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Abstract  
This paper describes a component-based modeling approach
for diagnosing process-control systems. Our approach allows
users to build diagnostic models for complex process-control
systems based on a library of component models. Process-
control systems are modeled in the form of causal networks
and diagnoses are generated using a model-based diagnostic
technology. We present our software tools for component-
based model building and causal networks diagnostics.

1. Introduction
Process-Control systems are an important class of systems
that occur frequently in practice, ranging from chemical
manufacturing systems to water systems to oil wells.
Diagnosis and prognosis of such systems is typically done
using model-free signal-processing techniques [BG97,
Wowk91], although some model-based analyses are starting
to appear [LA98]. Moreover, traditional approaches are
labor intensive and machine specific, and only diagnose the
local condition of a machine rather than treating it as part of
a system. Typically, a set of expert rules derived from
significant past case histories is used to interpret the output
of one or more sensors.

We propose a novel approach to the diagnosis and
prognosis of such systems, using a system-level model-
based approach. Our approach combines signal processing
and domain knowledge within a system-level, model-based
framework for process control. The system model describes
the physics of the system, and makes predictions for the
sensors based on the operating mode of the system. This
new approach provides the following novel capabilities:
1. Building system models by interconnecting elements

from a library of component models;
2. Qualitative simulations of multiple system modes,

including both nominal and faulty modes – this provides
the ability to diagnose those faults that can be detected
using average-value sensor readings, rather than sensor
spectral data;

3. Fusion of disparate data and information types within the
system-level model – this facilitates more accurate
diagnostics and prognostics;

4. Ability to integrate new/updated software components
easily, using a modular, open systems technology; and
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5. Integrating continuous-valued components with a
discrete-valued diagnostic/ prognostic executive.

In this paper we focus on presenting our Component-based
Diagnostic Model Builder (CDMB), a tool that allows us to
build system-level models from component modules in an
efficient manner. We use this compositional, modular
approach for process-control systems by using a library of
primitive modules, such as a pump, motor, section of pipe,
valve, sensor, etc. Given a library of such primitive
components, a complex system can be constructed simply
by interconnecting the components. Once this system has
been constructed, we can simulate the behavior of the
system, and by connecting the model to real sensor inputs,
we can diagnose the health of the system based on the
diagnostic capabilities inherent in our system model. We
describe the user interface that we developed to allow
process engineers to build models using this component-
based approach.

We adopt causal networks as the underlying framework for
representing systems [Dar98]. Causal networks provide an
excellent platform for qualitative modeling, knowledge
fusion, and diagnostics, and allow system models to be
composed from primitive model fragments. Because of the
rigorous framework in which the causal model is
constructed, completeness of the knowledge fusion and
diagnostics is guaranteed. For detailed description of causal
networks, please refer to [Dar98].

This approach is currently being applied to real process-
control systems. In this document we describe a real system
on which we are testing this approach, a pump-loop system.

We make several advances over existing approaches. First,
we have integrated several modules that are typically
available only separately; i.e., analysis at the system level is
typically not performed using raw sensor inputs, but instead
sensors are typically analyzed one by one [BG97, Eshl98,
Wowk91]. Second, our model-based approach has several
advantages over traditional rule-based approaches. Third,
the component-based approach allows us to model a wide
variety of systems, and different configurations of systems,
such that the resulting diagnostics are automatically
updated once the new system is specified. Finally, the
component-based approach frees engineers from coming up
directly with diagnostic rules for the entire system, instead,
it allows them to focus on specifying the fault behavior of
individual components
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In the next section, we describe one an application domain
of our approach: a pump loop. In Section 3, we present the
overall architecture of our component-based modeling and
diagnostic system and briefly explain each module in the
system. We describe the modeling and diagnostic reasoning
of the pump loop using our system in Section 4.

2. Application Domain: A Pump-Loop System
We now describe a particular type of process-control
system, which we term a pump loop. Figure 1 shows an
example of a pump loop. This pump loop consists of a fluid
tank, a pump connected to a motor, and a pipe loop through
which the liquid is pumped.

In this pump loop, water flows from the tank to the inlet of
the pump and returns to the tank from the outlet of the
pump. Several valves are installed along the piping to
control the water flow. The water pressure at both the inlet
and the outlet of the pump are measured using two pressure
sensors. A turbine flowmeter is used to measure the water
flow. We are mainly interested in two types of faults that
commonly occur in pump loops: pipe blockage and pump
cavitation. The pipe blockage can be simulated by the
closing of Valve 3 and the pump cavitation can be induced
by using different perforated discs to partially block the
input flow to the pump.

3. System Architecture
This section describes the architecture for our prototype
diagnostic development system, and then summarizes the
function of each module in this architecture.

3.1 Overall Architecture
Our current prototype consists of five components, as
shown in Figure 2.

•  The component database is a repository of the primitive
components used for building system-level models.

•  The user interface, CDMB, allows a user to create
system-level models, and to set values of variables in the
model for simulation and diagnostic testing.

•  The Causal Network Inference System (CNETS)
performs all diagnostic inference based on model settings
in the user interface CDMB.

•  The signal-processing module takes data from real
systems and processes then into discrete diagnostic
indicators that are used by the diagnostic inference
system, CNETS [Dar92].

•  If an embedded system is required, CNETS can compile
the model into an embedded representation, called a Q-
DAG (Query Directed Acyclic Graph)  [Dar98], and use
the Q-DAG for on-line diagnostic inference.

The distributed environment allows for multiple data
collectors and/or presenters, if so desired. Separating these
components using a modular, open systems technology
provides a system design that allows flexible applications
for the diagnostic reasoning methods, the data collection
and concentration mechanisms, and the maintenance
display platform. Additional benefits of this architecture are
improved responsiveness, throughput, upgradeability, and
extensibility. This architecture also allows us to simply
integrate a continuous-valued signal processing component
with a discrete-valued diagnostics/prognostics module.

Figure 3 shows the typical diagnostic processing for a
pump-loop. A sensor, such as a turbine flowmeter,
transmits data to the Signal Processing Module, labeled as
DSP in the figure. A set of discrete diagnostic indicators as
specified by the model are then computed based on
different analyses (e.g., measurements of amplitude at
particular frequencies in the spectra, signal-to-noise ratios,
etc.). The inference system takes these indicators and the
system model to compute the most likely failed components
of the system, if any such failures are indicated.

3.2 Diagnostic System Modules
This section summarizes the major modules in the
diagnostic system, including the CDMB interface and the
CNETS inference system and compiler.

Figure 2: Architecture for Distributed
Diagnostic Development System
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3.2.1 Component Database
Our component-based modeling approach has several
important characteristics. For example, it allows users to
model a wide variety of systems, and different
configurations of systems, such that the resulting
diagnostics can be automatically updated once the new
system is specified. In addition, this approach focuses
engineers on specifying fault and normal behavior of
individual components rather than coming up directly with
diagnostic rules for the entire system.

The component database contains causal network fragments
or primitives for a particular application domain. A
component diagnostic model (i.e., a primitive) describes the
physical behavior (both normal and faulty) and failure
characteristics of the modeled system component. Note that
only system behaviors relevant to the diagnosis of potential
failures are modeled. Depending on the problem
specifications, a primitive could be a valve, pipe, sensor or
a complex component like a motor-pump subsystem. Figure
4 shows a sample of the typical components for the process-
control domain.

3.2.2 CDMB User Interface
Diagnostic models developed in our approach are viewed as
a collection of interconnected primitives. Once a set of
primitives is identified for a diagnostic problem, causal
network structures for the primitives can be built and
compiled using our CDMB graphical interface. These
primitive models are then stored and made available in the
CDMB for constructing system models. To develop a
system model, users simply place instances of these
primitives and interconnecting them to define a complete
system. The tool then generates a causal network system
model from the specification of these primitives and their
interconnections. Figure 5 shows a representation of a
system-level model for the pump loop shown in Figure 1
that can be constructed from the primitives in Figure 4.

Diagnostic models developed in CDMB can be debugged
and refined through CDMB's simulation utility. CDMB
allows the user to simulate normal and abnormal conditions
in the system behavior. System users can also simulate and
refine the model by changing the state of individual
components. In the system, the colors of the blocks indicate
the state of the block, e.g., active or inactive. The fully
interactive environment provides immediate feedback (e.g.,
highlighting of affected pathways, changing of color-coded
states) to gain understanding of model behavior.

3.2.3 Causal Networks Inference System (CNETS)
CNETS is a system for representing and reasoning with
causal networks, which include probabilistic, Order-of-
Magnitude Probability (OMP), and symbolic causal
networks. CNETS allows the user to create a model by
specifying a causal structure and a quantification of this
structure using “behavior equations”. The behavior
equations (which map into causal network properties)
defined for each primitive building block in CDMB can be
simple or complex. Flexible equations are used to capture
this behavior: CNETS supports functional relationships
based on both multi-valued propositional logic and
conditional probabilities for equations; it uses in addition
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OMP or probabilistic weights for modeling component
reliabilities, thereby capturing failure models.

A number of inference algorithms in CNETS can be used to
process queries about the behavior of a system, such as
simulation, prediction and/or diagnostic queries. The
fundamental class of algorithms used by CNETS transforms
the input causal network into a form that facilitates the
particular type of query-processing. The main algorithm
used is a modified version of the clique-tree algorithm
[JLO90]. CNETS also supports a symbolic form of this
algorithm for answering symbolic queries [Dar98] and for
Discrete-Event Systems [DP96].

For diagnostic inference, the causal network approach
provides a number of guarantees. First, the causal network
approach provides soundness and completeness guarantees
based on the model [Dar98]. In other words, if any
diagnosis is computable from the model, CNETS is
guaranteed to compute it. This guarantee allows users,
when developing models, to test diagnostic coverage.

Second, it can provide complexity guarantees in terms of
the structural parameters of the model (e.g., one of the most
significant parameters, the maximum number of parent
nodes of any node in the causal structure). Because all
significant complexity parameters in this approach are
ultimately derivable from the system structure, one can
manipulate the structure to obtain acceptable inference
complexity without altering the diagnostic coverage.
Approaches that are not “structure-based” do not have this
capability to alter inference complexity without altering the
diagnostic coverage.

Beyond the complexity guarantees, the causal network
approach has been optimized in a number of ways. This
approach uses a focusing mechanism to focus inference on
only the most likely diagnoses [Dar98]; in addition, it
makes use of observations to prune and to decompose the
system (and reduce overall inference complexity) [DP96].

3.2.4 CNETS Compiler for Run-Time Inference
A run-time version of the system model can be compiled
[Dar98] in conjunction with an algorithm like [JLO90].
This allows diagnostic queries to be performed on
embedded platforms with limited processing power. Using
this novel compilation technique, CNETS is able to compile
a causal network into a Boolean expression, called a Q-
DAG [Dar98] that contains all possible diagnoses for the
system, given inputs for the observable system variables.
The Q-DAG provides the same complete diagnostic
information that is available with the original causal
network, given input variables and diagnostic output
variables are clearly specified. This embeddable model
together with a very simple evaluator require minimal
memory resources and CPU power and can be ported to
other platforms and languages with relative ease.

3.2.5 Signal Processing Module
We model a signal processing module using the pair (Θ,Φ),

according to the continuous input data Θ (from sensors) and
the discrete output data (diagnostic indicators specified by
the system model) Φ. For any sensor there is a function f:
Θ → Φ that maps the input to the output. For this
application, this mapping f consists of signal processing
algorithms. For example, if the sensor input Θ is time-
domain accelerometer data, then f will consist of an
extraction of amplitude peaks at particular frequencies of
the FFT of the data, yielding a discretized classification of
these amplitude peaks, e.g., peak at 60Hz is >1.5, peak at
120Hz is >2.0, etc.

4. Modeling and Diagnosis of a Pump Loop
In this section, we describe how we use our CDMB/CNETS
system to construct the diagnostic model for a pump loop
and how to perform diagnostic reasoning based on the
diagnostic model. We start with the modeling of system
components and then move on to the modeling and
diagnosis of the entire system. Note that we model the
pump loop as a symbolic causal network.

4.1 Modeling of Pump Loop Elements
We construct the causal network diagnostic models for
components in a pump loop (as shown in Figure 4) by using
the CDMB interface.

To construct a diagnostic model for a component, we
follow a four-step procedure as described below. First, we
specify the input and output variables of the component
model and the values that they can hold. Second, we specify
the internal variables (i.e., unobservables) and potential
failure modes (i.e., assumables) and their possible values.
We then construct the causal structure of the component
using the variables defined as nodes. The causal structure
describes the causal relationship among the variables.
Finally, we construct a set of the propositional equations for
each node/variable (inputs and assumables excluded) that
describe how the values of its parents nodes determine the
value of this node.

Figure 6 shows the top-level view of the component
diagnostic model for a section of pipe in CDMB. This
model has four inputs (Pin, pressure at upstream; Fin, flow
at upstream; FUi, flow condition from upstream; and FDi,
flow condition from downstream) and four outputs (Pout,
pressure at downstream; Fout, flow at downstream; FUo and

Figure 6: Component Model for a Section of Pipe
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FDo, flow conditions to upstream and downstream).

The internal variables and causal structure of the pipe
model created in CDMB are shown in Figure 7. There are
five blocks (i.e., internal/output variables) in the figure.
The “BlockageM” block (whose possible values include
normal, partial-blockage, and blockage) represents the
blockage failure mode of the pipe. The other four blocks
are associated directly to the four outputs of the model. The
links between nodes characterize the causal relationship
between nodes. For example, from Figure 7, we know that
the value of Pout will be determined by the values of Pin
and BlockageM.

Figure 8 shows a partial set of propositional equations for
Pout and the interface in CDMB that allows easy entry of
these equations. Note that the CDMB interface provides
automatic syntax checking for the propositional equations.

Diagnostic models for other components in a pump loop
can be constructed in the same manner. These component
models can then be stored in a database that can be used in
CDMB for constructing system level model.

4.2 Modeling of a Pump Loop

With the component diagnostic models built and stored in a
database, the construction of the pump loop model in
CDMB is straightforward. We first retrieve component
models needed for the pump loop and then interconnect
them appropriately. The CDMB provides several checking
functions that could help to ensure the consistency and
correctness of the model.

Figure 9 shows the complete diagnostic models for the
pump loop shown in Figures 1 and 5 using the component
models developed in CDMB. This model consists of a tank,
a pump, two valves, three sections of pipe, a flowmeter, and
two pressure sensors. Note that we use two different models
for pressure sensors. The first pressure sensor
(PresSensor1) reports only the “static” information about
the pressure it measures. However, the data collected at the
other pressure sensor (DSPPresSensor) are going through

further analyses that include the measurement of signal
amplitudes at certain frequencies and the Signal-to-Noise
ratio. The CDMB/CNETS then use this model to generate
textual diagnostic code for the complete system.

4.3 Example: Diagnostic Reasoning
We now use our model to show two of the important
features of our approach as mentioned in Section 1. They
are, first, qualitative simulations of multiple system modes
including both nominal and faulty behaviors and, second,
fusion of disparate data and information types within the
system-level model for more accurate diagnostics.

Using the qualitative simulation capability of our
CDMB/CNETS system, we can assign values to different
variables and generate possible diagnoses under these
different settings. There is no need to set the values of all
variables. Variables whose values are not set will be treated
as unavailable or unknown and CNETS will generate
possible diagnoses based only on the information available.
For example, if we set the flowmeter reading to low in the
pump loop and leave readings of other sensors to be
unknown, then our system will return four possible
diagnoses indicating there could be partial blockage in one
of the pipe sections or cavitation in the pump. Figure 10
shows one of the four diagnoses indicated by CDMB. (The
diagnostic message appears at the low left corner of the
figure.)

The multiple diagnoses of the previous example were due
to the lack of information since only the flowmeter reading
was available. Those four diagnoses were the best inference
that can be made with the data. If we set the three outputs of
DSPPresSensor, (Pout, SN, Mag), to be (high, nominal,
nominal) and keep the flowmeter reading to low, then our
system returns with a unique diagnosis of Pipe 1 being
partially blocked. This demonstrates the ease of fusing
different data to produce more accurate diagnosis in our
approach. Note that, if we unset the flowmeter reading and
use only the pressure sensor data, our system would return
with no failure identified (i.e., normal) which means that
the pressure sensor data alone in this case do not indicate
there is any abnormality in the system behavior.

Figure 7: Causal Structure for Pipe Model

Figure 8: Entering Propositional Equations for Pout
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5. Conclusions
This paper has described an implemented system for
component-based modeling and diagnosis of process-
control systems. This approach allows engineers to build
models of complex systems using a set of pre-defined
primitives, thereby isolating the engineers from the
underlying diagnostics models. The underlying diagnostics
models are specified using causal networks. Given a
system-level model, our approach can take input from
several sensors and provide a diagnostic classification of
the system as output.
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Figure 10: One of the four diagnoses – partial blockage of Pipe 2


