IriCPG - AIPO

How You Can Contribute
How We Created The Problem Set

Milan De Cauwer (Confirm@UCC)
Bastien Pietropaoli (Insight@UCC)

UGCG-ACM, IrICPC, AIPO

What are they?

UCC-ACM student

h
What is it? e

IrICPC - Irish Collegiate Programming Contest

Created: 2009 Audience: College Students
By: UCC-ACM Student Chapter (Many should be thanked)
From about 20 competitors in 2010 to “150 in 2019.

AIPO - All-lreland Programming Olympiad

Created: ?7? Audience: Secondary level
By: DCU before

Passed upon UCC (Sabin, Andrea, Federico) last year
Last year: 17 competitors

Competitors

Timeline

uccC
ACM-Student
chapter

IFICPC: 20 comp. -----------------=---

a Coldiste na hOliscoile Corcaigh, Eire
U University Gollege Cork, reland

AIPO (17 comp.)

“50 comp. 78 comp. 112 comp. "“150

N\

workday.

Poppulo

JTREND.
M1CRO

Who were the sponsors? (2019)

G OC 9 |€

& Microsoft POppulo

uvcc, ., © 7~ \
ey comr e | [SIQNT workda Y.

How does it work?

We create a mostly algorithmic AIPO Team

problem set with test cases.

Teams/students submit their code to
a server.

Writing
Team

It gets automatically evaluated and
they score points.

Submission
Server =

A

The highest scoring team wins nice

prizes ($$$).

How does it work? (Question Writer)

1

Find inspiration.
Wikipedia binges.

Reference books (Intro to
algorithms et al.).

Exercice books.

Interview questions.

2

Nail the question.
Target algorithm?

Give it your own spin!

3

Create test cases.

Try to break that code.

Does it scale?

Does it have practical
issues?

4

Tune the question.
Test it.

Tune the cases.

Fluff it up!

Embrace the rage.

© ©)

How does it work? (Competitor)

1 2 3 4

Read the problems. Work as a team. Find the algorithms. Submit code.
Read the ENTIRE problem Share ideas. Try to break that code. Test it.
set before starting!
Split work. Does it scale? Fail.
What’s easy?
What'’s hard? Who’s coding? Does it have practical Retry!
issues?

© © 0}

How does it work? (Organiser)

1

UCC-ACM student chapter.
Annual General Meeting (TBA).
Take on a position.

Monthly meetings.

2

Do your f***ing job!

Catering, room booking, networking
with sponsors, branding and visual
design, accounting, PR and social
media, ...

Be active!

3

Enjoy the day.
No loitering! @
Be active. h

Assist competitors. @

Get a nice t-shirt!

2019
Scoreboards

2019 scoreboard - IrilGPG

< Rank First Name Last Name
1 -=[Blichael [B] [Bliggins=-
2 Computational Triumph
2 INSA Lyon 1
4 O(-1)
b INSA Lyon 2
6 Crypto
6 YannWang
8 Mysterious Net Dudes
9 Byte_Me
10 Darkline
10 NUIG Runtime Errors
10 OOPs
13 Jambe de Bois
14 Pycharmers
15 MINDS
15 succ(X)
17 icuthere
18 idk
19 ThinkWinWin
20 Crash Test Dummies
21 Cloughjordan

2019 scoreboard - IrilGPG

< Rank First Name Last Name
1 -=[Blichael [B] [Bliggins=-
2 Computational Triumph
2 INSA Lyon 1
4 UCC mmmmmm) o)
b INSA Lyon 2
6 Crypto
6 YannWang
8 Mysterious Net Dudes
9 Byte_Me
10 Darkline
10 NUIG Runtime Errors
10 OOPs
13 Jambe de Bois
14 Pycharmers
15 MINDS
15 succ(X)
17 icuthere
18 idk
19 ThinkWinWin
20 Crash Test Dummies
21 Cloughjordan

2019 scorehoard - Al

< Rank First Name Last Name
1 Kieran Horgan
2 Andrew Nash
3 Caolan Fleming
4 Harvey Brezina Conniffe
5 Franciszek Lajszczak
6 Qisin Davey
7 Alan Panayotov
8 Shang Lucey
12 Hubert Slapczynski
13 Ayushi Mahajan
14 David Brett
15 kate forrest
16 Luca Tuffy
17 Dylan O' mahony
17 Thomas Galligan
19 Benjamin Murray
19 David Selmeczy

2019 scorehoard - Al

< Rank First Name Last Name
1 Kieran Horgan
2 MPT s ~ndrew Nash
3 Caolan Fleming
4 Harvey Brezina Conniffe
5 Franciszek Lajszczak
6 Qisin Davey
7 Alan Panayotov
8 Shang Lucey
12 Hubert Slapczynski
13 Ayushi Mahajan
14 David Brett
15 kate forrest
16 Luca Tuffy
17 Dylan O' mahony
17 Thomas Galligan
19 Benjamin Murray
19 David Selmeczy

How do we
create the
problem set?

Ingredients for a good problem set

A lot of work. Us, the week
A cup of patience. before the event
A pinch of fluff.

A zest of pedantism.

Sweat, tears, and potentially blood.
Booze and drugs (optional).

More seriously

What’s needed: Us, writing sneaky
test cases

- Questions ranging from “dead easy” to “wtf is this?!”.
- Interesting/original problems to solve.

- Cunning corner cases.

- Scalability issues.

All of this creates a smooth distribution of scores.

A dead-easy gquestion

If you read it, it’s actually easy.
A simple string manipulation.
Original format (everyone hated it tbh).

Everyone solved it in AIPO.

8 Shirley’s Surprisingly Simple Song?

Shirley!

Shirley, Shirley, bo-bhirley,
bo-na-na fanna, fo-fhirley,

fee fi mo-mhirley, Shirley!
Lincoln!

Lincoln, Lincoln, bo-bincoln
bo-na-na fanna, fo-fincoln

fee fi mo-mincoln, Lincoln!
Come on ev'rybody,

| say now let's play a game

| betcha | can make a rhyme
out of anybody's name

The first letter of the name

| treat it like it wasn't there
But a "B" oran "F"

oran "M" will appear

And then | say "Bo" add a "B”
then | say the name

Then "Bo-na-na fanna” and " fo
And then | say the name again
with an "f" very plain

Then "fee fi” and a "mo”
And then | say the name again
with an "M” this time

And there isn't any name

that I can't rhyme

"

Arnold!

Arnold, Arnold, bo-brnold
bo-na-na fanna, fo-frnold
fee fi mo-mrmold, Arnold!
But if the first two letters
are ever the same

(CPU:1sec - RAM:256MB)

Crop them both, then say the name
Like Bob, Bob, drop the "B's”, Bo-ob
Or Fred, Fred, drop the "F's", Fo-red
Or Mary, Mary, drop the "M's”, Mo-ary
That's the only rule that is contrary
And then | say "Bo" add a "B"

then | say the name

Then "Bo-na-na fanna” and "fo”
And then | say the name again

with an "f’ very plain

Then "fee fi"” and a "mo”

And then | say the name again

with an "M" this time

And there isn't any name

that I can't rhyme

Say Tony,

Tony, Tony, bo-bony

bo-na-na fanna, fo-fony

fee fi mo-mony, Tony!

Let's do Billy!

Billy, Billy, bo-illy,

bo-na-na fanna, fo-filly,

fee fi mo-milly, Billy!

Let's do Marsha!

Marsha, Marsha, bo-barsha
bo-na-na fanna, fo-farsha

fee fi mo-arsha, Marsha!

Little trick with Nick!

Nick, Nick, bo-bick,

bo-na-na fanna, fo-fick,

fee fi mo-mick, Nick

Input The input is a single line containing a name (any) of N letters, 2 < N < 100, and starting with

a capital letter.

Output The output should contain three lines corresponding to the rhyming verse for the name provided
as an input, as suggested by the instructions in the song.

A sneaky
scalahility-issue
question

Not that hard if you think carefully.
Not easy either.
Symmetries can be exploited.

3750 > 2764 (someone reimplemented big
numbers in C++..))

2 Caroline’s Cheap Carpets (CPU:1sec - RAM:256MB)

Caroline knows that she is not in the game of mathematical research for the money. Her work, and passion,
in the math department in University College Babylon deals with highly recursive mathematical structures.

To be able to afford rent in downtown Babylon, as a side job, she is knitting and selling her own
interpretation on what Persian carpets should really be. Bringing a hobby together with her passion, she
designs carpets following a clear procedure elegantly written as a slightly broken Haiku in the Book of
Recursive Poetry, Al-Rhymus, 932-1002.

" Get from one black square,
nine equal squares. Center is white.
Repeat with remaining.”

When starting a new carpet, Caroline first decides on its dimension D. From the dimension, she
computes the carpets final size, a square of 3D 43P points that need to be knitted. She then picks the
order O applied to the carpet. As illustrated below, the order determines how many times the recursive
procedure is to be applied to the carpet before having the final design.

Lubabalalabelals] Lobelsbalelslalel

Figure 2: Carpet drawn for orders 0 to 3 for some arbitrary dimension D > 3.

Unfortunately, Caroline is fairly forgetful and quite often loses track of whether the point that she has
to knit is white or black. Help Caroline out by implementing a program that takes in (x,y) positions on
the carpet and returns whether these positions should be of black or white color.

Input The first line contains three space-separated integers, 1 < D <50, 0 <O < D, 1 < N < 100000
respectively the dimension of the carpet, its order, and the number of points that your program should be
checking for.

The next N lines contain two space-separated integers () < z; < 3P and 0 < ¥i < 3D providing the
position of the i-th point.

Output The output should be a single line consisting of N space-separated characters in {b, w} followed
by a newline character.

A fluffy question

Medium question, requires careful reading!
A simple 1D automaton.
Extra fluffy question.

Most questions we received were about this
particular question. ('m really proud of this one.)

9 Tara’s Terrific Tugging Tale (CPU:1sec - RAM:256MB)

Tara is a prolific author of fantasy fiction. In one of her fascinating worlds, she created a people of tiny
creatures very fond of tug-of-war contests. In those epic battles, she describes the jolly injunctions those
merry farmers throw at each other to come give a hand to their favourite team.

Yes, in those tugs-of-war, the teams can gain new members! Actually, in her book, Tara describes
in great length the notes taken by the anthropologist who follows the gnomes. Here is an extract of the
scientist's observations:

" Those teensy-weensy folks are fascinating. They all appear to be strictly identical in all matters:
intelligence, strength, clothes, behaviour, and personality. Still, they really enjoy each other's company.
In particular, they seem to be well versed in the art of synchronised tugging. After forming lines, they
start playing drums to set the rhythm, and they all tug on the rope at the same time every 16 beats. In
between two rounds of tugging, they all seem to follow the same pattern:

e If a gnome is tugging and both teammates in front of him and the one behind him are tugging too,
then he will not be tugging on the next round.

o If a gnome is tugging and at most one of his neighbouring teammates is tugging too, then he will
keep tugging on the next round.

o If a gnome is not tugging, then if at least his teammate in front of him is tugging, he will be tugging
on the next round. Otherwise, he will continue being idle.

e At the end of the round, if the last gnome in the line has tugged, then an additional gnome will join
the team to tug on the next round. Both teams often gain a member every round!

The first team to tug the other team over the central line wins. Funnily enough, they count in gnome
length (gl) and each gnome is capable of tugging for exactly one gnome length per round. They usually
agree on the distance to tug to win before they start the match. | guess it depends on the mood of the
crowd and on the number of gnomes capable of joining the battle. "

Mesmerised by the tale, you decide to simulate the epic contests.

Input The input will consist of two lines:

e The first line will contain 2 integers, N being the number of gnome length advantage a team needs
to win (5 < N < 5000), and M being the total number of gnomes present (20 < M < 5000).

o The second line will contain the initial state (round 0) of the two teams in the form of two space-
separated strings of Os and 1s. 0 indicates a gnome that is not tugging this round, 1 indicates a
gnome that is tugging this round. Each team will start with a maximum of 1000 gnomes.

The left team tugs towards the left, and the right team tugs towards the right. If the crowd runs out
of gnomes and the two teams require one for the new round, then the left team is always favoured.

Output The output should consist of either the word right or the word left, indicating which team wins
then followed by a space and an integer indicating at which round the team actually won (the provided
starting state corresponds to round 0).

A “wtf is this”
question

Super tough question.

Was first in the problem set

(random order for the questions)

Doesn’t look that hard.

“Unusual” solution on our

side (Ray tracing + Monte Carlo
integration muahahaha)

1 Pandora’s Preposterous Polygon Project (CPU:1sec - RAM:256MB)

Pandora likes abstract art and more particularly abstract geometry art. For her last year art project, she
decided to go crazy with polygons. She would like to name them based on their general shape and their
surface area but she realised she has no clue on how to measure their surface area. She would like you to
write a program capable of computing the surface area of any polygon.

Figure 1: One of the latest "creations” of Pandora, named " Crippling Lamp”.

One way to represent polygons is by using a sequence of coordinates for their vertices. Each vertex
(i.e. point) is connected to the following one by a straight line. The last vertex is linked to the first
one to close the polygon. For instance, a simple square can be described using the following coordinates:
(0,0),(0,1),(1,1),(1,0).

Pandora will be providing the vertices, it's up to you to compute the surface area of each one of the
polygons.

Input The first input line contains the number of vertices N, with 3 < N < 2(), composing the polygon.
The following lines are the vertices, one per line, provided as two space-separated floating point values

(x,y), with 0 < z,y < 1, with a precision of up to 16 digits.

The provided polygons may have intersecting edges but will NOT have self-overlapping surfaces.

Output The output line should be a single floating point value corresponding to the surface area of the
polygon provided as input. The maximum error accepted is 0.01 (in absolute terms).

How can you contribute?

milan.decauwer@ucc.ie

Submit your problem ideas to Milan and me. bastien. pietropacli@ucc.ie

Write problems with us, join the writing team.
Review problems with us.

Solve our problems:

- Use various languages (Python, C, C++, Java, etc.).

- Confirm our solutions are correct (even with an invalid solution for the day!).
- Find potential issues.

- Find unpredicted/unforeseen corner cases.

- Evaluate the difficulty of the questions.

All of this is useful!

How we'd like to do it this year

Regular meetings starting in November:
- Every week? Every other week?
- Prevents having to panic at the end

Having 10-12 questions as last year (1 is already written!).

-1-2 dead—easy ONeE (so everyone can score something)

-1-2 €asy ONesS (to build up confidence)

- 2-4 medium ones (so there’s some competition among the medium teams)

- 2-3 hard questions (three was probably overkill but some people are really good)
-1 new type of question (to make sure they stay busy, it’s already written)

Have a minimum of 20 test cases per question (instead of 10 last year)

We need you!

