Patriots		•	Y				
	Red Sox	Y	•	•				
onship	2008			•				
Champi	2018]			
Last (2019							

- If there is a *yes* in the grid, cells in the same row and column can be filled with *no*. This corresponds to the *Arc Consistency* inference rule².
- If all cells but one in a row or column are filled with *no*, the remaining cell must be filled with *yes*. This corresponds to the *Clique Consistency* inference rule².

²M. H. Sqalli and E. C. Freuder, Inference-Based Constraint Satisfaction Supports Explanation, AAAI 1996

Advanced Consistency Rules

		Sport			Last Championship		
		Baseball	Basketball	Football	2008	2018	2019
Ē	Celtics	•	Y	•			
Tear	Patriots		•	Y	•		
	Red Sox	Y	•	•			
onship	2008			•			
Champi	2018]		
Last (2019						

Transitive properties of the grid format can be exploited. This corresponds to the *Transitivity* inference rule².

²M. H. Sqalli and E. C. Freuder, *Inference-Based Constraint Satisfaction Supports Explanation*, AAAI 1996

Advanced Consistency Rules

- Rectangles: related to the *Generalized Neighborhood Clique Consistency* inference rule².
- NoCommon: Two elements are different if for some third category they do not have at least one common element they can potentially be equal to.

²M. H. Sqalli and E. C. Freuder, *Inference-Based Constraint Satisfaction Supports Explanation*, AAAI 1996

Priority

- 1. Cycle through the clues in order. For each one, check whether a clues rule can be applied. No going back to previous clues, even if progress is made.
- 2. Apply basic consistency rules as much as possible. If progress is made, check if basic consistency rules that failed previously now work.
- 3. Only try advanced consistency rules if no progress was made with other types of rules. As soon as any advanced consistency rule fills a cell, go to 1.

One cell, one line

Every time a cell is filled, a line of explanation is written.

Output files for the website puzzles can be found at http://ucc.insight-centre.org/gescamocher/Grail Output.zip

		(Country			Year of Birth		
		Germany	Ireland	USA	1946	1954	1979	
ame	Angela							
st N	Donald							
Ē	Leo							
Birth	1946							
rof E	1954							
Yea	1979]			

- 1. The person from the "United States" was born in "1946".
- 2. "Leo" is younger than the person from "Germany".
- 3. "Donald" was born in "1946" or he is from "Ireland".

		(Country		Year of Birth		rth
		Germany	Ireland	USA	1946	1954	1979
ame	Angela						
st N	Donald						
Ē	Leo						
r of Birth	1946			Y			
	1954						
Yea	1979]		

• "United States" is "1946" (Clue 1).

- 1. The person from the "United States" was born in "1946".
- 2. "Leo" is younger than the person from "Germany".
- 3. "Donald" was born in "1946" or he is from "Ireland".

		(Country		Year of Birth		
		Germany	Ireland	USA	1946	1954	1979
me	Angela						
st N	Donald						
Ē	Leo	•					
Sirth	1946			Y			
Year of E	1954						
	1979]		

• "United States" is "1946" (Clue 1).

• "Leo" is after "Germany" in the "Year of Birth" category (Clue 2), so "Leo" is not "Germany".

- 1. The person from the "United States" was born in "1946".
- 2. "Leo" is younger than the person from "Germany".
- 3. "Donald" was born in "1946" or he is from "Ireland".

	ĺ		Country			Year of Birth		
		Germany	Ireland	USA	1946	1954	1979	
ame	Angela							
st N	Donald							
Ē	Leo	•			•			
Year of Birth	1946			Y				
	1954							
	1979]			

- 1. The person from the "United States" was born in "1946".
- 2. "Leo" is younger than the person from "Germany".
- 3. "Donald" was born in "1946" or he is from "Ireland".

- "United States" is "1946" (Clue 1).
- "Leo" is after "Germany" in the "Year of Birth" category (Clue 2), so "Leo" is not "Germany".
- "Leo" is after "Germany" in the "Year of Birth" category (Clue 2), so "Leo" is not the first element in that category, so "Leo" is not "1946".

		(Country		Year of Birth		rth
		Germany	Ireland	USA	1946	1954	1979
me	Angela						
st N	Donald						
Ē	Leo	•			•		
Year of Birth	1946			Y			
	1954						
	1979	•]		

- 1. The person from the "United States" was born in "1946".
- 2. "Leo" is younger than the person from "Germany".
- 3. "Donald" was born in "1946" or he is from "Ireland".

- "United States" is "1946" (Clue 1).
- "Leo" is after "Germany" in the "Year of Birth" category (Clue 2), so "Leo" is not "Germany".
- "Leo" is after "Germany" in the "Year of Birth" category (Clue 2), so "Leo" is not the first element in that category, so "Leo" is not "1946".
- "Leo" is after "Germany" in the "Year of Birth" category (Clue 2), so "Germany" is not the last element in that category, so "Germany" is not "1979".

			Country		Year of Birth		
		Germany	Ireland	USA	1946	1954	1979
me	Angela						
st	Donald						
Ë	Leo	•			•		
Year of Birth	1946	•	•	Y			
	1954	Y	•	•			
	1979	•	Y	•]		

- 1. The person from the "United States" was born in "1946".
- 2. "Leo" is younger than the person from "Germany".
- 3. "Donald" was born in "1946" or he is from "Ireland".

• 7 cells can be filled from basic consistency.

		Country			Year of Birth		
		Germany	Ireland	USA	1946	1954	1979
ame	Angela						
st N	Donald						
Ē	Leo	•			•	•	
r of Birth	1946	•	•	Y			
	1954	Y	•	•			
Yea	1979	•	Y	•]		

- 1. The person from the "United States" was born in "1946".
- 2. "Leo" is younger than the person from "Germany".
- 3. "Donald" was born in "1946" or he is from "Ireland".

• "Germany" is not one of the first 1 element in the "Year of Birth" category, and "Leo" is after "Germany" in that category (Clue 2), so "Leo" is not one of the first 2 elements in the "Year of Birth" category, so "Leo" is not "1954".

		Country			Year of Birth		
		Germany	Ireland	USA	1946	1954	1979
ame	Angela						
st Na	Donald	•					
Ē	Leo	•			•	•	
r of Birth	1946	•	•	Y			
	1954	Y	•	•]		
Yea	1979	•	Y	•]		

- 1. The person from the "United States" was born in "1946".
- 2. "Leo" is younger than the person from "Germany".
- 3. "Donald" was born in "1946" or he is from "Ireland".

- "Germany" is not one of the first 1 element in the "Year of Birth" category, and "Leo" is after "Germany" in that category (Clue 2), so "Leo" is not one of the first 2 elements in the "Year of Birth" category, so "Leo" is not "1954".
- "Donald" is "1946" or "Ireland" (Clue 3), and "Germany" is neither "1946" nor "Ireland", so "Donald" is not "Germany".

			Country	/	Year of Birth		rth
		Germany	Ireland	USA	1946	1954	1979
ame	Angela						
st Ni	Donald	•				•	
Ē	Leo	•			•	•	
Sirth	1946	•	•	Y			
r of E	1954	Y	•	•			
Yea	1979	•	Y	•]		

- 1. The person from the "United States" was born in "1946".
- 2. "Leo" is younger than the person from "Germany".
- 3. "Donald" was born in "1946" or he is from "Ireland".

- "Germany" is not one of the first 1 element in the "Year of Birth" category, and "Leo" is after "Germany" in that category (Clue 2), so "Leo" is not one of the first 2 elements in the "Year of Birth" category, so "Leo" is not "1954".
- "Donald" is "1946" or "Ireland" (Clue 3), and "Germany" is neither "1946" nor "Ireland", so "Donald" is not "Germany".
- "Donald" is "1946" or "Ireland" (Clue 3), and "1954" is neither "1946" nor "Ireland", so "Donald" is not "1954".

			Country		Year of Birth		
		Germany	Ireland	USA	1946	1954	1979
ame	Angela	Y	•	•	•	Y	•
st	Donald	•			Y	٠	•
Ë	Leo	•			•	•	Y
Year of Birth	1946	•	•	Y			
	1954	Y	•	•			
	1979	•	Y	•]		

- 1. The person from the "United States" was born in "1946".
- 2. "Leo" is younger than the person from "Germany".
- 3. "Donald" was born in "1946" or he is from "Ireland".

• 9 cells can be filled from basic consistency.

			Country		Year of Birth		
		Germany	Ireland	USA	1946	1954	1979
ame	Angela	Y	•	•	•	Υ	•
st	Donald	•		Y	Y	٠	•
Ē	Leo	•			•	•	Y
Year of Birth	1946	•	•	Y			
	1954	Y	•	•			
	1979	•	Y	•]		

- 1. The person from the "United States" was born in "1946".
- 2. "Leo" is younger than the person from "Germany".
- 3. "Donald" was born in "1946" or he is from "Ireland".

- 9 cells can be filled from basic consistency.
- "Donald" is "1946" and "1946" is "United States", so "Donald" is "United States".

			Country		Year of Birth		
		Germany	Ireland	USA	1946	1954	1979
ame	Angela	Y	•	•	•	Υ	•
st	Donald	•	•	Y	Y	٠	•
Ë	Leo	•	Y	•	•	•	Y
Year of Birth	1946	•	•	Y			
	1954	Y	•	•			
	1979	•	Y	•			

- 1. The person from the "United States" was born in "1946".
- 2. "Leo" is younger than the person from "Germany".
- 3. "Donald" was born in "1946" or he is from "Ireland".

- 9 cells can be filled from basic consistency.
- "Donald" is "1946" and "1946" is "United States", so "Donald" is "United States".
- 3 cells can be filled from basic consistency.

Clue obsolescence User is notified when a clue will not be looked at again.

Single cell solving Only the cells/explanation leading to the solving of a given cell are filled/displayed.

CNF conversion Puzzles can be written into a CNF file. Useful for debugging.

Outline

Definition

Implementation

Step 1: Acquisition (partial) Step 2: Modelling Step 3: Solving Step 4: Explanation Bonus Features

Results

Conclusion

Difficulty	Easy	Hard	Zebra	Total
Valid	55	13	1	69
Invalid	5	3		

Most invalid puzzles removed because of too many (> 1) solutions.

Challenges Encountered

- Information in the opening statement is needed.
 - Easy 22 "Baggage Mishaps"
 - Easy 60 "Holiday Decision"
 - Easy 64 "Robbery at Millionaire's Mansion"
 - Easy 70 "The racehorses"
 - Easy 76 "Three little boys"
 - Easy 83 "The Enchanted Forest"

Fix: treated opening statement as Clue 0.

- Cross-referencing meta-information that our constraints cannot model.
 - Easy 65 "Sporting Excellence"

Fix: none found :(

- Objective contains a label that appear in the clues but not in the existing categories.
 - Hard 119 "A New Personal Computer" (label is "Andrew", objective is "which computer has been chosen by Andrew?")

Fix: added an extra category containing the elements {"Andrew", "NotAndrew1", "NotAndrew2", "NotAndrew3", "NotAndrew4"}.

Success Rate

68/69 (98.6%)

How long does it take to process all these puzzles?

http://ucc.insight-centre.org/gescamocher/Grail.zip

09/30/2019

Slide 28/31

Conclusion

Our program

- Fulfills 3.5/4 steps of the challenge.
- Solved with explanation 67/68 puzzles from the target website, including all the valid Hard ones.
- Runs quickly, anywhere.
- Contains additional features to enhance explanation.

Future Feature

Puzzle difficulty rating

Difficulty of a puzzle could be determined from the inference rules needed to solve it.

Our observations

Hard 105 "Film Festival" uses the most elaborate rules.

Thank you for your attention Questions are welcome!

- http://ucc.insight-centre.org/gescamocher/Grail.zip
- http://ucc.insight-centre.org/gescamocher/Grail_Input.zip
- $\bullet \ http://ucc.insight-centre.org/gescamocher/Grail_Output.zip$