
1

ADVANCED MAINTENANCE USING CAUSAL NETWORKS

Charles J. Sitter, Rockwell Collins, Cedar Rapids, Iowa

Gregory M. Provan, Rockwell Science Center, Thousand Oaks, California

Abstract
We present a flexible, powerful, easily

maintainable diagnostics system that integrates
diagnostic development functions into product
development tools and processes.

Challenges of Developing Diagnostic
Systems for Complex Applications

There exists a wide variety of modeling
and inference methods for diagnostics, includ-
ing expert systems, neural networks, and
model-based approaches. All of these ap-
proaches can represent and analyze the same
artifact but from different viewpoints.

Complex systems, such as commercial
aircraft, represent a challenge both in modeling
and inference. Next generation improvements
in the performance of diagnostic systems will
require, at the very least, higher fidelity
models, guarantees on model consistency, and
reasoning algorithms that are less susceptible to
state-space explosion problems.

Moreover, analyses of the diagnostic
models for complex systems must be correct
and exhaustive. Incomplete analyses using
probabilistic arguments become progressively
more tenuous for complex systems and unac-
ceptable for safety-critical applications.

Powerful and generic modeling para-
digms and algorithms that seamlessly serve
many analytic needs are key ingredients for
developing the next generation diagnostic
systems. Other critical aspects of models are
capturing aspects of temporal and dynamic
systems, and the ability to scale to complex and
non-deterministic scenarios.

To address these challenges in the
design of diagnostic systems for complex
applications, we propose a model-based solu-
tion that integrates two state-of-the-art
technologies: (1) causal network diagnostic
modeling and inference algorithms and (2)
distributed computing.

We argue that these two technologies
can synergistically provide:

• The ability to model a fault using
current design data and thus trouble-
shoot and repair a failure either (a)
not previously identified or (b) with
no existing maintenance procedures.

• The ability to provide diagnostics
feedback to design engineering
during the design and integration
process.

• A significantly enhanced ability to
scale to large complex applications
while maintaining accuracy.

• The ability to guarantee computa-
tional requirements, a priori, based
on model fidelity.

We organize this paper as follows. The
following section summarizes the diagnostic
representation, causal networks [1], and intro-
duces a simple example of causal network
modeling. The next section summarizes
Rockwell Collin’s avionics diagnostic system,
briefly describing each major component of the
system. The final sections provide conclusions
and references.

2

Diagnostic Representation
This section introduces an example that

we use to describe our approach, and the
representation that we adopt for modeling,
causal networks [1].

A causal network is a graph-based
representation that is used for diagnosing
failures of a system. Causal networks provide
probabilistic, order of magnitude, and symbolic
representations. They also have predictable
scaling properties for the eventual embedded
runtime diagnostic system.

A causal network encodes the causal
relations of a system; e.g., in Figure 1, the
transmitter in Tx causes Receivers Rx1 through
Rx4 to receive data. A causal network is thus a
good way of representing the flow of data in
such systems, and hence reasoning about the
root causes of data flow; e.g., Tx is the root
cause of data being received by Rx1 through
Rx4. Figure 2 shows the causal network
structure for this simple example. Conversely,
if data is not flowing as intended, the causal
network can help track down the reason for the
“breakdowns” of correct data flow; e.g., Tx
could be the root cause of data being absent at
Rx1 through Rx4. We call this diagnosing the
faults in the system.

Rx4

Rx3

Rx2
Tx

Rx1

System Schematic

Figure 1: Simple Avionics Example
More formally, a causal network speci-

fies the causal relationships among a set V of

variables by encoding each variable in V with a
node, and encoding the causal influence of V1
on V2 by a directed arc from V1 to V2. Hence a
causal network is a directed graph (N,A) of
nodes N and directed arcs A.

Rx1 Rx2 Rx3 Rx4

Tx

Figure 2: Causal Network Structure for
Simple Avionics Example

The example we have just described
covers only hardware, but note that the causal
network modeling language allows functional
specifications of both software and hardware.

Causal Network Specification Language
To specify a causal network model we

need to define:

1. the variables in the model, which
represent the components, e.g., Tx,
Rx1, Rx2, Rx3, Rx4 from Figure 1;

2. the values for the variables, which
represent the data that flows through
various parts of the system;

3. the assumables, which are the vari-
ables that describe the operating
characteristics of the components,
such as OK or broken;

4. the quantifications, which relate the
variables and assumables;

5. the evidence variables, which are
the variables that can be observed;

6. the weights for the assumables,
which specify the likelihood or
relative ranking of the assumable
fault modes.

3

The component modes characterize the
ways the component works under an exhaustive
set of scenarios. Rx1 has associated assum-
ables, OK and broken, and a quantification as
follows: if OK, Rx1 receives data from Tx, but
if broken receives no data. In propositional
logic, we might write this as:

• IF (Rx1-mode = OK) AND (Tx =
transmit) THEN (Rx1 = receive)

• IF (Rx1-mode = broken) OR (Tx =
not-transmit) THEN (Rx1 = not-
receive).

Figure 3 shows the causal network
model with the assumables and quantification
defined.

Tx-modeSystem Model

If Rx1-mode=OK and Tx=transmit
 then rx1=receive
If Rx1-mode=broken or Tx=not-transmit
 then Rx1=not-receive

If Tx-mode=OK then Tx=transmit
If Tx-mode=broken then Tx=not-transmit

If Rx3-mode=OK and Tx=transmit
 then Rx3=receive
If Rx3-mode=broken or Tx=not-transmit
 then Rx3=not-receive

Tx
Rx1-mode Rx2-mode Rx3-mode Rx4-mode

Rx1 Rx2 Rx3 Rx4

If Rx2-mode=OK and Tx=transmit
 then Rx2=receive
If Rx2-mode=broken or Tx=not-transmit
 then Rx2=not-receive

If Rx4-mode=OK and Tx=transmit
 then Rx4=receive
If Rx4-mode=broken or Tx=not-transmit
 then Rx4=not-receive

Figure 3: Causal Network for Simple
Avionics Example

As described later in the paper, we have
implemented a graphical user interface (GUI)
that allows a user to specify a system using a
simple set of components that are connected
based on data flows. For each component, the
user needs to specify only the inputs and
outputs, the functional relationships between
the inputs and outputs, and the operating modes
of the component.

Note that the causal network represen-
tation can describe not only deterministic
systems as in the above example, but also
stochastic systems (using probabilities and

order-of-magnitude probabilities (OMP) [1,2]),
and discrete-event systems [4].

Rockwell Avionics Diagnostic System
Rockwell has developed a distributed

maintenance architecture that is based on
causal networks and open system standards,
and provides the capability to significantly
reduce the costs of development and of
upgrading and extending the onboard mainte-
nance system (OMS) of the future. The
Rockwell avionics diagnostic system has
several characteristics that, taken together,
distinguish it from competing systems. These
key characteristics include:

1. an avionics-oriented user interface
for model development, simulation
and diagnostic testing;

2. guarantees of diagnostic correctness
and completeness given the models;

3. a compiler that allows the user to
embed a real-time diagnostic system
on-board the aircraft;

4. the deployment of the diagnostic
system within a distributed, open
architecture.

This section now describes the overall
architecture of this diagnostic system.

Diagnostic System Architecture
The general architecture of the tool set,

is shown in Figure 4. Diagnostic system
development and deployment is divided into
two phases: off-line model generation and
compilation, and on-line diagnostic evaluation.

The off-line phase entails developing
and analyzing a model, and then compiling that
model so that it can be efficiently evaluated by
the on-board avionics system. Model develop-
ment takes place using a graphical user inter-
face called EASIER (Enhanced Analysis and
Simulation Integrated Environment from
Rockwell), and compilation is based around a
causal network inference system called

4

CNETS. EASIER supports development of
primitive blocks and subsequent interactive
model development and simulation for avionics
applications. The output of EASIER is a causal
network on which inference is performed by
CNETS. Models generated in EASIER can be
output to a diagnostic compiler in CNETS to
generate embeddable diagnostic code.

ON-LINE
DIAGNOSTIC

SYSTEM

OFF-LINE
MODEL

GENERATION
AND

COMPILATION

EASIER

Causal Network
Generator Behavioral

Equations
of Receiver

Behavioral
Equations

of Transmitter

System FaultsSystem Measurements

Embedded
Q-DAG

Evaluator

Rx1=not-receive Rx2=receive
Rx3=recieve Rx4=receive

Rx1=not-receive Rx2=not-receive
Rx3=not-receive Rx4=not-receive

Tx broken or (Rx1 broken
and Rx2 broken and Rx3
broken and Rx4 broken)

Rx1 broken

Rx4

Rx3

Rx2
Tx

Rx1

System Schematic

CNETS/Diagnostics Compiler

Diagnostic
Compiler

Q-DAG

and

and

or and or or

or

Tx-modeSystem Model

If Rx1-mode=OK and Tx=transmit
 then rx1=receive
If Rx1-mode=broken or Tx=not-transmit
 then Rx1=not-receive

If Tx-mode=OK then Tx=transmit
If Tx-mode=broken then Tx=not-transmit

If Rx3-mode=OK and Tx=transmit
 then Rx3=receive
If Rx3-mode=broken or Tx=not-transmit
 then Rx3=not-receive

Tx
Rx1-mode Rx2-mode Rx3-mode Rx4-mode

Rx1 Rx2 Rx3 Rx4

If Rx2-mode=OK and Tx=transmit
 then Rx2=receive
If Rx2-mode=broken or Tx=not-transmit
 then Rx2=not-receive

If Rx4-mode=OK and Tx=transmit
 then Rx4=receive
If Rx4-mode=broken or Tx=not-transmit
 then Rx4=not-receive

Figure 4: Diagnostic System Architecture:
On-Line vs. Off-Line Subsystems

The on-line component of this tool-set
is a real-time evaluator/interpreter that operates
on the compiled diagnostic model or Q-DAG
(Query Directed Acyclic Graph) to generate
diagnostic results from a set of input variables.
A Q-DAG is a compiled representation of the
causal network, and is an expression that is
optimized for real-time embedded diagnostic
inference.

It is important to note that the
underlying diagnostic tool, CNETS, as well as
the associated compilation system, is a
completely general system that can perform
domain-independent causal network inference.
The other component, EASIER, was designed
specifically for the avionics domain, although
the concepts of the EASIER interface can be

applied to other domains (e.g., communica-
tions, digital circuits).

A second important point to note is that
the EASIER/CNETS system is meant to hide
the details of diagnostic modeling and infer-
ence so that engineers can use the system
without having to acquire significant new
skills. The EASIER/CNETS system has been
explicitly tailored to avionics engineers,
presenting to these engineers a front end with
which they will be familiar. This approach
unlocks the potential of causal networks to
avionics applications.

Distributed Diagnostics Architecture
For aircraft onboard maintenance sys-

tem (OMS) applications for the 21st century,
the OMS must move to “open systems” and use
“industry standards” in an attempt to get away
from the proprietary “black box” implementa-
tions. The model-based approach is critical to
allow model updating and re-use, and to ensure
that different types of models can be stored in a
single database, thereby leveraging common
information. Further, it is widely recognized
that to take advantage of current and future
technology, the traditional federated avionics
system application approach of the past is being
replaced with an advanced, multiprocessing,
distributed model that provides for future
flexibility and expansion. Part of this strategy is
to develop a “Distributed Diagnostic Architec-
ture” that does not require specialized systems
to be incorporated in the aircraft system to
perform the diagnostic function.

Rockwell has defined a distributed
maintenance architecture, based on open
system standards that can significantly reduce
the development costs, as well as the costs for
upgrading and extending the OMS of the
future. The application of Rockwell’s next
generation OMS divides the user interface, data
storage/retrieval, diagnostic engine, and OMS
application code. Separation of these compo-
nents provides a system design approach that
allows flexible applications for the diagnostic

5

reasoning methods, the data collection and
concentration methods, and the maintenance
display methods.

Additional benefits of this architecture
are improved responsiveness, throughput, and
extensibility. Using a distributed system allows
for functions to reside on multiple processors
within the avionics system. The well-defined
object interface allows the CPU loading to be
shared over a network, as well as to dynami-
cally change the distribution of tasks for better
load sharing and redundancy management.
Individual components can simply be upgraded
without affecting the other components. If
needed, additional functional objects can be
added to this open system to allow unplanned
options to be incorporated with less risk and
cost than previous designs could provide.

A distributed architecture is composed
of object-oriented components that are freely
distributed across various computers in a
network. The key to this distributed environ-
ment is developing standardized methods for
brokering and communicating objects through-
out the network. This is the responsibility of an
Object Request Broker (ORB). The two major
competing standards are the Common Object
Request Broker Architecture (CORBA),
developed by the Object Management Group
(OMG), and the Distributed Component Object
Model (DCOM), developed by Microsoft
Corporation. These models effectively separate
an object’s interface from its implementation
by using an Interface Definition Language
(IDL). The IDL provides a standardized
representation of an object and its methods and
attributes, which remain consistent regardless
of the language or platform implementation. By
using standard IDL interfaces, CORBA and
DCOM make distributed programming simple,
allowing developers to treat and use any remote
object as if it were local to the user.

OMG has also developed an Internet
Inter-ORB Protocol (IIOP) standard that
guarantees CORBA interoperability over the
Internet. IIOP is a transport alternative to the

popular HTTP that incorporates an object-
oriented communications paradigm instead of
the current page-oriented one. The CORBA
IIOP approach allows an ORB from one
manufacturer to have full interaction with an
ORB from another manufacturer without any
intervention or special programming.

In order to reuse system information
and models (e.g., aircraft system interconnects,
data dictionaries) between different organiza-
tions (e.g., system engineering, maintainability,
reliability, hardware, software) or different
tools, the different organizations must either
share a common repository or their tools must
be able to easily exchange data. Most tool
vendors have proprietary formats and databases
underneath their tools, so it is virtually impos-
sible to get these tools to share data without
some standard data interchange format, such as
the CASE Data Interchange Format (CDIF).

CDIF defines a single architecture for
exchanging data between modeling tools and
repositories, and defines the interfaces of the
components to implement this architecture.
CDIF also defines a standard way of moving
data between tools, without the need for
customized interfaces. Each tool only needs
one import and one export interface to be able
to communicate with other CDIF-conformant
tools.

Whether a single repository should be
used for storing the data or if each tool should
store its own data is still being debated. Our
view is that a single common repository should
be used to provide a single source for configu-
ration management, version control, model
synchronization, etc. Without this single source
of control, sophisticated mechanisms must be
developed to make sure that a model change in
one tool is automatically reflected in all other
tools.

Taking into account these standards, a
new distributed architecture, shown in Figure 5,
is defined for the current development system.

6

(database)
System

Modeling
Tools

CDIF

Q-DAG
(Compiled

Causal Net)

CORBA IIOP

Easier

Rx4

Rx3

Rx2
Tx

Rx1

System Schematic

Q-DAG Evaluator
Q-DAG

and

and

or and or or

or

CNETS
Tx-mode

System Model

If Rx1-mode=OK and Tx=transmit
 then rx1=receive
If Rx1-mode=broken or Tx=not-transmit
 then Rx1=not-receive

If Tx-mode=OK then Tx=transmit
If Tx-mode=broken then Tx=not-transmit

If Rx3-mode=OK and Tx=transmit
 then Rx3=receive
If Rx3-mode=broken or Tx=not-transmit
 then Rx3=not-receive

Tx
Rx1-mode Rx2-mode Rx3-mode Rx4-mode

Rx1 Rx2 Rx3 Rx4

If Rx2-mode=OK and Tx=transmit
 then Rx2=receive
If Rx2-mode=broken or Tx=not-transmit
 then Rx2=not-receive

If Rx4-mode=OK and Tx=transmit
 then Rx4=receive
If Rx4-mode=broken or Tx=not-transmit
 then Rx4=not-receive

Figure 5: Architecture for Distributed
Diagnostic Development System

Similarly, the embedded system, shown
in Figure 6, can be distributed over three
separate components that communicate over a
network using CORBA technology: a data
collector, a diagnostic engine (Q-DAG evalua-
tor), and a presenter. EASIER generates the
loadable tables necessary for the embeddable
components. The data collector would monitor
the raw input data, perform any filtering on that
data, and pass state changes to the diagnostic
engine. The diagnostic engine would update the
Q-DAG based on these state changes and
generate the latest diagnosis based on the
current state of the system. These results would
then be sent (either automatically or on
demand) to the presenter, which would display
the ambiguity group(s) to the appropriate user.

The distributed environment also allows
for multiple data collectors and/or presenters, if
desired. Separating these components provides
a system design that allows flexible applica-
tions for the diagnostic reasoning methods, the
data collection and concentration mechanisms,
and the maintenance display platform. Addi-
tional benefits of this architecture are improved
responsiveness, throughput, upgradability, and
extensibility.

Table loadable
Q-DAG model

Table loadable
presentation view

A/C LRU
- Fault Reports
- FDEs
- Status Info

Easier/CNETS System

BIU
ARINC 629

ARINC 429

LRU
Integrated

Data Collectors

Embeddable
Diagnostics

Engine

Satcom

PMAT

Remote
Maint.

Interface

Presenter

Table loadable
data & filter tables

CORBA IIOP

Figure 6: Architecture for Distributed
Diagnostic Run-Time System

Diagnostic System Components
This section summarizes the major

modules in the diagnostic system, the EASIER
interface and the CNETS inference system and
compiler.

EASIER User Interface
Diagnostic models developed in

EASIER/CNETS are viewed as a collection of
interconnected primitives. These primitives, or
diagnostic model building blocks, are custom-
ized to achieve the appropriate diagnostic
"view" for an application. Only information
relevant to this diagnostic view (failure char-
acteristics, system variables) is modeled (e.g.,
general functional characteristics not related to
diagnostics are not modeled). Depending on the
problem specifications, a primitive could be a
logic gate, a bus, or a complex LRU.

Once a set of primitives is identified for
a diagnostic problem, causal network structures
are compiled and stored for these primitives.
These primitives are then available in the
EASIER graphical interface—users develop a
system model by placing instances of these
primitives on the screen and connecting them to
define a complete system. The tool then gener-
ates a causal network system model from the

7

specification of these primitives and their
interconnections.

The behavior equations (which map into
causal network properties) defined for each
primitive building block can be simple or
complex. Flexible equations are used to capture
this behavior. CNETS supports relationships
based on both multi-valued propositional logic
and conditional probabilities for equations, and
OMP or probabilistic weights for modeling
component reliabilities.

Diagnostic models developed in
EASIER can be debugged and refined through
EASIER's simulation utility. EASIER allows
the user to simulate normal and abnormal
conditions in the system behavior. System users
can also simulate and refine the model by
changing the state of individual components. In
the system, the colors of the blocks indicate the
state of the block, e.g., OK or broken. The fully
interactive environment provides immediate
feedback (e.g., highlighting of affected path-
ways, changing of color-coded states) to gain
understanding of model behavior. In the
airplane-level diagnostics domain, EASIER's
simulation capabilities provide mechanisms to
solve cascade effect removal, fault isolation,
fault consolidation, and flight deck effect
correlation in one integrated visualization
environment.

Causal Networks Inference System (CNETS)
CNETS is a system for representing and

reasoning with causal networks, which include
probabilistic and symbolic causal networks.
CNETS allows the user to create a model by
specifying a causal structure and a quantifica-
tion of this structure using any of the methods
described earlier.

Off-Line Inference
The chosen method of quantification

depends on the application domain, the
reasoning task, and the available information
about the system being modeled. Independent
of the causal network used, the user will
typically engage in the following type of

scenario with CNETS: First, the user asserts
available evidence about the modeled system.
Second, the user makes queries about the
behavior of the system, typically simulation,
prediction and/or diagnostic queries.

CNETS implements a number of
inference algorithms that can be used to process
such queries. The fundamental class of algo-
rithms used by CNETS transforms the input
causal network into a form that facilitates the
particular type of query-processing. The
primary algorithm used is a modified version of
the clique-tree algorithm [3]. If the queries are
probabilistic, then an algorithm like the clique-
tree algorithm can be used directly. CNETS
also supports a symbolic form of this algorithm
for answering symbolic queries for avionics
systems and for discrete-event systems [4].

CNETS Compiler for On-Line Inference
CNETS has a compiler that allows the

user to generate a run-time version of the
system model by using a compiler [2] in
conjunction with an algorithm like [3]. Using
this novel compilation technique, CNETS is
able to compile a causal network into a Boo-
lean expression, called a Query Directed
Acyclic Graph, or Q-DAG, that contains all
possible diagnoses for the complete system,
given inputs for the observable variables of the
system model.

The Q-DAG provides the same
complete diagnostic information that is avail-
able with the original causal network, given
that we specify which variables are used as
input values and which variables are used for
diagnostic conclusions. The main benefit of this
compiled approach is an embeddable model
that, together with a very simple evaluator,
requires minimal computer processing re-
sources and can be ported to other platforms
and languages with relative ease.

Causal Network Guarantees
One of the key features of the causal

network approach is that, for diagnostic
inference, it provides a number of guarantees.
First, the causal network approach provides

8

soundness and completeness guarantees based
on the model [1]. In other words, if any diag-
nosis is computable from the model, CNETS is
guaranteed to compute it. This guarantee allows
users, when developing models, to test the BIT
(built-in test), BITE (built-in test equipment)
and diagnostic coverage.

Second, it can provide complexity
guarantees in terms of the model parameters.
The structure of the network is the most critical
aspect that governs the complexity of inference,
and this is why causal networks are one of
several classes of techniques termed "structure-
based" approaches. For example, in the causal
graph the maximum number of parent nodes of
any node is one of the most significant
parameters. Because all significant complexity
parameters are ultimately derivable from the
system structure, the structure can be manipu-
lated to obtain acceptable inference complexity
without altering the diagnostic coverage.
Approaches that are not structure-based do not
have this capability to alter inference complex-
ity without altering the diagnostic coverage.

Beyond the complexity guarantees, the
causal network approach has been optimized in
a number of ways. This approach uses a
focusing mechanism to focus inference on only
the most likely diagnoses [1]; in addition, it
makes use of observations to prune and to
decompose the system (and hence reduce
overall inference complexity) [5].

Conclusions and future work
This paper has summarized a new

approach to designing an advanced mainte-
nance system that provides important capabili-
ties both for system design and for on-board
diagnostics. This maintenance system provides
a graphical user interface that has been tailored
for avionics and is designed for ease of use by
engineers. This visualization allows engineers
to design systems using a schematic-oriented,
system-level framework with which they are
familiar. The human computer interface (HCI)
is connected to the other system software

components using CORBA middleware. The
on-board diagnostics system can be compiled
automatically from the models created by the
engineers through the user interface. Together
these features constitute a maintenance system
that significantly advances the state-of-the-art.

We intend to extend this approach in a
number of ways. One important extension is to
implement prognostics and remaining func-
tionality algorithms, such that we can predict
future faults and define remaining vehicle
functionality given the predicted or existing
faults, respectively.

References
[1] A. Darwiche: "New Advances In

Structured-Based Diagnosis: A Method
For Compiling Devices,” Proc. Of The 8th
International Workshop On Principles Of
Diagnosis (Dx97)

[2] Adnan Darwiche and Gregory Provan,
“Query-DAGs: A Practical Paradigm for
Implementing Belief-Network Inference,”
Journal of AI Research, 1996.

[3] V. Jensen, S. L. Lauritzen, and K. G.
Olesen, “Bayesian Updating in Recursive
Graphical Models by Local Computation,”
Computational Statistics Quarterly, 4:269-
-282, 1990.

[4] Cassandras, C. G., Discrete Event Systems,
IRWIN Inc. 1993.

[5] Adnan Darwiche and Gregory Provan,
“The Effect of Observations on the
Complexity of Model-based Diagnosis,”
Proc. AAAI, pp. 91-94, 1997.

	A
	Abstract
	Challenges of Developing Diagnostic Systems for Complex Applications
	Diagnostic Representation
	Causal Network Specification Language

	Rockwell Avionics Diagnostic System
	Diagnostic System Architecture
	Distributed Diagnostics Architecture

	Diagnostic System Components
	EASIER User Interface
	Causal Networks Inference System (CNETS)
	Off-Line Inference
	CNETS Compiler for On-Line Inference
	Causal Network Guarantees

	Conclusions and future work
	References

