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Abstract

We describe an approach to automate the dynamic
computation of optimal control/reconfiguration actions
that can achieve pre-specified control objectives. This
approach, based on model-based diagnostic representa-
tions and algorithms, integrates diagnostics and control
reconfiguration for discrete event systems using a sin-
gle modeling mechanism and suite of algorithms. When
the system functionality degrades (i.e., failures occur
in the systems), the diagnostic algorithm will isolate
the most-likely failures, and then the control mecha-
nism will generate the least-cost actions that attempt
to recover from the failure and maintain the control
objectives. Results about the quality of the control ac-
tions generated and the complexity of computing these
actions are also presented. We illustrate our approach
using a simple wireless sensor network.

Keywords: model-based diagnostics, discrete event
systems, system control and reconfiguration.

1 Introduction

System Control, reconfiguration, and diagnosis are im-
portant aspects of managing real-world applications
modeled as discrete event systems. By control we
mean identifying control actions to achieve given con-
trol objective(s) given pre-defined system constraints
and current system observations. By reconfiguration
we mean (re)generating control actions that could re-
arrange the functions/roles of system components in
order to maintain the control objectives given anoma-
lous system observations. By diagnosis we mean iso-
lating the cause of anomalous sensor readings (system
observations). These aspects of discrete event systems
are inter-related: the control actions generated by con-
trol and/or reconfiguration mechanisms will affect the
next sensor readings; diagnostic isolation of the failed
components leading to degraded system performance
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will affect the generation/modification to the control
and possibly system reconfiguration.

Typically, control, reconfiguration and diagnosis tasks
for discrete event systems are studied/performed inde-
pendently, with distinct models designed for each task.
Various studies in the automata-based supervisory con-
trol paradigm [9] have been focusing on identifying con-
trol actions within a given specification. Work in [10)
addresses the system reconfiguration issues. For diag-
nosis, several model-based approaches based on arti-
ficial intelligence techniques have been widely studied
(e.g., GDE [4] or causal networks [3]). However, lit-
tle attention has been given to leverage these existing
results to provide an integrated framework for control,
reconfiguration, and diagnosis. One recent work [11],
an automata-based diagnosis approach, partially ad-
dresses this concern. An Al-based approach [12] has
looked at this area, focusing primarily on the real-time
aspects of this task.

A second key motivation for our work is that we provide
a means for generating control for system failure states
without having to pre-program all control conditions
for anomalous states. In many existing approaches,
control has to be pre-specified for all possible failure
states, which can be an onerous process; moreover, it
is typically not guaranteed to cover all possible failure
states. In the event of system failure, our approach will
automatically generate control actions that attempt to
recover from the failure and maintain the control ob-
jectives; moreover, provide an automated method for
computing control for failure states, and we give guar-
antees about the complete coverage of the control ac-
tions computed. Due to the highly related nature of
system control and reconfiguration and our similar ap-
proach in addressing them, we do not specifically dis-
tinguish them hereon.

This paper describes how a single underlying represen-
tation, causal networks [3], can be used for a number
of tasks, including simulation, control/reconfiguration,
and diagnosis. Our main contributions are as follows:
(1) We propose an integrated approach that uses a



single integrated model for both diagnosis and control
of discrete event systems, regardless of system health.
(2) We describe how to extend -a traditional model-
based diagnostic inference algorithm with focusing to
efficiently compute least-cost control actions; as such,
this framework allows us to provide guarantees for con-
trol similar to those possible for diagnosis. This frame-
work enables recovery capabilities similar to [12], but
using standard model-based diagnostic approaches. It
also provides a powerful modeling/simulation platform
that can incorporate other analysis mechanisms such
as planning.

The the article is organized as follows. In Section 2 we
introduce an illustrative simple wireless sensor network
example. We summarize our modeling mechanism and
diagnostic approach in Section 3. In Section 4 we show
how we extend this diagnostic approach to system con-
trol. We present our integrated framework in Section 5.
We then conclude with a discussion of the related work
and comments on further extending our approach.

2 A simple wireless sensor network example

We now describe a simple wireless sensor network of
four acoustic sensor nodes [6]. This much-simplified
example is intended solely to illustrate our approach.
We make various assumptions to simplify the model,
to focus the readers on the concepts of our approach.

Figure 1 shows the relative positions of the four sensor
nodes and their effective sensing ranges. Powered by a
small battery, each node is equipped with an acoustic
sensor and a wireless communication unit. The com-
munication unit can perform node-to-node radio fre-
quency communication and can also serve as a long-
range hub that communicates back to the remote com-
manding center. We assume direct communication be-
tween a regular sensor node and a sensor node that
serves as a long-range hub. The sensing and long-range
communication functions of the sensor node operate
independently. Hence, four different control instruc-
tions/actions can be sent to each of the sensor node:
idle (sleep), sensor, hub, and sensor+hub.

Figure 1: A wireless sensor network.

We quantify the remaining power of the battery to 7
levels, i.e., from 0 (exhausted) to 6 (fully charged). We
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assume that a sensor node consumes negligible power
when it is idle and consumes twice (three times) as
much of the power when it serves as a long-range hub
(both sensor and communication hub) as the power
when it functions only as a sensor. Moreover, we as-
sume sensor or long-range hub unit will not consume
power when it fails.

We divide the effective sensing area of the network into
13 zones based on the coverage of the sensor nodes as
shown in Figure 1. A functioning acoustic sensor will
detect the sound generated in seven zones that it covers
when it is activated. To simplified the problem, we do
not address the issue of locating the source (i.e., target)
of the sound within the sensing area.

We assume the sensor and the communication unit in
a node can fail. When a sensor fails, we assume that
it will always generate negative output (i.e., false-off).
We assume that only the long-range hub function can
fail and the node-to-node communication continues to
function as long as the battery is not exhausted.

Since we do not address the target identification and
locating issues, our diagnosis in this example is limited
to the situation when the target can be positively iden-
tified by other means (e.g., visual confirmation, or pre-
delopyed testing sources). The typical control objective
in this example is to provide consistent surveillance of
certain zones over a period of time.

3 Causal network modeling and diagnosis

3.1 Causal Network Modeling

For discrete event applications, we model the underly-
ing system (plant) behavior in terms of a causal net-
work plant model ®. The plant model describes the
physics of the system: distances, speeds, and their rela-
tionships which can be viewed as an actuator-to-sensor
map.! Note that the plant model ® simulates the sys-
tem behavior under both normal and abnormal compo-
nent modes (i.e., operating modes of the components).

A causal network plant model is a four-tuple & =
(V,A,G,A), where V is a set of variables, A is a dis-
tinguished set of variables called assumables, G is a
directed graph called a causal structure whose nodes
are members in VU A, and A is a set of sentences con-
structed from membersin V U A based on the topolog-
ical structure of G.

Variables in 'V represent the components, modules, or
abstract properties of the system, such as sensors, mo-
tors, or power level. Each variable in V has a finite set

1For some diagnosis applications, a similar “control” model
can be built to describe the closed-loop controller behavior (i.e.,
a sensor-to-actuator map) if the control plan is given rather than
generated by the control approach described in this article.



of discrete values. We define V,, the set of observ-
ables, as the subset of variables in V whose values can
be either directly measured (sensor) or set (actuator).
Similarly, Vynoss (the set of unobservables) consists of
the remaining variables in V whose values cannot be
directly detected. For control and discrete event appli-
cations, the observables are usually sensors and actu-
ators while the unobservables represent internal com-
ponents (e.g., motors) or properties (e.g., velocity and
position).

Assumables in A are special variables describing the
operating characteristics of system components. Each
assumable A is associated with a unique variable in V
and has a finite set of discrete modes. Each (failure)
mode is assigned a reliability measure to specify the
relative failure likelihoods.? These measures are used
in a focusing algorithm to restrict search on only the
most-likely diagnoses [3]. We will discuss the reliability
measure and the focusing algorithm in more details in
Sections 3.2 and 4. Note that VN A = 0.

The causal structure G is a directed acyclic graph that
specifies the causal relationships over the variables and
assumables. Each node V; of G represents a unique
element in V U A and each directed arc from V; to
Va2 represents the causal influence of V; on V5. Each
assumable node has no predecessors and only one child.

To formally describe the syntax and semantics for the
sentences in A that specify how the values of different
variables interact, we first introduce some terminology
[2]. Given a set of variables V and a set of assumables
A, a sentence is defined recursively as follows: (i) [V =
v] is a sentence, where V € VU A, and v is a value of
V; and (ii) ma,a V B, or a A B is a sentence where o
and B are sentences. We call [V = v] a V-literal.

For each variable V € V| a set of equations Ay, called
the database of V, is defined. These equations are of
the form § O «, where a and  are sentences that must
satisfy modularity, locality, and consistency conditions
similar to that described in [7]. The database A is then
the union of Ay forall V in V.

The plant model & we just described is for diagnosis
purposes where we categorize the failure mode vari-
ables as assumables. We will show in Section 4 that
by simply re-categorizing the variables, we can easily
modify the plant model for our control approach.

3.2 Model-based diagnostics

A model-based diagnosis inference task using our
causal network approach can be specified by the tu-
ple (®,9Q,Z,F), where & is the system (plant) model
described in Section 3.1, © is the input observation,
T denotes the inference algorithm, and F denotes the

2Different types of reliability measures, such as order-of-
magnitude probabilistic, can be used.
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focusing mechanism. We now describe the remaining
three elements of the tuple in turn.

The information about observables is the control and
sensor data that allows us to determine the sys-
tem state. The system observation Q is a Vg,-
instantiation; i.e., it describes the control and sensor
values that are currently observed. This observation
allows us to determine the current system status; the
inference algorithm Z then uses 2 in conjunction with
the plant model to compute the possible diagnoses.

The underlying inference algorithm Z for this approach
[3] is based on computing a consequence, with which we
can identify diagnoses, or as shown in Section 4, control
actions. Our diagnosis inference task is: given a model
(V,A,G,A) and observation €, find the failure-mode
specification A* consistent with A U Q.

The focusing algorithm is used to generate only the
most-likely diagnoses, thereby reducing the inference
complexity considerably over enumerating all minimal
diagnoses. Computing the value of A* is NP-hard [5],
since it searches over all subsets of mode-instantiations.
Hence, we apply a focusing algorithm to conduct a
best-first search over the space of diagnoses [3]. Us-
ing the reliability measures (weights) assigned to the
fault modes, this focusing algorithm applies an alge-
bra to perform the best-first search over the diagnosis
space, starting with the most-likely (i.e., least-weight)
diagnoses. For diagnosis purposes, this weight assign-
ment is usually defined as a function H : ¥ — A, where
¥ is a set of reliability measures and A is the union of
all discrete failure mode values for all assumables in A.
Different weight assignments can also be implemented
(refer to Section 4). Following [3], we can character-
ize the algebra using the triple (X, @, >g), where @ is
a weight addition operation and >g is a weight total
ordering satisfying: (i) @ is commutative, associative
and has a zero element and (ii) j >¢g ¢ if and only if
i@ k = j for some k. Note that a diagnosis of weight
J is said to be more likely than a diagnosis of weight ¢,
if j >¢ . An example of this is (Z, +,>), where Z is
the set of integers.

3.3 Causal network model for a sensor network
We now show our causal network model for the sensor
network described in Section 2. The causal network
model was constructed and simulated using our inte-
grated tool of (a) Component-based Diagnostic Model
Builder (CDMB) and (b) Causal NETwork diagno-
sis compilation and Simulation tool (CNETS). We de-
scribe an application of this tool to the condition-based
monitoring of pump/motor systems in [8].

Figure 2 shows a high level causal network for the wire-
less sensor network depicted in Figure 1. Nodes (i.e.,
variables and assumables) in this network are catego-
rized into five groups. The control nodes represent the



control variables for the four sensor nodes. The “target
in the zone” nodes indicate the presence of the targets
in one of the 13 zones. The sensor coverage nodes rep-
resent whether the 13 different zones are monitored by
some active sensors. The variable Comm.Coverage indi-
cates the status of the long-range communication capa-
bility. The behaviors of a sensor node are represented
by one of the four node subnets.

Figure 2: High level causal relationship.

Figure 3 shows the details of the subnet for Node 1
and its relationship to the rest of the causal network
model. The unshaded oval nodes represent observables
while the shaded oval nodes represent unobservables.
The shaded rounded rectangle node NodeMode is the
only assumable in this subnet. This assumable has four
failure modes values: ok, s-bad (sensor failure), h-bad
(long-range hub failure), and sh-bad (failure to both
sensor and long-range hub unit). Node Controll is the
only actuator variable in this subnet. It has four pos-
sible values: idle (node idling), sensor (node serves as
a sensor), hub (node serves as a long-range hub), and
sensor+hub (node serves as both a sensor and a hub).
Since the sensor node covers 7 zones, this subnet is con-
nected to 7 corresponding target-presence nodes and 7
sensor-coverage nodes. Note that the current setting of
this causal network model is for diagnostic purposes.

Turgetin the Zons

33RPeee

Nodel SubNet

Figure 3: Diagnostic subnet for node 1.

We show one of the equations in the database for Node-
Function of Node 1 subnet in the following.

[Controll = sensor] A [NodeMode = ok] A

—[PowerLevel = 0] D [NodeFunction = sensor].
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Model Variables Assumables Graph
Obs. Unobs. Structure
Diagnosis CuS U A [
Control AuS U C [e]

Table 1: Relationship between primal and dual models.

4 Causal networks for control

4.1 A dual approach to system control

We now extend the causal network approach to di-
agnostic inference by creating a dual causal network
for system control/reconfiguration. This involves re-
categorizing some nodes in the network, but preserv-
ing the structure of the network. To define a causal
network for control purposes, we first partition the ob-
servables V,, into a set C of control variables (i.e.,
actuators) and a set S of sensors: Vg, = CUS.
We define the dual model for control purposes as
® := (SUAUU,C,G,A). Table 1 shows the rela-
tionship between the primal (diagnosis) model and the
dual (control) model. The graph structure G and the
unobservables U remain the same in both models. The
key change is that we have swapped some observables
(the control variables C) and assumables A.

The control objective in our approach is specified by a
sentence, ©, which consists of literals of some variables
in S and U. For example, a control objective for our
wireless sensor network example can be

© = [Comm.Coverage = true} A [ZonelCoverage = true] (1)
A[Zone4Coverage = true] A [Zone5Coverage = true],

which specifies that the long range communication
should be established and sensor surveillance should
cover activities in zones 1, 4 and 5.

Similarly, the constraints to the system behavior are
usually specified in terms of a sentence, II, consisting of
literals of some variables in S and U. The sentence out-
lines the “proper” system behavior and excludes system
states that should never be reached. An example of the
constraints for the sensor network is

I = —[Node1Power = 0] A =[Node2Power = 0] A
—[Node3Power = 0] A ~[Node4Power = 0],

()

which indicates that none of the batteries in the four
nodes should be exhausted.

As shown in Table 1, we treat the failure-mode vari-
ables A as observables in the control model. Hence, a
diagnosis A* that consists of propositional literals of
variables in A is considered as a system observation in
our control approach.

Our model-based inference for control purposes is as
follows: given a control model @', a control objec-
tive ©, constraints II, and current diagnosis A*, find



the control action C* such that C* is consistent with
AUOUIIU A*. Here C* is an assignment of values
to all system control variable (i.e., next-step control
actions). To efficiently compute the control action, we
assign control costs X’ to all the values of the control
(actuator) variables and then adopt the same focusing
algorithm [3] to guide our search. The control algebra
for the focusing algorithm can be characterized using
the triple (X', ®, >4), where @ is a cost addition op-
eration and >g is a cost total ordering satisfying the
properties defined in Section 3.2. To properly assign
the control costs associated with the. control actions
(variables), we propose the three following approaches.

Our first approach, similar to how we assign the relia-
bility measures to the failure modes in diagnosis algo-
rithm, is to associate each value of a control variable
with a constant control cost in ¥’. This approach as-
sumes taking a control action would incur a constant
control cost regardless of previous control setting and
other factors. We assign a constant control cost propor-
tional to, for instance, the energy consumption of the
control action. For example, we can assign the control
cost of a wireless sensor node to be 0 for idling, 1 for
sensing, 2 for serving as a communication hub, and 3
for serving as both a sensor and a hub.

The second approach assigns a variable control cost
to every value of a control variable. Hence, the con-
trol cost for a particular value of a control variable can
be represented as a function of system states. For in-
stance, we can assign the cost of a control action as an
inverse function of the component life after the control
action. Similarly, the cost for a certain control action of
the sensor node (e.g., idle, sensing, etc.) for a period of
time can be defined as the square of the total accumu-
lated power consumption after the period ended :i.e.,

(Charge(fuu) - Charge(remaining after the period))z‘

The above two approaches assume that transitions be-
tween any value of a control variable are possible. How-
ever, in some applications, the transitions between dif-
ferent control actions are sometimes restricted. In this
case, the restrictions and the control cost of a control
variable are best represented by a Moore machine. The
states of the Moore machine are the possible values of
the control variable and the outputs of transitions rep-
resent the switching cost from one control values to
another. Figure 4 shows the Moore machine that we
can use to define the control cost for a sensor node.
Note that, with this approach, it is possible to restrict
the available next control values to the ones that have
a direct transition from the current control value in
the Moore machine. This can be done by making the
cost of any indirect transitions between control values
infinitely large. Using this transition based approach,
the allowable transitions add an extra constraint to the
focusing algorithm for system control. That is, when

1766

searching for a least-cost control action, the search is
constrained to the allowable set of transitions from any
given place in a transition diagram.

Figure 4: Control cost based on state transitions.

Applying the same inference algorithm 7 as that for
diagnosis and a similar focusing mechanism F’ based
on the algebra (¥’,&,>g), our model-based control
approach can be specified by the tuple (¥/,©0 UL U
A* T, F"). The results from our control algorithm are
the least-cost control actions indicated in C*.

The diagnostic causal network model for a wireless sen-
sor network described in Section 3.3 can be reconfig-
ured for system control purposes as outlined in Table 1.
The Node 1 subnet for control purposes is shown in
Figure 5. Note that the shadings of the nodes in the
figure will be explained later in Section 5.2 and do not
mean whether the nodes are observable or unobserv-
able. In this setting, Controll becomes an assumable
while NodeMode is treated as a variable.

PEOOEOD
AN W Y 4

%

Node! SubNet
for Control

NN
DEOOEOS

SensorCoverage

Figure 5: Control causal network for node 1.

4.2 Guarantees for control algorithm

We now summarize the guarantees made for the control
algorithm. These results are derived using a modified
diagnosis inference procedure as described by [3).3

Lemma 1 (1) Computing the set of all control ac-
tions is NP-hard and (2) Computing the set of recovery
actions using a causal network representation, in the
worst case, is linear in the number of network nodes
and ezponential in the mazimum graph width of the
causal network.

3Due to the page limit, proofs of all lemmas in this version of
the article are omitted. Please contact the authors for proofs.



Lemma 2 Given a control task characterized by
(¥, 0UTTUA*,T,F"), and control algebra (X', &, >5),
the focusing algorithm F' is guaranteed to compule all
sound, minimal-cost control actions, if any exist.

Similar to the diagnostic compilation we have used to
implement our diagnostic algorithm [3], in real-world
implementations, we can also pre-compute a represen-
tation R for the set of all control actions, cache that
function, and then compute control actions on a case-
by-case basis using the focusing algorithm [3]. We call
this technique control compilation. This means that
we can perform the NP-hard task of generating R only
once and then we can compute later on particular con-
trol actions efficiently, as shown below:

Lemma 3 Given a representation R for the set of all
control actions, computing a particular control action
given a control objective, constraints, and diagnoses
can be done in time O(|R||®|), where |R| denotes the
number of elements in R and |®| denotes the time for
performing the & operation followed by a minimization.

Note that, for all the complexity analyses presented
so far, we do not take into account the complexity of
assigning costs to the values of control variables. If
we assign constant costs to the values (the first ap-
proach described in Section 4), the computational cost
is constant. If, however, we assign costs to the val-
ues dynamically, especially using the transition-based
(third) approach in Section 4, the complexity of the
cost assignment should be added to our total computa-
tional complexity. We note that the pre-compilation of
R does not depend on the cost assignment [1]. Hence,
the control compilation technique can still be applied
with dynamic control costs.

5 An integrated diagnosis and control
framework

5.1 Integration Architecture

With the diagnosis and control mechanisms based on
causal network models described in the Sections 3.2
and 4, we now present how we integrate the two mech-
anisms. Figure 6 shows the flowchart of our integrated
approach for the control and diagnosis of a discrete
event system. Given the initial control objective (9),
constraints (II), observations (£2), and Diagnoses (A*),
we first apply our control algorithm to the control
causal network model @' of the underlying system with
the specification (¥, UIIU A*, T, F’). As outlined in
Table 1, the observables and assumables of the control
causal network consist of A US and C, respectively.

If the given control objective is achievable, the control
algorithm will generate all possible least-cost control
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Figure 6: An integrated control and diagnosis framework.

actions C*. If there is more than one least-cost control
action, a selection mechanism will be required to choose
one control action for execution (actuation) based on
domain knowledge. If the control objective cannot be
achieved, then a planning mechanism will be required
to revise the control objective or relax the imposed
constraints, if possible, according to domain priorities.
The revised objective/constraints will then trigger an-
other execution of the control algorithm. Note that
we do not address the control selection and planning
mechanisms in this article, since these mechanisms are
usually domain dependent.

The feedback from the underlying system after the ex-
ecution of the selected control action is in terms of the
values of different sensors (i.e., system observations,
Q). Given these updated observations, we then apply
our diagnosis algorithm to the diagnosis causal network
model of the system with the specification (¥,$,Z, F).
Note that the observables and assumables of the di-
agnosis causal network are CUS and A, respectively.
The resulting diagnoses A* along with the updated ob-
servations are then used for the next iteration of our
integrated control-diagnosis approach.

5.2 Simulations and results

We now present the simulation results of applying our
integrated approach for the control and diagnosis of the
sensor network under a scenario. We assume all sen-
sor nodes are functioning normally at the beginning.
We set the objective, ©, for our scenario as in Equa-
tion 1; i.e., the long range communication should be
established and sensor surveillance should cover activ-
ities in zones 1, 4, and 5. The initial constraints for
our scenario are specified as in Equation 2; z.e., none
of the batteries in the four nodes should be exhausted.
We assume the power consumption for each node un-
der the four operational states are 0 (idle), 1 (sen.), 2
(hub), and 3 (sen.+bhub) between each iteration of our



Tteration 1 2 3 4 5 6"
No. of actions

generated 6 2 1 1 3 4
Node 1 Action idle hub | idle | idle [ sen. | hub
(Power Level) (6) (6) 4 | @ 4) | (3)
Node 2 Action idle idle | hub | 1dle | sen. | 1idle
(Power Level) (6) (6) (6) (4) (4) (3)
Node 3 Action | sen. | idle | i1dle | hub [ hub [ idle
(Power Level) (6) (5) (5) (5) (3) (1)
Node 4 Action | hub sen. | sen. | sen. | idle { sen.
Power Level) (6) (4) (3) (2) (1) (1)

Table 2: Control actions for our scenario.

integrated approach. We set a constant weight to each
of the four failure mode values for a sensor node: 0 (ok),
1 (s-bad), 1 (h-bad), and 2 (sh-bad). We assume that
-an acoustic testing source is always present in zone 5.

To represent the control costs, we adopt our second
approach described in Section 4.1. We define the con-
trol cost for each control value for the period between
each iteration to be the square of the total accumulated
power consumption after the iteration. This control
cost function would favor more uniform usage among
nodes in the network. Since we do not address the
control action selection issue, we simply select the first
control action generated by our simulation tool when
there are multiple actions available. In the place of
planning, we manually relax the constraints whenever
the given objective is no longer achievable.

Table 2 shows our simulation results. In this scenario,
we assume the sensor in node 3 fails during the first
iteration. Hence, in the first iteration, the diagnosis
algorithm detects this failure and sets the diagnosis as
an observation for future applications of the control
algorithm. As shown in the table, node 3 is never used
as a sensor again. During the 5th iteration, the control
action generated uses both nodes 1 and 2 as sensors.
This is because our initial constraints force node 4 to
no longer be used as a sensor; as a consequence, in
achieving the objective, the remaining option is to use
both nodes 1 and 2 as sensors. In the 6th iteration,
our control algorithm first indicates that the control
objective is no longer achievable without exhausting
the battery. We then manually relax the constraints to
allow node 4 to run out of power.

6 Conclusion

We have proposed a novel approach for integrating di-
agnostic and control inferences within a single formal-
ism. We have shown how to extend the causal network
diagnostic approach to compute control and reconfig-
uration actions. This extension allows us to develop
analytical results for discrete event system control and
reconfiguration similar to those already developed for
diagnostic inference. We also illustrated our approach
with a simple wireless sensor network example.
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Our work is most closely related to the Livingstone
system [12]. Our approach shares with Livingstone the
computation of system state (or assumable binding)
and recovery actions, called mode identification and
mode reconfiguration, respectively, in [12]. Compared
to our approach, Livingstone uses a different transition
logic and algorithms, and it lacks the ability to compute
arbitrary controls, relying on pre-specified control.

Although our approach currently generates only next-
step control actions, in future work we plan to compute
multiple-step control actions by modeling the underly-
ing systems as temporal causal networks [2].
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