

Who I am

From cognition to technology

- multisensory perception and performing arts may have a role in enhancing learning
- neuroscience research highlights the role of specific sensory modalities and their integration in learning specific tasks, especially in developmental years.
- technology does not integrate this knowledge in its design

Multisensory learning

Multisensory perceptual learning and cross-modal generalization has been reported, where stimuli share some common characteristics (Bartolo and Merchant, 2009).

The salient characteristics for a given task are more likely to be generalized across modalities (Jain et al., 2010).

Multisensory processing and information

The synergy, or interaction, between the senses and the fusion of their information content is called "multisensory integration" (Meredith, 2002).

Multisensory learning

Development of multisensory integration from the perspective of the individual neuron Barry E. Stein, Terrence R. Stanford & Benjamin A. Rowland **Nature Reviews Neuroscience** volume 15, pages 520–535 (2014)

Where?

Superior colliculus neurons are multisensory, i.e. they respond to stimuli coming from more than one sensory mode.

Research Questions

Computational model: adaptive multimodal system

Camurri, A., Mazzarino, B., Ricchetti, M., Timmers, R., and Volpe, G., 2004. *Multimodal analysis of expressive gesture in music and dance performances*. In A. Camurri, G. Volpe (Eds.), Gesture-based Communication in Human-Computer Interaction, LNAI 2915, 20-39.

System architecture

Feedback model

Two EU-ICT Projects as Case Studies

à

6

8

30

N

DRAV

Ø

wel

Different solutions for different targets

 \otimes

B

Why weDRAW and TELMI?

Music playing is a multisensory, embodied and social activity by its definition (Dalcroze, 1930).

Developmental studies point out the close relationship between bodily movement and musical sounds (Stern, 1985; Papousek, 1996).

EXPLOITING THE BEST SENSORY MODALITY FOR LEARNING ARITHMETIC AND GEOMETRY AT PRIMARY SCHOOL

A novel approach to design unique serious game environment that suits both for typically develop children and for sensory impaired ones (e.g. visual impaired and dyslexic children)

Methodology

Highly multidisciplinary with an integrated approach

Pedagogical input

Identification of the arithmetic and geometric concepts to be learned at different ages and levels.

Psychophysical input

Identification of the most suitable sensory modality for perceiving and learning the arithmetic and geometry concepts pedagogues identified.

Technology development

Two major pillars: (i) **user-centric iterative participatory design** and (ii) **early and fast prototyping**.

Evaluation

Metric and **performance indicators** are identified in order to assess whether the project reached its pedagogic, scientific, and technological objectives.

Pedagogical consideration

Which sensory modalities for which

concepts

TargetCoordinates mode

DrawShape mode

video

CartesianGarden Game

Social Activities Prototyping

Volta, E., Alborno, P., Gori, M., & Volpe, G. (2018, August). Designing a Multisensory Social Serious-Game for Primary School Mathematics Learning. In 2018 IEEE Games, Entertainment, Media Conference (GEM) (pp. 1-9). IEEE.

AngleShapes Game sonification model

Dynamic body scheme of pitch-angle sonification Vertical movement - pitch tonality Increase of pitch frequency as the arms aperture is reduced. Acute pitch - acute angle Deep pitch - obtuse angle Costant movement = costant pitch-angle dimension mapping Fixed arms position = fixed sound on the pitch mapped Rotating still arms aperture = continous sound of the same pitch is reproduced.

Based on psychophysics association between pitch and shape, well studied in synesthesia literature (Rigas and Alty, 2005), (Lawrence, 1975), (Mondloch, Maurer, 2004)

CartesianGarden sonification model

Double model, suitable both from younger and/or blind children (the *narrative* one) and from older ones (the music map one)

CartesianGarden sonification model

What cognitive states should we monitor in learning tasks?

Reflective thinking

is integral to learning (Kolb, 2015), (Mezirow, 1991), (Rodgers, 2002), (Dewey 1933) and may be necessary for mathematical problem solving (Navarro, Aguilar, Alcalde, & Howell, 1999).

Engagement

It is something strictly related to motivation and has a great power on participation and positive outcomes in learning (Fredricks, Blumenfeld & Paris, 2004).

Confidence

Its importance in learning has been proven and linked with the amount of effort and the level of persistence that a learner will put into the completion of the learning task in the face of barriers (A. Bandura. 1977).

We identified different sensors-based and motion-based features, but for the use in our full-body platform we found measurements of precision of movements and trajectories, velocity, hesitance, number of trials, face gaze, body posture, energy of movements as the most representative.

Non-verbal behavior of visually impaired children

To which extent visual impairment may affect the development of nonverbal communication patterns in visually impaired children?

We performed a double check annotation of video segments, looking for engagement, self-confidence and what non-verbal cues where used to recognize those states

Movement quality				Posture			Gesture	
Id	Cues	%	Id	Cues	%	Id	Cues	%
1	Focused, direct movement	34.44	10	Gaze down	38.99	21	Exp. of positive emotions (e.g. laughter)	18.33
2	Jerky movement	25.00	11	Tendency to act	25.00	22	Nervous smile or laughter	13.99
3	Hesitating movement	22.78	12	Listening predisposition	25.00	12	Open mouth	10.00
4	Fluid movement	21.11	13	Body as a reference point	20.00	21	Nodding during tasks resolution	7.88
5	Impulsive movement	20.00	14	Gaze contact with the interlocutor	18.33	25	Grabbing clothes	7.88
6	Inhibited movement	17.22	15	Withdraw from action	16.77	26	Rocking	7.88
7	Not goal-oriented movement	16.77	16	Outward-facing gaze	13.99	27	Lips biting	6.77
8	Slow movement	15.00	17	A loss of posture alignment	13.33	28	Deictic gestures	5.00
9	Misalignment		18	A loss of balance		29	Hands kept together	5.00
	of different body planes	11.11		(feet support instability)	13.32	30	Hands hold behind back	4.44
			19	Posture openness	8.89	31	Touching face or mouth	0
			20	Legs are moved while body is still	7.78		-	

Preliminary results show that cues as gaze still have a relevant weigh in considering engagement and self-confidence.

Some annotated behaviours are *continuous*, that can be present in both the states, co-occuring with other cues.

While other features are binary behaviors.

Usability evaluation

How to evaluate the efficacy of multimodal learning games, considering both typical and sensory impaired children?

A new evaluation checklist

1. Check if the player has difficulties to:	Did it happen?	In which task?	Severity
1.1 Learn how to play	CIYES CINO		01 02 08 04
1.2 Learn how to use the controls	CIYES CINO		01 02 08 04
1.8 Handle the controls	CIYES CINO		01 02 08 04
1.4 Understand the game goals	CIYES CINO		01 02 03 04
1.6 Play without mediation	CIYES CINO		01 02 03 04
1.6 Play according to the information provided by the game	O YES O NO		01 02 03 04
1.7 Accomplish the game tasks	O YES O NO		01 02 03 04
1.8 Move through the virtual game environment	CIYES CINO		01 02 08 04
1.9 Rotate in the virtual game environment	O YES O NO		01 02 08 04
1.10 Recognize different scenarios in the game	O YES O NO		01 02 08 04
1.11 Distinguish the different characters in the game	O YES ONO		01 02 03 04
1.12 Distinguish the distinct roles in the game	O YES O NO		01 02 03 04
Check if the player demonstrates to <i>feel</i> :			
1.13 Bored, or uninterested while playing	CIYES CINO		01 02 08 04
1.14 Annoyed by any of the game controls	CIYES CINO	-	01 02 08 04
2. Check if the player has difficulties to:	Did it happen?	In which task?	Severity
2.1 Hear the game sounds	TARE NO		01 02 03 04
2.2 Identify a specific sound	TYES NO		01 02 03 04
2.3 Recognize a specific sound	TYES NO		01 02 03 04
2.4 Understand the information conveyed by a sound	THES NO		01 02 08 04
2.6 Realize that a specific sound is related to a specific action in the game	TYES NO		01 02 08 04
2.6 Associate the game sounds with his prior knowledge	THES NO		01 02 03 04
2.7 Associate the game sounds with the right objects or actions in the game	TYES NO		01 02 08 04
2.8 Understand information about orientation and location in the game environment	TYES NO		01 02 03 04
2.9 Identify the purpose a specific audio feedback			01 02 08 04
Check if the audible feedback:			
2.10 Are sufficient to the execution of the game activities	TYES NO		01 02 03 04
was an encoded and the same shirts and encoder at any shirts	DIVER DIVA		01 01 01 01 04

Basing our work on CLUE checklist (Ticianne,
D. et al., 2018), we developed a new evaluation protocol, intended to be used by external observers during user interaction, that suits full-body multisensory serious-game for both typical and sensory impaired users.

AngleShapes Game Usability

Typically developed children

N=111, age mean=8.66

AngleShapes Game Usability

V.I. children

Dyslexia screening and training

The SynchroHorse Race

An Android app to enhance temporal and rhytmic perception processing for dyslexic primary school children

TECHNOLOGY ENHANCED LEARNING OF MUSICAL INSTRUMENT PERFORMANCE

video

A new pedagogy model, based on enhancing embodied understanding and proprioceptive feedback of violin students.

My research on TELMI

Multimodal TELMI Archive

4 RCM violin performance

1 Teacher

3 Students

41 (21) Exercises

Volpe, G., Kolykhalova, K., Volta, E., Ghisio, S., Waddell, G., Alborno, P., Piana, S., Canepa, C., and Ramirez-Melendez, R. 2017. A multimodal corpus for technology-enhanced learning of violin playing. In Proceedings of the 12th Biannual Conference of the Italian SIGCHI Chapter (CHItaly '17). ACM, New York, NY, USA, Article 25, 5 pages. DOI: https://doi.org/10.1145/3125571.3125588

A solitary

training

- Traditional music education is mostly based on a master-apprentice relationship, with long period of self-study for the students.
- Traditional teaching methods of the biomechanics components of musical performance may be based on subjective perception.

Musical performance shares many characteristics, including health risks, in common with other skilloriented activities, as sports.

Bowing techniques

Volta, Alborno, Volpe, **Informing bowing and violin learning using movement analysis and machine learning** in Proceedings of 10th International Workshop on Machine Learning and Music, 2017

Students' performance and safety

A preliminary study

Volta, E., Mancini, M., Varni, G., & Volpe, G. (2018, June). Automatically measuring biomechanical skills of violin performance: an exploratory study. In Proceedings of the 5th International Conference on Movement and Computing (p. 16). ACM.

Body features analysis...

Shoulders' position

Upper body dynamics

... and human evaluation

Next step

We planned to extend the analysis to audio features, e.g. timbre, pitch and tonality.

The analysis of both motion and audio features for muscular tension is ongoing.

Real-time feedback interface

The final platform, SkyMotion, was evaluated by 8 violinists, through a series of semi-structured interviews.

With the RCM of London, we performed a series of iterative design meetings to understand what kind of visual information can efficiently improved proprioceptive and embodied posture understanding while playing.

SkyMotion Evaluation

No.	Question	Expert Likert evaluation						
	To what degree did this feedback	Exp.1	Exp.2	Exp.3	Exp.4	Exp.5	Exp.6	Exp.7
1	help you learn more quickly?	6	5	6	6	4	4	6
2	improve your performance?	7	5	7	5	4	3	7
3	increase your productivity?	5	6	5	7	2	2	5
4	increase the effectiveness of your practice?	6	6	7	7	5	1	6
5	make practicing easier?	7	6	6	7	5	1	7
	To what degree was this feedback							
6	useful?	7	6	7	6	4	4	7
7	easy to learn to operate?	7	5	5	5	6	6	7
8	something that did what you wanted it to do?	7	4	6	5	4	3	7
9	clear and understandable?	7	5	6	5	6	4	7
10	flexible?	6	5	5	6	2	5	6
11	easy to become skilled at?	7	5	7	5	5	6	7
12	easy to use?	7	4	6	5	6	6	7
13	accurate?	6	5	7	6	2	1	6
14	something you would use again?	7	6	7	6	5	2	7
15	something you would recommend to others?	7	6	7	6	5	3	7

"I would like to use SkyMotion with my students to help them understand the importance of working on own body before working on music performance."

"It can be very useful for students at home, since after hours of practice they are tired and easily lose their correct posture and its naturalness, increasing muscular tensions."

THANK YOU

erica.volta@edu.unige.it

https://www.researchgate.net/profile/Erica_Volta