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Abstract 
We present a flexible, powerful, easily 

maintainable diagnostics system that integrates 
diagnostic development functions into product 
development tools and processes. 

Challenges of Developing Diagnostic 
Systems for Complex Applications 

There exists a wide variety of modeling 
and inference methods for diagnostics, includ-
ing expert systems, neural networks, and 
model-based approaches. All of these ap-
proaches can represent and analyze the same 
artifact but from different viewpoints.  

Complex systems, such as commercial 
aircraft, represent a challenge both in modeling 
and inference. Next generation improvements 
in the performance of diagnostic systems will 
require, at the very least, higher fidelity 
models, guarantees on model consistency, and 
reasoning algorithms that are less susceptible to 
state-space explosion problems. 

Moreover, analyses of the diagnostic 
models for complex systems must be correct 
and exhaustive. Incomplete analyses using 
probabilistic arguments become progressively 
more tenuous for complex systems and unac-
ceptable for safety-critical applications. 

Powerful and generic modeling para-
digms and algorithms that seamlessly serve 
many analytic needs are key ingredients for 
developing the next generation diagnostic 
systems. Other critical aspects of models are 
capturing aspects of temporal and dynamic 
systems, and the ability to scale to complex and 
non-deterministic scenarios. 

To address these challenges in the 
design of diagnostic systems for complex 
applications, we propose a model-based solu-
tion that integrates two state-of-the-art 
technologies: (1) causal network diagnostic 
modeling and inference algorithms and (2) 
distributed computing.  

We argue that these two technologies 
can synergistically provide:  

• The ability to model a fault using 
current design data and thus trouble-
shoot and repair a failure either (a) 
not previously identified or (b) with 
no existing maintenance procedures. 

• The ability to provide diagnostics 
feedback to design engineering 
during the design and integration 
process. 

• A significantly enhanced ability to 
scale to large complex applications 
while maintaining accuracy.  

• The ability to guarantee computa-
tional requirements, a priori, based 
on model fidelity. 

We organize this paper as follows. The 
following section summarizes the diagnostic 
representation, causal networks [1], and intro-
duces a simple example of causal network 
modeling. The next section summarizes 
Rockwell Collin’s avionics diagnostic system, 
briefly describing each major component of the 
system. The final sections provide conclusions 
and references. 
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Diagnostic Representation  
This section introduces an example that 

we use to describe our approach, and the 
representation that we adopt for modeling, 
causal networks [1].  

A causal network is a graph-based 
representation that is used for diagnosing 
failures of a system. Causal networks provide 
probabilistic, order of magnitude, and symbolic 
representations. They also have predictable 
scaling properties for the eventual embedded 
runtime diagnostic system.  

A causal network encodes the causal 
relations of a system; e.g., in Figure 1, the 
transmitter in Tx causes Receivers Rx1 through 
Rx4 to receive data. A causal network is thus a 
good way of representing the flow of data in 
such systems, and hence reasoning about the 
root causes of data flow; e.g., Tx is the root 
cause of data being received by Rx1 through 
Rx4. Figure 2 shows the causal network 
structure for this simple example. Conversely, 
if data is not flowing as intended, the causal 
network can help track down the reason for the 
“breakdowns” of correct data flow; e.g., Tx 
could be the root cause of data being absent at 
Rx1 through Rx4. We call this diagnosing the 
faults in the system. 
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Figure 1: Simple Avionics Example 
More formally, a causal network speci-

fies the causal relationships among a set V of 

variables by encoding each variable in V with a 
node, and encoding the causal influence of V1 
on V2 by a directed arc from V1 to V2. Hence a 
causal network is a directed graph (N,A) of 
nodes N and directed arcs A. 

Rx1 Rx2 Rx3 Rx4

Tx

 

Figure 2: Causal Network Structure for 
Simple Avionics Example 

The example we have just described 
covers only hardware, but note that the causal 
network modeling language allows functional 
specifications of both software and hardware. 

Causal Network Specification Language 
To specify a causal network model we 

need to define: 

1. the variables in the model, which 
represent the components, e.g., Tx, 
Rx1, Rx2, Rx3, Rx4 from Figure 1; 

2. the values for the variables, which 
represent the data that flows through 
various parts of the system; 

3. the assumables, which are the vari-
ables that describe the operating 
characteristics of the components, 
such as OK or broken; 

4. the quantifications, which relate the 
variables and assumables; 

5. the evidence variables, which are 
the variables that can be observed; 

6. the weights for the assumables, 
which specify the likelihood or 
relative ranking of the assumable 
fault modes. 
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The component modes characterize the 
ways the component works under an exhaustive 
set of scenarios. Rx1 has associated assum-
ables, OK and broken, and a quantification as 
follows: if OK, Rx1 receives data from Tx, but 
if broken receives no data. In propositional 
logic, we might write this as: 

• IF (Rx1-mode = OK) AND (Tx = 
transmit) THEN (Rx1 = receive) 

• IF (Rx1-mode = broken) OR (Tx = 
not-transmit) THEN (Rx1 = not-
receive). 

Figure 3 shows the causal network 
model with the assumables and quantification 
defined. 

Tx-modeSystem Model

If Rx1-mode=OK and Tx=transmit
   then rx1=receive
If Rx1-mode=broken or Tx=not-transmit
   then Rx1=not-receive

If Tx-mode=OK then Tx=transmit
If Tx-mode=broken then Tx=not-transmit

If Rx3-mode=OK and Tx=transmit
   then Rx3=receive
If Rx3-mode=broken or Tx=not-transmit
   then Rx3=not-receive

Tx
Rx1-mode Rx2-mode Rx3-mode Rx4-mode

Rx1 Rx2 Rx3 Rx4

If Rx2-mode=OK and Tx=transmit
   then Rx2=receive
If Rx2-mode=broken or Tx=not-transmit
   then Rx2=not-receive

If Rx4-mode=OK and Tx=transmit
   then Rx4=receive
If Rx4-mode=broken or Tx=not-transmit
   then Rx4=not-receive

 

Figure 3: Causal Network for Simple 
Avionics Example 

As described later in the paper, we have 
implemented a graphical user interface (GUI) 
that allows a user to specify a system using a 
simple set of components that are connected 
based on data flows. For each component, the 
user needs to specify only the inputs and 
outputs, the functional relationships between 
the inputs and outputs, and the operating modes 
of the component. 

Note that the causal network represen-
tation can describe not only deterministic 
systems as in the above example, but also 
stochastic systems (using probabilities and 

order-of-magnitude probabilities (OMP) [1,2]), 
and discrete-event systems [4].  

Rockwell Avionics Diagnostic System 
Rockwell has developed a distributed 

maintenance architecture that is based on 
causal networks and open system standards, 
and provides the capability to significantly 
reduce the costs of development and of 
upgrading and extending the onboard mainte-
nance system (OMS) of the future. The 
Rockwell avionics diagnostic system has 
several characteristics that, taken together, 
distinguish it from competing systems. These 
key characteristics include: 

1. an avionics-oriented user interface 
for model development, simulation 
and diagnostic testing;  

2. guarantees of diagnostic correctness 
and completeness given the models;  

3. a compiler that allows the user to 
embed a real-time diagnostic system 
on-board the aircraft; 

4. the deployment of the diagnostic 
system within a distributed, open 
architecture. 

This section now describes the overall 
architecture of this diagnostic system. 

Diagnostic System Architecture 
The general architecture of the tool set, 

is shown in Figure 4. Diagnostic system 
development and deployment is divided into 
two phases: off-line model generation and 
compilation, and on-line diagnostic evaluation. 

The off-line phase entails developing 
and analyzing a model, and then compiling that 
model so that it can be efficiently evaluated by 
the on-board avionics system. Model develop-
ment takes place using a graphical user inter-
face called EASIER (Enhanced Analysis and 
Simulation Integrated Environment from 
Rockwell), and compilation is based around a 
causal network inference system called 
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CNETS. EASIER supports development of 
primitive blocks and subsequent interactive 
model development and simulation for avionics 
applications. The output of EASIER is a causal 
network on which inference is performed by 
CNETS. Models generated in EASIER can be 
output to a diagnostic compiler in CNETS to 
generate embeddable diagnostic code. 
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   then Rx2=receive
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   then Rx4=not-receive

 

Figure 4: Diagnostic System Architecture: 
On-Line vs. Off-Line Subsystems 

The on-line component of this tool-set 
is a real-time evaluator/interpreter that operates 
on the compiled diagnostic model or Q-DAG 
(Query Directed Acyclic Graph) to generate 
diagnostic results from a set of input variables. 
A Q-DAG is a compiled representation of the 
causal network, and is an expression that is 
optimized for real-time embedded diagnostic 
inference.  

It is important to note that the 
underlying diagnostic tool, CNETS, as well as 
the associated compilation system, is a 
completely general system that can perform 
domain-independent causal network inference. 
The other component, EASIER, was designed 
specifically for the avionics domain, although 
the concepts of the EASIER interface can be 

applied to other domains (e.g., communica-
tions, digital circuits).  

A second important point to note is that 
the EASIER/CNETS system is meant to hide 
the details of diagnostic modeling and infer-
ence so that engineers can use the system 
without having to acquire significant new 
skills. The EASIER/CNETS system has been 
explicitly tailored to avionics engineers, 
presenting to these engineers a front end with 
which they will be familiar. This approach 
unlocks the potential of causal networks to 
avionics applications. 

Distributed Diagnostics Architecture 
For aircraft onboard maintenance sys-

tem (OMS) applications for the 21st century, 
the OMS must move to “open systems” and use 
“industry standards” in an attempt to get away 
from the proprietary “black box” implementa-
tions. The model-based approach is critical to 
allow model updating and re-use, and to ensure 
that different types of models can be stored in a 
single database, thereby leveraging common 
information. Further, it is widely recognized 
that to take advantage of current and future 
technology, the traditional federated avionics 
system application approach of the past is being 
replaced with an advanced, multiprocessing, 
distributed model that provides for future 
flexibility and expansion. Part of this strategy is 
to develop a “Distributed Diagnostic Architec-
ture” that does not require specialized systems 
to be incorporated in the aircraft system to 
perform the diagnostic function. 

Rockwell has defined a distributed 
maintenance architecture, based on open 
system standards that can significantly reduce 
the development costs, as well as the costs for 
upgrading and extending the OMS of the 
future. The application of Rockwell’s next 
generation OMS divides the user interface, data 
storage/retrieval, diagnostic engine, and OMS 
application code. Separation of these compo-
nents provides a system design approach that 
allows flexible applications for the diagnostic 
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reasoning methods, the data collection and 
concentration methods, and the maintenance 
display methods. 

Additional benefits of this architecture 
are improved responsiveness, throughput, and 
extensibility. Using a distributed system allows 
for functions to reside on multiple processors 
within the avionics system. The well-defined 
object interface allows the CPU loading to be 
shared over a network, as well as to dynami-
cally change the distribution of tasks for better 
load sharing and redundancy management. 
Individual components can simply be upgraded  
without affecting the other components. If 
needed, additional functional objects can be 
added to this open system to allow unplanned 
options to be incorporated with less risk and 
cost than previous designs could provide. 

A distributed architecture is composed 
of object-oriented components that are freely 
distributed across various computers in a 
network. The key to this distributed environ-
ment is developing standardized methods for 
brokering and communicating objects through-
out the network. This is the responsibility of an 
Object Request Broker (ORB). The two major 
competing standards are the Common Object 
Request Broker Architecture (CORBA), 
developed by the Object Management Group 
(OMG), and the Distributed Component Object 
Model (DCOM), developed by Microsoft 
Corporation. These models effectively separate 
an object’s interface from its implementation 
by using an Interface Definition Language 
(IDL). The IDL provides a standardized 
representation of an object and its methods and 
attributes, which remain consistent regardless 
of the language or platform implementation. By 
using standard IDL interfaces, CORBA and 
DCOM make distributed programming simple, 
allowing developers to treat and use any remote 
object as if it were local to the user. 

OMG has also developed an Internet 
Inter-ORB Protocol (IIOP) standard that 
guarantees CORBA interoperability over the 
Internet. IIOP is a transport alternative to the 

popular HTTP that incorporates an object-
oriented communications paradigm instead of 
the current page-oriented one. The CORBA 
IIOP approach allows an ORB from one 
manufacturer to have full interaction with an 
ORB from another manufacturer without any 
intervention or special programming. 

In order to reuse system information 
and models (e.g., aircraft system interconnects, 
data dictionaries) between different organiza-
tions (e.g., system engineering, maintainability, 
reliability, hardware, software) or different 
tools, the different organizations must either 
share a common repository or their tools must 
be able to easily exchange data. Most tool 
vendors have proprietary formats and databases 
underneath their tools, so it is virtually impos-
sible to get these tools to share data without 
some standard data interchange format, such as 
the CASE Data Interchange Format (CDIF). 

CDIF defines a single architecture for 
exchanging data between modeling tools and 
repositories, and defines the interfaces of the 
components to implement this architecture. 
CDIF also defines a standard way of moving 
data between tools, without the need for 
customized interfaces. Each tool only needs 
one import and one export interface to be able 
to communicate with other CDIF-conformant 
tools.  

Whether a single repository should be 
used for storing the data or if each tool should 
store its own data is still being debated. Our 
view is that a single common repository should 
be used to provide a single source for configu-
ration management, version control, model 
synchronization, etc. Without this single source 
of control, sophisticated mechanisms must be 
developed to make sure that a model change in 
one tool is automatically reflected in all other 
tools.  

Taking into account these standards, a 
new distributed architecture, shown in Figure 5, 
is defined for the current development system.  
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   then Rx4=not-receive  

Figure 5: Architecture for Distributed 
Diagnostic Development System 

Similarly, the embedded system, shown 
in Figure 6, can be distributed over three 
separate components that communicate over a 
network using CORBA technology: a data 
collector, a diagnostic engine (Q-DAG evalua-
tor), and a presenter. EASIER generates the 
loadable tables necessary for the embeddable 
components. The data collector would monitor 
the raw input data, perform any filtering on that 
data, and pass state changes to the diagnostic 
engine. The diagnostic engine would update the 
Q-DAG based on these state changes and 
generate the latest diagnosis based on the 
current state of the system. These results would 
then be sent (either automatically or on 
demand) to the presenter, which would display 
the ambiguity group(s) to the appropriate user. 

The distributed environment also allows 
for multiple data collectors and/or presenters, if 
desired. Separating these components provides 
a system design that allows flexible applica-
tions for the diagnostic reasoning methods, the 
data collection and concentration mechanisms, 
and the maintenance display platform. Addi-
tional benefits of this architecture are improved 
responsiveness, throughput, upgradability, and 
extensibility. 
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Figure 6: Architecture for Distributed 
Diagnostic Run-Time System 

Diagnostic System Components 
This section summarizes the major 

modules in the diagnostic system, the EASIER 
interface and the CNETS inference system and 
compiler. 

EASIER User Interface 
Diagnostic models developed in 

EASIER/CNETS are viewed as a collection of 
interconnected primitives. These primitives, or 
diagnostic model building blocks, are custom-
ized to achieve the appropriate diagnostic 
"view" for an application. Only information 
relevant to this diagnostic view (failure char-
acteristics, system variables) is modeled (e.g., 
general functional characteristics not related to 
diagnostics are not modeled). Depending on the 
problem specifications, a primitive could be a 
logic gate, a bus, or a complex LRU. 

Once a set of primitives is identified for 
a diagnostic problem, causal network structures 
are compiled and stored for these primitives. 
These primitives are then available in the 
EASIER graphical interface—users develop a 
system model by placing instances of these 
primitives on the screen and connecting them to 
define a complete system. The tool then gener-
ates a causal network system model from the 
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specification of these primitives and their 
interconnections. 

The behavior equations (which map into 
causal network properties) defined for each 
primitive building block can be simple or 
complex. Flexible equations are used to capture 
this behavior. CNETS supports relationships 
based on both multi-valued propositional logic 
and conditional probabilities for equations, and 
OMP or probabilistic weights for modeling 
component reliabilities. 

Diagnostic models developed in 
EASIER can be debugged and refined through 
EASIER's simulation utility. EASIER allows 
the user to simulate normal and abnormal 
conditions in the system behavior. System users 
can also simulate and refine the model by 
changing the state of individual components. In 
the system, the colors of the blocks indicate the 
state of the block, e.g., OK or broken. The fully 
interactive environment provides immediate 
feedback (e.g., highlighting of affected path-
ways, changing of color-coded states) to gain 
understanding of model behavior. In the 
airplane-level diagnostics domain, EASIER's 
simulation capabilities provide mechanisms to 
solve cascade effect removal, fault isolation, 
fault consolidation, and flight deck effect 
correlation in one integrated visualization 
environment. 

Causal Networks Inference System (CNETS) 
CNETS is a system for representing and 

reasoning with causal networks, which include 
probabilistic and symbolic causal networks. 
CNETS allows the user to create a model by 
specifying a causal structure and a quantifica-
tion of this structure using any of the methods 
described earlier. 

Off-Line Inference 
The chosen method of quantification 

depends on the application domain, the 
reasoning task, and the available information 
about the system being modeled. Independent 
of the causal network used, the user will 
typically engage in the following type of 

scenario with CNETS: First, the user asserts 
available evidence about the modeled system. 
Second, the user makes queries about the 
behavior of the system, typically simulation, 
prediction and/or diagnostic queries.  

CNETS implements a number of 
inference algorithms that can be used to process 
such queries. The fundamental class of algo-
rithms used by CNETS transforms the input 
causal network into a form that facilitates the 
particular type of query-processing. The 
primary algorithm used is a modified version of 
the clique-tree algorithm [3]. If the queries are 
probabilistic, then an algorithm like the clique-
tree algorithm can be used directly. CNETS 
also supports a symbolic form of this algorithm 
for answering symbolic queries for avionics 
systems and for discrete-event systems [4]. 

CNETS Compiler for On-Line Inference 
CNETS has a compiler that allows the 

user to generate a run-time version of the 
system model by using a compiler [2] in 
conjunction with an algorithm like [3]. Using 
this novel compilation technique, CNETS is 
able to compile a causal network into a Boo-
lean expression, called a Query Directed 
Acyclic Graph, or Q-DAG, that contains all 
possible diagnoses for the complete system, 
given inputs for the observable variables of the 
system model. 

The Q-DAG provides the same 
complete diagnostic information that is avail-
able with the original causal network, given 
that we specify which variables are used as 
input values and which variables are used for 
diagnostic conclusions. The main benefit of this 
compiled approach is an embeddable model 
that, together with a very simple evaluator, 
requires minimal computer processing re-
sources and can be ported to other platforms 
and languages with relative ease. 

Causal Network Guarantees 
One of the key features of the causal 

network approach is that, for diagnostic 
inference, it provides a number of guarantees. 
First, the causal network approach provides 
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soundness and completeness guarantees based 
on the model [1]. In other words, if any diag-
nosis is computable from the model, CNETS is 
guaranteed to compute it. This guarantee allows 
users, when developing models, to test the BIT 
(built-in test), BITE (built-in test equipment) 
and diagnostic coverage. 

Second, it can provide complexity 
guarantees in terms of the model parameters. 
The structure of the network is the most critical 
aspect that governs the complexity of inference, 
and this is why causal networks are one of 
several classes of techniques termed "structure-
based" approaches. For example, in the causal 
graph the maximum number of parent nodes of 
any node is one of the most significant 
parameters. Because all significant complexity 
parameters are ultimately derivable from the 
system structure, the structure can be manipu-
lated to obtain acceptable inference complexity 
without altering the diagnostic coverage. 
Approaches that are not structure-based do not 
have this capability to alter inference complex-
ity without altering the diagnostic coverage. 

Beyond the complexity guarantees, the 
causal network approach has been optimized in 
a number of ways. This approach uses a 
focusing mechanism to focus inference on only 
the most likely diagnoses [1]; in addition, it 
makes use of observations to prune and to 
decompose the system (and hence reduce 
overall inference complexity) [5]. 

Conclusions and future work 
This paper has summarized a new 

approach to designing an advanced mainte-
nance system that provides important capabili-
ties both for system design and for on-board 
diagnostics. This maintenance system provides 
a graphical user interface that has been tailored 
for avionics and is designed for ease of use by 
engineers. This visualization allows engineers 
to design systems using a schematic-oriented, 
system-level framework with which they are 
familiar. The human computer interface (HCI) 
is connected to the other system software 

components using CORBA middleware. The 
on-board diagnostics system can be compiled 
automatically from the models created by the 
engineers through the user interface. Together 
these features constitute a maintenance system 
that significantly advances the state-of-the-art. 

We intend to extend this approach in a 
number of ways. One important extension is to 
implement prognostics and remaining func-
tionality algorithms, such that we can predict 
future faults and define remaining vehicle 
functionality given the predicted or existing 
faults, respectively. 
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