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Bayesian belief networks are being increasingly used as a knowledge

representation for reasoning under uncertainty. Some researchers
have questioned the practicality of obtaining the numerical proba-

bilities with su�cient precision to create belief networks for large-
scale applications. In this work, we investigate how precise the prob-
abilities need to be by measuring how imprecision in the probabili-

ties a�ects diagnostic performance. We conducted a series of exper-
iments on a set of real-world belief networks for medical diagnosis

in liver and bile disease. We examined the e�ects on diagnostic per-
formance of (1) varying the mappings from qualitative frequency

weights into numerical probabilities, (2) adding random noise to the
numerical probabilities, (3) simplifying from quaternary domains

for diseases and �ndings | absent, mild, moderate, and severe |
to binary domains | absent and present, and (4) using test cases

that contain diseases outside the network. We found that even ex-
treme di�erences in the probability mappings and large amounts

of noise lead to only modest reductions in diagnostic performance.
We found no signi�cant e�ect of the simpli�cation from quaternary
to binary representation. We also found that outside diseases de-

graded performance modestly. Overall, these �ndings indicate that
even highly imprecise input probabilities may not impair diagnostic

performance signi�cantly, and that simple binary representations
may often be adequate. These �ndings of robustness suggest that

belief networks are a practical representation without requiring un-
due precision.
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1 The Tradeo� Between Accuracy and Cost

su�ciently accurate

1.1 Experiments on Belief Networks

Each knowledge representation or model is, by de�nition, a simpli�cation of

reality. When the representation is derived from a human expert, it is a sim-

pli�cation even of the expert's perception of reality. The question in choosing

a representation is not whether the representation is completely accurate|it

cannot be|but whether the model is for the purposes for

which it is designed. This question is the one that drives our research.

The choice of a representation is a balancing act. On the one hand, a richer rep-

resentation should improve the accuracy with which the model represents the

real-world system. Greater accuracy in representation should lead to improved

accuracy in inferences|for example, in a medical application, diagnoses that

would be more likely to be correct, and treatment recommendations that would

be most e�ective. On the other hand, a richer representation will require more

computational resources for inference and for storage, and will require more

e�ort to construct, verify, and maintain. The success of knowledge-based sys-

tems depends critically on the knowledge engineer's ability to �nd an e�ective

tradeo� between accuracy and cost.

Experienced knowledge engineers generally develop useful intuitions about

how to make such choices; however, there is little theoretical or experimental

research is currently available to guide them. Of course, the exploration of the

generality, limitations, and computational complexity of alternative knowledge

representations has been a major topic of AI research. However, once we have

chosen a particular type of representation | such as rules, a nonmonotonic

logic scheme, or Bayesian belief networks | there is little research available

to guide the knowledge engineer in deciding how the complexity or richness

of the model is likely to a�ect its performance for a given application. Theo-

retical analysis can be valuable here. But, due to the analytic complexity of

the relationships between representation and performance, experimental work

must play an important role.

In recent years, there has been substantial growth in interest in Bayesian be-

lief networks (BNs) as a knowledge representation [Pea88]. There has been

work on the development of e�ective knowledge engineering techniques, e�-

cient inference algorithms, and increasing numbers of real-world applications

of BNs [HBH91,HHN92]. The primary goal of the work described here is to

investigate how the precision of representation of BNs a�ects the quality of di-

agnosis based on the network. We view this research as a contribution towards
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the eventual goal of developing an empirical and theoretical basis for guide-

lines for knowledge engineers to help them choose the level and complexity of

representation that provides the most appropriate tradeo� between accuracy

and cost.

Our investigation is based on a series of real-world BNs, rather than on the

randomly generated, abstract knowledge bases (KBs) used in much of the ex-

perimental research to compare knowledge representations. Although it easy

to generate BNs with a wide range of di�erent characteristics|such as ratio

of arcs to nodes, ratio of source nodes to internal nodes, or frequency of di-

rected cycles|we wanted to focus on BNs that have the characteristics of real

application domains. We believe such BNs are more likely to be relevant to

other real application domains than arti�cially-generated networks. The prob-

lem domain that we use in this study is medical diagnosis for hepatobiliary

disorders (liver and bile diseases).

We derived the experimental BNs from an early quasi-probabilistic KB, named

Computer-based Patient Case Simulation (CPCS) [PM87] that uses a rep-

resentation derived the Internist-1 [MPM82] and Quick Medical Reference

(QMR) [MMM86] expert systems. In these knowledge bases, causal links, such

as the relationship between disease and �nding are quanti�ed as

, specifying the chance that one diseases will give rise to a �nding or

other variable, on a �ve-point qualitative scale. In previous work, our group

developed a method to convert from the Internist-1/QMR representation to a

belief network representation, with speci�c independence assumptions | con-

ditional independence of �ndings given diseases, noisy-OR inuences of dis-

eases on �ndings, and marginal independence of diseases [SMH 91]. Empirical

comparison of QMR with the probabilistic reformulation, QMR-BN, demon-

strated comparable diagnostic performance [MSH 91], even though some in-

formation (e.g. linkages between diseases) was not employed in QMR-BN.

Our �rst task in the current work was to convert the CPCS knowledge base

into a coherent BN, mapping frequency weights into , which

are the conditional probabilities of each �nding given each disease. We also

had to assess additional , to quantify the chance that each

�nding, or other variable, will be present but not caused by one of the diseases

or other variable in the knowledge base, and to quantify the

prevalence rate of each disease or predisposing factor.

Bayesian representations in general, and BNs in particular, have been criticized

by certain AI researchers because they require large numbers of numerical

probabilities to quantify uncertain relationships. Whether these probabilities

are estimated directly from data, or assessed as subjective probabilities by

domain experts, or some combination of the two, there is no denying the

fact that a conventional BN representation has a voracious appetite for such
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The �rst question we examined is how precise such numbers need to be. The

literature on the expert assessment of subjective probabilities makes clear

that subjective probabilities are liable to consistent biases and imprecision.

If it turns out that BNs, to achieve adequate diagnostic performance, require

numerical probabilities with greater precision than experts can provide, BNs

will be of little practical value. But, if a BN's performance turns out to be

insensitive to probable errors, we can allay concerns about the reliability of

subjective probability assessments.

We performed two experiments to examine the sensitivity of BNs to the expert

probabilities. In each experiment, we assessed the e�ect of the manipulations

in terms of their e�ect on diagnostic performance, measured as the probability

assigned to the correct diagnosis averaged over a large number of diagnostic

test cases, for three di�erent BNs.

First, we compared the standard, empirically derived mapping [HM86] from

frequency weights into probabilities to two alternative mappings, the

that treats frequency weights as order-of-magnitude probabil-

ities, and the , that ignores di�erences between the numbers

by treating all links as having equal strength.

Second, we added random noise to the probabilities derived from the standard

mapping. In this case, we added noise separately to the ,

, and the . By examining the e�ect of noise sepa-

rately on each of these three types of probability, we were able to di�erentiate

among them in terms of their e�ect on diagnostic performance.

In our third experiment, we examined the e�ect of the of variables,

such as diseases and �ndings | that is, the number of values each variable

can take. We compared the performance of networks containing quaternary

domains with simpli�ed networks containing

binary domains . Enriching the representation from binary

to quaternary domains entails much extra e�ort because more probabilities

must be quanti�ed. It also substantially increases the computational e�ort

required for diagnosis. We examined the change in diagnostic performance to

discover whether the additional work is likely to be worthwhile.

In our fourth experiment, we examined the e�ect of including

in the test cases, that is diseases that are not explicit in the network being

tested. A major bene�t of BNs is that they represent uncertainty explicitly,

including uncertainty due to incompleteness of a model. The leak probability

for a �nding (or other variable) represents the probability that the �nding will

be present for a reason that is not modeled explicitly in the network|perhaps

a false positive or a disease or fault not modeled. Because the BN represents
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2 Previous Research on Belief Network Sensitivity

1.2 Overview

2.1 Comparison of Probabilistic to Rule-Based and Symbolic Representations

leak events explicitly, we can infer the probability that the true explanation

of a �nding is a cause not represented explicitly in the model. In this way,

the BN supports reasoning about scope and limitations of the representation.

For our experiments, we extracted three smaller subnetworks from a large BN.

We used some test cases that included diseases in the large network, but not

always in the subnetworks. We were able to test performance when there are

diseases present that are not in the scope of the diagnostic network.

The paper is organized as follows. In Section 2, we review previous work

on the sensitivity of probabilistic knowledge representations to variations in

the numbers and representation. In Section 3, we describe how we converted

the qualitative CPCS knowledge base into a quantitative BN, and how we

generalized the noisy OR into the noisy MAX relationship which we used to

model the inuence of multiple independent cause variables on each e�ect

variable using quaternary domains. In Section 4, we present our experimental

approach, including the selection of networks, generation of test cases, and the

measures of diagnostic performance. In the following three Sections, 5, 6, and

7, we present the experimental designs, results, and discussions for each of the

three experiments, changing the probability mappings, random noise in the

probabilities, and the domain size, respectively.We summarize our conclusions

in Section 9.

Considering the degree of controversy about the relative merits of schemes for

reasoning under uncertainty, there have been relatively few previous studies

comparing performance of alternative schemes. We will group these studies

into comparisons of BNs with rule-based schemes, analysis of the sensitivity

of BNs to numerical probabilities, e�ects on BNs of structural independence

assumptions, and e�ects of other simpli�cations. We will conclude this Section

by a discussion of the reasons for the apparent variety of �ndings.

Many comparisons of rule-based or symbolic knowledge representations with

probabilistic BNs have found little or no signi�cant di�erence in performance.

For example, studies comparing the diagnostic accuracy of rule-based schemes
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2.2 Sensitivity of Uncertain Reasoning to Numerical Inputs

2.3 Sensitivity of Probabilistic Reasoning to Independence Assumptions

with independent Bayes found no statistical di�erence in the diagnosis of gas-

trointestinal disease [FBB80], acute abdominal pain [CM87], and acute ab-

dominal pain due to gynecological origin [TS94,TS93]. Chard et al. showed

that an qualitative scheme can perform as well as a Bayesian model

in the diagnosis of gynecological disorders [Cha91]. O'Neil and Glowinski

[OG90], in the diagnosis of chest pain, found that a Bayesian approach and

a linear decision rule with uniform weights produced indistinguishable ROC

curves. As noted earlier, a reformulation of a large heuristic knowledge base,

Internist-1/QMR into a belief network version called QMR-BN [SMH 91],

demonstrated comparable diagnostic performance to the original [MSH 91].

Heckerman and colleagues, with the Path�nder project [HHN92] found that

a Bayesian belief network model and rule-based system both had compara-

ble diagnostic ability to a human expert physician for lymph node pathology.

However, they found that the belief network performed better overall, accord-

ing to the human experts, perhaps because it had more parameters and was

better tuned to the domain expert's subjective assessments.

Wise and Henrion [WH86] conducted an experimental comparison of the per-

formance of six di�erent schemes for representing uncertainty, including cer-

tainty factors, possibilistic logic, and BN schemes. They found that, in some

cases, the di�erences among schemes were insigni�cant, but that in other cases

the di�erences were substantial, particularly with weak or conicting evidence.

Indeed, some schemes could produce results that were qualitatively incorrect

under these circumstances.

Ng and Abramson [NA91] showed substantial robustness of diagnostic accu-

racy to noise added to the prior and conditional probabilities for a BN model

in the domain of medical pathology. A recent study [HDG 94] found that

diagnostic performance in a simple belief network for troubleshooting an au-

tomobile was barely a�ected by substituting order-of-magnitude probabilities,

based on the kappa calculus [GP92].

There have been several empirical studies of the e�ect of assumptions about

the conditional independence of �ndings in the independence-Bayes model

introduced by de Dombal [dDLS 72]. One might expect BN models to pro-

vide more accurate diagnoses than independence Bayes models, assuming all

�ndings are conditionally independent on the disease state, because the BN
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2.4 Simpli�cation of Belief Networks

A clique is a fully connected graph, containing a set of directly dependent nodes.

Any BN can be converted into a tree of cliques.

models can capture conditional dependencies [Fry78,NJ75]. The experimental

evidence here is mixed. Seroussi [Ser86], in the domain of acute abdominal

pain, found a 4% increase in diagnostic accuracy (from 63.7% to 67.7%) by

accounting for pairwise interactions using a Lancaster model. Todd and Stam-

per found no statistically signi�cant di�erence between the two approaches

[TS94,TS93], and some have even found independence Bayes to be better

[ED84,dD91].

Fryback [1985] showed empirically that a large model with many inappro-

priate independence assumptions tends to overweight positive evidence due

to ignoring the dependencies among �ndings. He found that smaller mod-

els with appropriate independence assumptions can outperform larger models

with inappropriate assumptions. In our analysis of QMR-BN [MSH 91], we

also found unrealistically large posterior probabilities due to inappropriate

assumption of conditional independence of �ndings, in examples with many

�ndings (typically 20 to 50 �ndings per case). These results suggest that ap-

propriate modeling of dependence can signi�cantly a�ect in large networks.

Several researchers have explored schemes to simplify BNs, and examined their

e�ects on reasoning performance. Jensen and Andersen [JA90] convert BNs to

their equivalent clique trees and then simplify the network by setting to 0 the

smallest probabilities in each clique, thereby taking advantage of the smaller

probability tables in computing marginal probabilities. Kjaerul� [Kj�93] ex-

plored a complementary technique that deletes the least important edges from

the clique tree, as measured by the Kullback-Leibler metric. Both studies

found that useful simpli�cations could be obtained with little additional er-

ror. Sarkar [Sar93] proposed methods for optimal approximation of a general

BN with tree structure, in order to reduce computational complexity.

Other researchers have explored used domain-dependent simpli�cation meth-

ods to study tradeo�s between diagnostic accuracy against the richness and

size of BN models. Provan and colleagues [Pro94,Pro93] developed methods

to simplify temporal BN models for the medical management of acute ab-

dominal pain. They found that diagnostic accuracy improved as a function of

network complexity, but that, with an appropriate penalty for computational

e�ort, a simpli�ed representation could be optimal. Breese and Horvitz [BH90]

and Breese [Bre91] describe approaches to construct belief networks and in-

uence diagrams dynamically from a database in response to the speci�cs of

a problem, also supporting tradeo�s between complexity and accuracy.
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2.5 Understanding Results on Sensitivities

3 Knowledge Base Conversion to Belief Network

The �ndings of low sensitivities of diagnostic performance to errors in nu-

merical inputs are consistent with the widely observed robustness of simple

linear models for classi�cation under uncertainty. Experimental psychologists,

in extensive studies of complex, con�gural judgments by human experts, have

found that simple linear models with approximate and even uniform weights

often do as well, and sometimes even better than human experts [DC74].

These results apply in domains where there are several noisy cues or features,

so that even optimal performance is limited. The underlying explanation is

based on the inherent robustness of linear models for a wide range of classi�-

cation tasks [Wai76]. Note that diagnostic Bayesian reasoning with conditional

independence can be formulated as a weighted linear sum of evidence weights

(log-likelihoods plus log-odds prior).

Von Winterfeld and Edwards [vWE86] have shown that the optimal decisions

and hence expected utility in a decision analysis are still less sensitive to

errors in input probabilities than are the posterior probabilities. They show

that this robustness is due to the necessary concavity of expected loss as a

function of probability in the region around an optimal decision. Pierce [PF69]

and Fishburn [FMI68] have shown related results.

On the other hand, von Winterfeld and Edwards [vWE86] also showed that

errors in model structure can create arbitrarily large losses in utility.We should

therefore be concerned about missing �ndings, missing diseases, or missing

relationships, which would change the qualitative structure of a model and so

could substantially a�ect results.

The �ndings of Wise and Henrion [WH86] suggest that if there is little or

no evidence, the quality of the representation and inference engine makes lit-

tle di�erence, because no scheme can compute an accurate diagnosis. On the

other hand, if there is strong, consistent evidence, any reasonable scheme will

perform well. In either case, there will be little sensitivity to representation or

small numerical errors. The largest di�erences between schemes, and largest

sensitivities to errors in inputs, occur when there is moderate or conicting ev-

idence. Accordingly, in the experiments described below, we vary the quantity

of evidence systematically to ensure coverage of the intermediate situation.

The BN that we used for our experimental analysis supports medical diagno-

sis for liver and bile (hepatobiliary) diseases. We derived the network from a
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3.1 Internist-1, QMR, and CPCS

acute gastritis

pale skin low red blood cell count

anemia

absent, present

absent, mild, moderate,
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frequency

rich knowledge base, the CPCS system, developed by R. Parker and R. Miller

[PM87] in the mid-1980s as an experimental extension of the Internist-1 knowl-

edge base [MPM82].

In this section, we describe the CPCS knowledge base, its relationship to

Internist-1 and QMR, and how we mapped it into a BN representation, CPCS-

BN. We describe the qualitative methods for identifying variables, their do-

mains, and inuences. In Section 3.2 we describe how we mapped from the

frequency weights, which express the strength of relationships in Internist-1

and CPCS, to conditional probabilities. We also assessed prior probabilities

and leak probabilities, which were additional quantities not derivable from

CPCS in its original form. In Section 3.3 we de�ne and explain the general-

ized noisy OR, or noisy MAX, which is the prototypical inuence that we use

to represent the probabilistic e�ects of multiple predecessor or causal variables

on each e�ect variable.

The CPCS KB was developed as an experimental extension of the Internist-1

KB to support patient simulation and computer aided instruction. The devel-

opers felt that these tasks required a KB with a much richer representation

than that of Internist-1. CPCS is restricted to the hepatobiliary medical do-

main because the developers regarded the knowledge engineering task too

great to convert all of Internist-1 to a richer representation based on their

experience with the CPCS system.

Internist-1, and more recently QMR, contain only diseases and �ndings|

a two-level representation. The CPCS KB has a multilevel representation

that includes diseases and �ndings as well as predisposing factors to diseases

(PFDs) that inuence disease prevalence rates, and intermediate pathophysio-

logical states (IPSs) that mediate between diseases and �ndings. For example,

consider a disease which involves blood loss and two �ndings

suggestive of blood loss: and . Internist-1 has

direct links between this disease and the two �ndings. In contrast, the CPCS

KB includes (an IPS) between the disease and the two �ndings.

Whereas Internist-1 and QMR use binary domains for dis-

eases and �ndings, CPCS uses quaternary domains

for certain variables, such as diseases and IPSs. Some �ndings are also

represented with multiple states. CPCS contains directed links between the

variables of types predisposing to disease, disease to IPS and �ndings, and IPS

to �ndings. CPCS, like its predecessors, represents the strength of the rela-

tionship between cause and e�ect variables by a (an integer between

9
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3.2 Translation of the Qualitative CPCS into a Belief Network

edema

none, legs, scrotum

edema-legs edema-scrotum

3.2.1 Assessment of the Prior Probabilities

disease

0 and 5) that represents a graded degree of likelihood.

The original CPCS system was developed in FranzLisp. Diseases and IPSs were

represented as Lisp frames. To construct the BN we converted the original

CPCS KB to Common Lisp, and then parsed the frames to create nodes.

We represented diseases and IPSs as four levels of severity in the CPCS-

BN. Predisposing factors of a disease or IPS node were represented as that

node's predecessors, and �ndings and symptoms of a disease or IPS node were

represented as the successors for that node. In addition to the �ndings, CPCS

contained causal links between disease and IPS frames; we converted these

links into arcs in the BN.

In the conversion of CPCS to the BN representation, we checked for consis-

tency using the domain knowledge of medical doctors associated with this

project. Because the original CPCS knowledge base was not designed with

probabilistic interpretations in mind, we had to make numerous minor cor-

rections to remove artifactual nodes, to make node values consistent, and to

con�rm that only mutually exclusive values were contained within a node. For

example the node (swelling due to uid accumulation) was automati-

cally created as one node containing the states . Since

edema may occur at more than one site simultaneously the node was broken

into two nodes: and .

The resultant network has 448 nodes and over 900 arcs. Figure 1 is a snapshot

of part of the network that demonstrates the complexity of the CPCS-BN.

Because inference in the complete CPCS-BN is extremely time consuming,

and we ran approximately 300,000 experiments, so we used subsets of the

full network comprising 42 nodes (2 diseases), 146 nodes (3 diseases) and 245

nodes (4 diseases). These subsets are described in more detail in Section 4.

To complete the conversion to CPCS-BN, we assessed three sets of probabili-

ties: prior probabilities, leak probabilities, and link probabilities. We assessed

over 560 probabilities to specify the network fully, as described in the following

subsections.

The prior probabilities of the predisposing factors in CPCS-BN were assessed

by physicians. However, because we are using the posterior probabilities of

nodes as a measure of diagnostic accuracy in these experiments, we

removed the predisposing factors and assessed the prior probabilities of the

10



3.2.2 Assessment of the Leak Probabilities

Fig. 1. Approximately one quarter of the full 450-node CPCS-BN.

diseases. Predisposing factors often play an important role in medical diag-

nosis by e�ectively de�ning subpopulations with di�erent disease rates (prior

probabilities). For example, a population who has high intravenous drug use

will have a much higher rate of viral hepatitis compared to the general popu-

lation. The removal of predisposing factors from the experimental version of

the CPCS network reduces it's diagnostic power and medical realism, however

this ensures that the prior probabilities of the diseases would be consistent

for each network, and not subject to uncontrolled variations due to noise or

frequency to probability mapping.

We derived disease prior probabilities from the National Center for Health

Statistics data, as had been done for the original QMR-BN.

Experts assessed the leak probabilities by observing the predecessors of each

node that required a leak, and deriving a probability that the node could be

11
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pregnancy anemia

not acute gastritis pregnancy

peptic

ulcer anemia

3.2.3 Assessment of the Link Probabilities

frequency weight

3.3 Modeling Causal Inuences

link probability

true given that each of the predecessors represented in the network was absent

(Leak probabilities are introduced formally in Section 3.3.2.) For example, if

a network includes the node with predecessors and

, then the leak for is the probability that a person could

present with anemia caused by or .

The assessed leak probability of a node is speci�c to the particular set of causal

factors (parents) of that node; if a parent is added or removed, then the leak

probability must be modi�ed. For example, if we include the condition

in our model as a new parent of the node , the leak probability

will decrease because the new condition is a relatively common cause of anemia

and it is now explicitly modeled in the network.

The original CPCS system contained causal links from diseases to IPSs, and

from diseases and IPSs to �ndings. The strengths of these links were indicated

by an integer from 0 to 5 called a . The frequency weight

of a link was very roughly equivalent to the conditional probability that the

successor node would be present given the predecessor node is present.

In constructing the CPCS-BN, we converted these frequency weights to prob-

abilities by mapping the integers into the real interval [0,1], using the same

mapping as was used in [SMH 91]. We also tested the sensitivity of the per-

formance of the CPCS BN to the particular probability mapping used, as

described in Section 5.

The link probabilities represent only one-on-one relationships between the

nodes, e.g. between a disease and a �nding. To combine the e�ect of more

than one disease on a �nding, we use the devices of the noisy OR and the

noisy MAX, which are described in the next section.

The link probabilities described in the previous section model one-to-one re-

lationships between diseases and �ndings. To combine the e�ect of multiple

diseases on a single �nding, we use the leaky, noisy OR, and the noisy MAX.

These are simpli�ed representations for probabilistic inuence that require

far fewer parameters than the full conditional-probability matrix. For binary

variables, the leak noisy OR requires a single parameter, a

to represent the strength of each link from on variable to another, e.g. from

disease to �nding. Researchers and practitioners using belief networks have

found that noisy OR relationships are su�cient to represent a large majority

12
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of actual relationships between binary variables as judged by experts for di-

agnostic applications in many domains. They represent the situation in which

there are multiple diseases or faults that can cause the a given �nding or ob-

servable test-outcome, and where they are ; the presence

of one disease does not a�ect the tendency of each other disease to produce

their common �nding. There are some situations in which synergies and gat-

ing can occur among causes, which can be represented by other probabilistic

relations, but these are a small minority. In the CPCS KB the presence of IPS

nodes between diseases and �ndings make the the noisy OR and noisy MAX

seem the most appropriate probabilistic interpretation.

In the following discussion, we denote variables using upper-case letters (e.g.,

) and instantiations of variables using lower-case letters (e.g., ). Let the

values (states) that a variable can take be [0], [1] [ 1]. The value

[0] denotes the the absent state. Any state, [ ], where 0 means is

present.

The noisy OR is a model of probabilistic causal inuence between a binary

e�ect variable and a set of binary variables that represent its causes. This

representation was originally proposed by Pearl [Pea86] and independently by

Peng and Reggia [PR86].

Consider a variable that has predecessors . The noisy OR can

be used when (1) each has a probability ( ) of being su�cient to

produce the e�ect in the absence of all other causes, and (2) the probability of

each cause being su�cient is independent of the presence of other causes

[Hen88]. If these conditions hold, we can model the noisy-OR relationship as

a belief network, as in Figure 2.

For the noisy-OR network in Figure 2, let � ( ) be the set of explicitly mod-

eled predecessor variables . Let � ( ) be the subset of pre-

decessors of that are present and � ( ) be the subset of predecessors

of that are absent. We assume that all predecessors are instantiated (thus,

= � ( )). An instantiation of � ( ) is denoted ( ), and we de�ne

( ) = as a speci�c instantiation of � ( ) in which is present and all

other ( = ) are absent, or:

( ) = = [1] = [0] =

Let ( ), on the arc from to , represent the , the

probability that is present given that is present and all other predecessors

13
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Fig. 2. A noisy-OR network.

3.3.2 Leaky-Noisy OR

leak events

explicit

leak probability

Link D ;X P X x v :

D X X

D X

P X x X P X x v ;

Link D ;X :

P X x X Link D ;X :

explicitly

X D andD

L

X X D ;D ; : : : ;D

X Leak X X

m X

Leak X P L P X x D d ; i ; ; : : : ;m :

are absent:

( ) = ( = [1] ) (1)

Since the � ( ) are assumed to be causally independent, is absent

only when all fail to cause to be present:

( = [0] � ( ))= ( = [0] )

= (1 ( )) (2)

from which it follows that the complement is given by:

( = [1] � ( )) = 1 (1 ( )) (3)

Like any model, a BN is an incomplete representation of reality. We can use

to represent the missing variables that inuence a �nding. Each

variable with predecessors has a corresponding leak event that represents all

the possible events that could cause that �nding to be present, other than those

predecessor variables that are represented in the model. Figure 3

shows a �nding , with two predecessor variables, , and a

leak event, . Recall the set of explicitly modeled (non-leak) predecessors of

is � ( ) = .

The probability that the leak event is present is the . The leak

probability for , ( ), is equal to the probability that is present when

all its explicitly modeled predecessors � ( ) are absent:

( ) = ( ) = ( = [1] = [0] = 1 2 ) (4)
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3.3.3 Noisy MAX
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Fig. 3. Explicit representation of the leak probability as a cause of .

Thus, we can model the leak event like any other explicit cause of . The

only di�erence is that the link probability from to is exactly 1. Note

that if is present, then is present. Note also that for the leaky-noisy OR,

the link probability ( ) represents the probability that is present

given that is present and all other predecessors are

absent.

By incorporating a leak event into Eq. 3, we arrive at a formula for the

leaky-noisy OR:

( = [1] � ( )) = 1 (1 ( )) (1 ( )) (5)

The binary noisy OR is insu�cient for the CPCS-BN application, because we

need to accommodate quaternary variables. In this section, we outline how the

binary version can be generalized to an -ary version, termed the noisy MAX.

The generalization of the noisy OR was �rst proposed by [Hen88]. The deriva-

tion and implementation described here and in [PPMH94] follow Henrion's

work. Two related generalizations are described in [Sri93] and [Die93]. The

generalization of the noisy OR by Srinivas is di�erent from the formulation

described here and is used to model circuits (or other such devices) that can be

functional or non-functional. In domains such as medicine, variables may take

on more than two values, in which case the binary generalization of Srinivas is

insu�cient. The noisy MAX generalization in [Die93] is virtually identical to

the one described here, but was derived independently. Also, the formulation

in [Die93] is described within the context of learning models for OR gates, and

its application to inference in Bayesian networks is not apparent.

Consider a generalization of the noisy-ORmodel in which each variable domain

is a �nite discrete (or -ary) state space in which the states are ordered. For
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example, the variables in CPCS-BN have states that are ordered by severity:

absent, mild, moderate, and severe.

In a noisy OR, each predecessor may be seen as having a (Fig-

ure 4). If is present, its shadow is present with probability equal to the link

probability. Variable is simply the standard, noiseless OR of the shadows.

The probability of may be computed directly from this fact. Similarly, for a

noisy MAX, each predecessor has a shadow. The probability distribution over

each shadow is determined by its link probabilities and the probabilities

of its predecessor . If the shadow predecessors were known, the value of

would be simply the maximum of the values of the shadows . Hence, the

name noisy MAX.

We de�ne ( ) to be the set of instantiations of the shadow variables ( =

= ) such that max ( ) =

We can use the noisy MAX to compute the conditional probability

( = [ ] )= ( )

= ( = ) (6)

For example, consider the case of two predecessors and , both of which

have ordered states 0,1,2,3 and corresponding shadow variables and .

If we want to compute ( = [2] ) we notice that the

state of any shadow variable must be 2. In this case the noisy MAX calculation

takes into account all combinations of and in which the maximum state

taken by either variable is 2. This is shown graphically in Figure 5.
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4 Experimental Approach

4.1 Subnetwork Selection

Fig. 5. A node with predecessors and shadow variables having
ordered states 0,1,2,3 . The shaded area represents the probabilities required to

calculate ( = [2] ).

In this section, we describe the experimental approach we used in each of the

three experiments, which we will present in the following three sections. Here,

we describe the three networks we used in the experiments, how we generated

the test cases, and how we analyzed the results, and we provide some sample

results.

Because CPCS-BN is large and multiply-connected, it is impractical to per-

form inference with available inference algorithms using the entire network.If

we wish to compute only the posterior probabilities of a small set of diseases,

we can perform inference using only the subnetwork of the CPCS network that

is relevant. We selected subnetworks from the full CPCS-BN using the BN

graphical tool Netview [PPMH94]. Netview allows the user to display selected

subsets of nodes from a network for simplicity of visualization and editing in a

large network. For example, in Figure 6, Netview displays only the immediate

ancestors and descendants of the selected node | , in this

case.

We extracted three subnetworks from the full CPCS-BN for the experiments,

named BN2, BN3, and BN4, containing, respectively, two, three, and four

diseases. We developed versions of BN2, BN3, and BN4 in both quaternary

and binary domains. Table 1 summarizes the number of nodes of each type in

the three subnetworks in comparison with the full CPCS network. The table

also shows the maximum number of parents for a single node in each network,

the total number of conditional probabilities needed to fully specify the net-

work (in the quaternary domain), and the number of noisy-MAX parameters

required to fully specify those conditional probabilities.
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4.2 Test Cases

ascending-cholangitis

Figure 7 shows BN2, and Figure 8 shows BN3.

We needed far more test cases to estimate reliably the e�ects of the experi-

mental manipulations on the diagnostic performance than the small number of

cases available from real patient data. Accordingly, we generated sample test

18

Fig. 6. Subnetwork containing the ancestors and descendants of the disease

.

Table 1
Subnetworks used for experiments, including the number of probabilities speci�ed

after expansion of the noisy MAX nodes

Network # Nodes max # parents # probabilities # parameters

BN2 42 2 492 412

BN3 146 4 2420 1480

BN4 245 7 77,988 3180

Full CPCS 365 12 90,813,182 6658

Fig. 7. The 42-node, two-disease subset of the full 450-node CPCS-BN, used as BN2
in our experiments.
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Fig. 8. The 146-node, three-disease subset of the full 450-node CPCS-BN, used as

BN3 in our experiments.

cases directly from the BNs themselves, generating �ndings according to the

probabilities speci�ed by the network using logic sampling [Hen88]. We used

the full CPCS network and the standard probability mapping for generating

the test cases.

Since we wanted to investigate how the amount of evidence a�ects sensitivity

to the experimental manipulations, we generated cases with varying numbers

of �ndings. The test cases, as initially generated, include values for all �nd-

ings. To create harder cases with fewer �ndings, and also for greater medical

realism, we created �ve cases from each initial case, by revealing the �ndings

in �ve Phases, approximating the order in which �ndings would be revealed

in a real medical consultation. We grouped the �ndings into these �ve Phases

corresponding to successive stages in medical diagnosis, as follows:

History, including symptoms and �ndings volunteered by the pa-

tient | e.g., abdominal pain in the epigastrium.

Examination, including objective evidence observed by the physi-

cian | e.g., abdominal tenderness.

Inexpensive, laboratory tests, whose results are returned in a few
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4.3 Measures of Diagnostic Performance

hours.

Expensive tests, non-invasive laboratory tests, whose results are

returned in days.

Expensive, invasive laboratory tests, including pathology �ndings,

which are usually obtained through biopsies | e.g., hepatocellular inam-

mation and/or necrosis.

We generated the test cases with the following �ve steps:

First, we generated a set of disease combinations for each network in the

quaternary representation using the standard probability mapping. For a

network with diseases, each at four severity levels, there are 4 possible

combinations. To reduce the number of possible combinations we restricted

ourselves to severity levels "absent" or "severe". We generated combinations

of these states to representative coverage of the space. In addition, we gen-

erated cases for diseases chosen at random from outside the subnetworks.

As an example, for the two-disease network, we generated cases with the fol-

lowing disease settings (using the ordinal representation 0,1,2,3 for severity

levels): (0,0),(0,3),(3,0),(3,3). We used the same combination of settings to

generate another set of cases with a randomly selected disease from outside

the subnetwork set to level 3.

For each disease combination we computed the conditional probability dis-

tributions over the �ndings at four severity levels. We used random sampling

from the probability distributions to generate sets of �nding levels to com-

prise each case.

For the cases to be used for binary networks, we reduced the number of

levels of each disease and �nding from four to two, classifying all levels of

severity beyond absent as present.

We categorized the �ndings into the �ve Phases listed above. From each

full case, we generated four partial cases: Phase 1, including only Phase 1

�ndings; Phase 2, which adds Phase 2 �ndings to the Phase 1 �ndings; and

so on, up to Phase 4. Each Phase 5 case is the full case including �ndings

from all �ve Phases.

There are, in general, 5 phased cases generated from basic cases. Table 2

shows the number of basic and phased cases for each network.

We quantify diagnostic performance as the probability assigned by each net-

work to each true diagnosis, averaged over the set of test cases. We analyze

separately the probabilities assigned to each disease when present | that is,

the true positive rate { and the probability assigned to each disease when
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Table 2
Number of cases used for experiments

Network Basic cases Number of Phases Total cases (by Phase)

BN2 160 5 800

BN3 160 5 800

BN4 320 5 1600

Total 640 5 3200

Fig. 9. The average probability of the true diagnosis as a function of the Phase

(amount of evidence) for each network.

absent | that is, the false positive rate.

Initially, we aggregate the results by Phase so that we can see how performance

varies by Phase. For example, Figure 9 plots the average probability assigned

to the true diagnosis (true positive and true negative) as a function of the

Phase for each of the three networks. As expected, diagnostic performance

improves consistently with Phase | that is, the additional �ndings available

in the later Phases lead to a higher average posterior probability of the true

diagnosis. Performance starts out relatively poorly for Phase 1, especially for

BN3, where the average posterior probability for the true diagnosis is 0.22.

But, with with the entire set of evidence available in Phase 5, diagnostic

performance becomes excellent, averaging 0.95 over the three networks.

For statistical analysis of the results we compared the performance of the modi-

�ed networks to that of the \gold standard" network | the standard mapping.

We expected the standard mapping to perform better than the modi�ed net-

works because (a) test cases were sampled from the standard networks, and (b)

there is experimental evidence for the basis of the standard mappings[HM86].
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5.1 Design of Mapping Experiment

5 Experiment on Sensitivity to Mappings

standard mapping

curvilinear mapping

In our �rst experiment, we examined the e�ect of alternative mappings from

the frequency weights used in CPCS (similar to those in Internist-1 and QMR)

to the link probabilities used in the BN representation. The frequency weights

are qualitative judgments, denoted by integers from 0 to 5, expressing the

degree of connection between each cause and e�ect (e.g. disease and IPS, or

IPS and �nding) provided by the clinical diagnosticians who created those

knowledge bases.

There are two reasons to vary the mappings. First, as we try to develop prob-

abilistic reformulations of CPCS and QMR, we want to know which mapping

gives best results. Second, we want to understand how sensitive the network

is to changes in the mapping. More generally, we wish to understand how sen-

sitive BNs are to changes in the numerical probabilities. In this experiment

we compared the standard mapping, assessed by a principal author of QMR

[HM86], to two extreme mappings, the curvilinear mapping and uniform map-

pings, as we shall describe. Our hypothesis was that use of these nonstandard

mappings would degrade the quality of diagnostic performance relative to the

standard mapping, since we believed that the standard mapping would provide

the best probabilistic interpretation of the frequency weights.

We compared three di�erent mappings from frequency weights to link proba-

bilities, as follows:

The was obtained from an experiment to assess the cor-

respondence between frequency weights and subjective probabilities [HM86].

For a set of disease-�nding pairs, Dr R. Miller, a principal author of QMR,

assessed directly the numerical conditional probability of each �nding given

the presence of each disease. The experimenters found a simple and consistent

relationship between the assessed probabilities and the frequency weights for

the corresponding pairs. The standard mapping, as shown in Table 3, is the

average probability obtained in this experiment for each frequency weight.

This mapping was used in previous experiments reformulating QMR in prob-

abilistic terms [SMH 91].

The provides an order-of-magnitude interpretation of

the frequency weights. It interprets frequencies 0 to 3 as the orders of mag-

nitude 0.0001 to 0.1. Frequencies 4 and 5 are orders of magnitude for the

complement probability | that is, 0.9 and 0.99.
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5.2 Results of Mapping Experiment

Table 3
Mappings used to represent frequency weight from the original CPCS knowledge
base as probabilities in CPCS-BN.

0 1 2 3 4 5

standard 0.0025 0.025 0.2 0.5 0.8 0.985

curvilinear 0.0001 0.001 0.01 0.1 0.9 0.99

uniform 0.5 0.5 0.5 0.5 0.5 0.5

Fig. 10. The e�ect of alternative mappings from frequency to probability on average
diagnostic performance for all Phases for each network.

The ignores all distinctions among frequencies, mapping

them all to the identical probability of 0.5. We use it to demonstrate the

e�ect of ignoring the di�erences among the strength of links entirely. With

the uniform mapping, the network makes the distinction only between those

pairs of nodes that are linked, and those that are not.

Figure 10 compares the three mappings in terms of the diagnostic perfor-

mance averaged over all cases for each network. As expected, the standard

mapping performs best, on average; the curvilinear mapping performs next

best, and the uniform mapping performs the worst. This pattern is observed

for networks BN2 and BN3. For BN4 performance with standard and curvilin-

ear mapping are almost indistinguishable. In all cases, the performance with

uniform mapping is signi�cantly worse than the standard mapping.
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5.3 Discussion of Mapping Experiment

Fig. 11. The e�ect of alternative mappings from frequency to probability on average
diagnostic performance for Phase 1 �ndings only.

We also compared the three mappings with only the Phase 1 �ndings, to see if

the sensitivity was di�erent for cases with less evidence, as shown in Figure 11.

These cases show that the standard mapping is consistently the best, but that

curvilinear can perform worse than the uniform mapping, as in BN2 and BN3.

The �nding that the curvilinear and uniform mappings did worse on average

than the standard mapping is as expected. According to the experimental

calibration by Heckerman and Miller, the standard mapping should provide

the best probabilistic interpretation of the frequency weights.

What is most interesting, however, is the modest magnitude of the decre-

ment in performance obtained by the two very substantial modi�cations of the

probabilities provided by the curvilinear and uniform mappings. The curvilin-

ear mapping, with its order of magnitude interpretation, puts relatively much

more weight on the larger frequency weights, 4 and 5, than the smaller weights,

1, 2 and 3. It reduces the importance of the �ndings with link strengths 0, 1,

and 2 by a factor of about twenty. The uniform mapping, on the other hand,

totally ignores any di�erences in link strengths for frequencies 1 to 5. E�ec-

tively, it makes the strength of evidence of a �nding a function of the leak

probability, which is not a�ected by mapping. In this sense, the uniform map-

ping reduces the representation to a purely qualitative structure for links |

although, the leaks and priors remain quantitative. Despite these substantial

changes, the average performance (probability of true diagnosis) is reduced by

only 0.05 from (0.87 to 0.82). These results indicate very substantial robust-

ness of diagnostic performance with respect to changes or errors in the link
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6.1 Design of Noise Experiment

6 Experiment on Sensitivity to Noise

probabilities. They suggest that what matters most is whether there exists a

link between a disease and �nding. The quantitative strength of the link is of

less importance.

In our second experiment, we examined how random noise in the numerical

probabilities a�ects diagnostic performance. Numerical probabilities for belief

networks may be estimated from empirical data or assessed by experts. In

either case, the numbers are subject to various sources of inaccuracy and bias.

For example, the data may be obtained from a sample that is not truly repre-

sentative of the application domain, or the expert may have nonrepresenative

experience. Limited sample sizes lead to random error. The process of expert

assessment of probabilities is subject to a variety of inaccuracies which have

been the subject of extensive study [KST82,MH90].

The question we wish to address here is how far these sources of imprecision are

likely to matter. Accordingly, we add random noise to the original probabilities

to simulate these sources of imprecision. In our �rst experiment, we examined

e�ects of alternative probability mappings on only the links, but not the leak

or prior probabilities. In the second experiment, we compared the e�ect of

noise separately on each of the three types of probability to see whether there

are di�erent levels of sensitivity for the three types of probability.

A better understanding of sensitivity to errors or noise in numerical probability

can help guide the builder of belief networks in deciding how much e�ort it is

worth putting into probability assessment|whether probabilities are assessed

directly by experts, or estimated empirically from collected patient case data.

It could also help us understand what levels of precision in diagnosis we can

expect given the inevitable imprecision in the input probabilities. A better

understanding of the relative sensitivity to links, leaks, and priors could help

guide the knowledge engineer in allocating e�ort in assessing these three classes

of probability.

Perhaps the most obvious way to add noise to a probability is to add a random

noise directly to the probability. This approach has two problems. First, a large

additive error is likely to produce a probability greater than 1 or less than 0,

and so needs to be truncated. Second, an error of plus or minus 0.1 seems a

lot more serious in a probability of 0.1, ranging from 0 to 0.2, than it does
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in a probability of 0.5, ranging from 0.4 to 0.6. Link probabilities near 0 or 1

can have enormous e�ects in diagnosis for �ndings that are present or absent

(respectively).

A more appealing approach that avoids these problems is to add noise to the

log-odds rather than the probability. This approach can be viewed as a version

of Fechner's law of psychophysics in which similar just-noticeable di�erences

in quantities such as weight or brightness are approximately constant when

measured on a logarithmic scale. Since probability has two bounds, 0 and 1, we

wish to have a symmetric e�ect near each bound. The log-odds transformation

provides exactly this behavior.

More speci�cally, we transformed each probability into log-odds form, added

normal noise with a standard deviation of and transform back into proba-

bilities. We de�ne the log-odds transformation as:

( ) = log [ (1 )] (7)

We add log-odds noise to the probability as follows:

= [ ( ) + ], where = (0 ) (8)

We start with binary networks using the standard mapping with no noise ( =

0), and then add noise, generated independently for each link probability in the

network, with = 1 0, = 2 0, and = 3 0. We generated 10 noisy networks

independently for each . Similarly, we created noisy networks adding noise

only to the leak probabilities, and only to the prior probabilities for each

network.

The total number of networks used in this experiment were 273, comprised of

3 levels of noise 3 probability types (link, leak, and priors) 10 samples

3 networks, plus the original 3 standard networks without noise. For each

of these networks, we ran the entire set of cases, requiring a total of 291,200

runs. As in the experiments in Section 5, we compared performance using the

average probability assigned to the true diagnoses.

Figure 12 plots the average performance - the probability assigned to the true

diagnosis - for the two-disease network against the four levels of noise on the

link, leak, and prior probabilities. Figure 13 and Figure 14 plot similar mea-

surements for the three-disease and four-disease networks, BN3 and BN4. The
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6.3 Discussion of Noise Experiment

Fig. 12. E�ects of noise in the link, leak, and prior probabilities on average diagnostic
performance for the BN2 network

Fig. 13. E�ects of noise in the link, leak, and prior probabilities on average diagnostic
performance for the BN3 network

results are similar for all three networks. We see that, as expected, increas-

ing noise consistently degrades performance for each type of probability |

link, leak, and prior. Performance is relatively more sensitive to noise on links

than to noise on priors or leaks. The e�ect of noise on the leaks and priors is

indistinguishable for networks BN3 and BN4.

The introduction of noise in the numerical probabilities does degrade perfor-

mance, as expected. However, the amount of degradation is surprisingly small
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6.4 E�ects of Noise on True Positives and Negatives

Fig. 14. E�ects of noise in the link, leak, and prior probabilities on average diagnostic

performance for the BN4 network

Fig. 15. E�ect of adding noise: (a) = 1 (b) = 3.

when one considers the degree of noise. Figure 15 shows the 10-percentile and

90-percentile values of the probability with noise as a function of the prob-

ability without noise for = 1 0 and = 3 0. Even for = 1 0, the noise

generates a wide range of probabilities. For = 3 0, the 80% probability in-

terval seems to cover nearly the entire unit square. These graphs show that

noise of = 3 0 and greater can transform any probability into almost any

other probability. In spite of this tendency, it appears these vast errors in the

probabilities produces only modest degradations in performance.

Hitherto, our analysis has combined the probabilities assigned to true positives

(TP) | i.e., the probability of the disease for cases in which the disease
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Fig. 16. E�ect of noise in the link, leak, and prior probabilities on the true positive
and true negative probabilities, averaged over BN2, BN3, and BN4.

is present { and probabilities assigned to true negatives (TN) | i.e., the

probability of no disease for cases in which the disease is absent. We can obtain

interesting insights that help explain our results by examining the e�ects of

noise on these two measures separately. Figure 16 plots the average probability

assigned to the true diagnosis separately for TP and TN, as a function of the

noise level in the link, leak, and prior probabilities. These results were similar

for each of the three networks. Accordingly, for simplicity, Figure 16 shows

results averaged over the three networks.

The �rst point to note is that, without noise, the average performance for

true negatives (TN) at 0.97 is substantially better than for true positives

(TP) at 0.73. In other words, the system is more likely to miss a disease that

is present than to falsely diagnose a disease that is not present. This tendency

to underdiagnose should be expected because the prevalence of diseases in

the test cases is much larger than would be expected according to the prior

probabilities on the diseases. Note that we deliberately generated most of

the test cases to contain one or more diseases to provide more information

on diagnostic performance on interesting cases, even though according to the

priors, more cases would have no diseases.

Now let us look at the e�ect of noise levels on TP and TN. Noise in the link

probabilities signi�cantly degrades performance for TP, but has no statistically

detectable e�ect on TN ( = 0 05). Conversely, noise in the leak probabilities

has no statistically detectable e�ect on TP at noise levels = 1 and = 2, but

link noise signi�cantly degrades TN. Finally, noise in the priors has a similar,

slight, but signi�cant, e�ect in degrading performance on both TP and TN.

At the highest noise setting, = 3, the performance of networks with leak

noise and prior noise sharply decline because the disruption to the probability

values is so extreme (Figure 15).
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Why should link noise and leak noise show these contrary e�ects on TP and

TN? We can explain these results by analyzing the role of the link and leak

probabilities in the diagnosis.

For simplicity, let us consider the e�ect of a single �nding , being present, ,

or absent, , on the posterior odds of a single disease . A standard measure

of the strength of diagnostic evidence is the log-likelihood ratio, also known

as the evidence weight:

( ) = log
( )

( )

( ) = log
( )

( )

( ), the probability of the �nding when the disease is present is expanded

using Eq. 5:

( ) = 1 (1 ( ))(1 ( ))

= ( ) + ( )(1 ( ))

(9)

( ), the probability of the �nding when the disease is absent, is the leak

probability, ( ). We can now rewrite the likelihoods in terms of the link

and leak probabilities:

( ) = log
( ) + ( ) (1 ( ))

( )
(10)

( ) = log [1 ( )] (11)

Notice the leak probability does not play a role in the negative evidence weight

(Eq. 11), because if a �nding is absent then the leak must be o� by de�nition.

Figure 17 plots the evidence weights for positive and negative �ndings, as a

function of the probability, and the mean evidence weight with 2 sigma

noise in the link probability. It demonstrates that, on the average, noise in the

link decreases the evidence weight for the �nding. This e�ect arises from the

fact that the evidence weights are concave functions of the link probability.

Accordingly, the noise in the links will tend to reduce the probability assigned

to the true positive, reducing performance as noise increases. Noise in the

links, by reducing the evidential strength of �ndings can only increase the
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7 Experiment on Sensitivity to Domain Size

Fig. 17. Evidence weights for a disease from a single positive and negative �nding as

a function of the link probability, without noise and with sigma=2 noise. Note that
noise tends to decrease the evidence weight for both positive and negative �ndings.

probability assigned to true negative, but this e�ect is undetectable because

the true negative rate is already high.

The impact of noise on the positive evidence (Eq. 10) is bounded by the

value of the leak. The smaller the leak, the greater the possible e�ect on the

positive evidence. In contrast, the negative evidence weight (Eq. 11) can be

signi�cantly decreased if the link probability is close to 1.0, as is the case with

sensitive �ndings.

A related argument demonstrates that noise in leak probabilities will tend

to increase the strength of evidence on the average. In consequence, noise in

leaks also tends to increase false positives and so degrades performance for

true negatives. The e�ect on true positives is again not detectable.

In our third experiment, we examined the e�ect of the richness of the repre-

sentation by comparing networks using quaternary domains, with variables at

four levels | absent, mild, moderate, and severe { with networks using binary

domains | absent, present. Our hypothesis was that the binary representa-

tion would degrade the diagnostic performance of the network relative to the

quaternary representation. We wanted to quantify the amount of degradation.

Creating a quaternary network is signi�cantly more work than a binary repre-

sentation, since it requires assessment of at least three times as many proba-
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7.1 Design of Domain Experiment

7.2 Results of Domain Experiment

7.3 Discussion of Domain Experiment

bilities. It requires three probabilities instead of one probability for each link,

leak, and prior distribution; the remaining (fourth or second) probability, in

each distribution is determined by the constraint that they add to unity. The

computational e�ort for inference in quaternary networks is also signi�cantly

greater than binary networks. In this case, it was such that we could not

perform the experimental runs for the four-disease network in the quaternary

representation due to the excessive computation time required. The bene�t of

knowing the change in diagnostic precision due to changing the domain size

is that it would allow knowledge-base designers to make more informed deci-

sions about what domain size is likely to be worthwhile in trading o� between

precision and e�ort in construction and computation.

We started with the quaternary representation for the two- and three-disease

networks, and reduced them to binary representations. Similarly, we reduced

the quaternary test cases to binary test cases for testing the binary networks.

In scoring the results, we also converted the posterior disease probabilities from

the quaternary to binary representation so that we could compare directly the

results from quaternary and binary networks.

As shown in Figure 18, we found no statistically signi�cant di�erence between

the diagnostic accuracies of the quaternary and binary networks. We also

found no signi�cant di�erence when we restricted our comparison to Phase 1

cases.

The complete absence of statistically detectable di�erence in performance be-

tween the binary and quaternary domains was unexpected. In general terms,

the �nding is consistent with the �ndings from the preceding two experiments.

The low sensitivity to changes or noise in the numerical probabilities suggests

low sensitivity to changes in the complexity of the representation of the links.

These results suggest that there is no reason to invest in the extra work for

knowledge engineering and for computation required for the richer represen-

tation. A simple binary representation is su�cient| at least, for this domain

and class of networks.
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8 Experiment on Outside Diseases

8.1 Design of Outside Diseases Experiment

Fig. 18. Binary versus quaternary comparison for two- and three- disease networks.

Any real diagnostic system will have to handle cases in which the true dis-

ease or fault is not explicitly modeled in the knowledge base. The e�ect of

incomplete knowledge bases on the reliability of diagnostic systems is often

discussed, but more seldom studied. Our fourth experiment examines the e�ect

of diseases outside the network on diagnostic performance. As we mentioned

in our description of the experimental approach, we generated test cases from

the entire network with twelve diseases to analyze the performance of subnet-

works with two, three, and four diseases (BN2, BN3, and BN4, respectively).

Half of the test cases in all the results reported above include diseases that are

outside each subnetwork. In other words, the true diagnosis includes a disease

not in the subnetwork. Our goal was to see how having the true disease being

outside the network would a�ect performance. Obviously, the system cannot

correctly identify a disease outside the network. The question is whether any

�ndings inside the network which are actually caused by an outside disease

will be correctly explained by the �ndings' leaks | a leak is a proxy for out-

side diseases | or whether they will be incorrectly explained by invoking a

disease inside the network leading to a false positive.

As described in the section on test case generation, we generated cases using

diseases from the entire twelve disease network, including in half the cases one

or more diseases from the diseases outside each subnetwork. For this analysis,

we use the standard mapping without noise.
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8.2 Results of Outside Diseases Experiment

8.3 Discussion of Outside Diseases Experiment

Fig. 19. E�ect of diseases outside the network on the average probability assigned

to true positive and true negatives

Figure 19 shows diagnostic performance as the probability assigned to the true

diagnosis, negative or positive, separately for cases which contain no diseases

outside the subnetwork and for cases which do contain one or more diseases

outside the network. These results are averaged over all �ve Phases and three

networks. The results are qualitatively similar for each network separately.

The results for the true negative cases show almost perfect performance, 0.97,

if there are no outside diseases. Performance is signi�cantly reduced, to 0.92,

by the presence of outside diseases. The results for the true positives are

slightly improved, from 0.73 to 0.76, by the presence of outside diseases.

The �ndings for outside diseases accord with our expectations for both true

negative and positive cases. For the true negative cases, outside diseases may

cause �ndings in the network | where two or more diseases have common

�ndings | and lead to false positives, invoked erroneously to explain the

�ndings. For this reason, we observe that outside diseases reduce the true

negative rate.

To understand how the outside diseases can improve the true positive rate,

consider an outside disease that can cause a �nding in the network that is also

linked to a disease in the network. For a test case in which both inside and

outside diseases are present, the outside disease increases the probability that
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9 Conclusions

the common �nding will be present, which will then be interpreted as evidence

for the inside disease, and so increase the true positive rate. An outside disease

cannot reduce the prevalence of �ndings in the network, and so cannot reduce

the probability of any disease in the network. Accordingly, cases with outside

diseases can only increase the probability assigned to true positives, as we

observe.

Although the outside diseases degrade the true negative rate and improve the

true positive rate, the latter e�ect is signi�cantly larger, so that overall the

e�ect of outside diseases is to degrade performance.

In this paper, we have examined the sensitivity of several belief networks on

diagnostic performance to imprecision in the representation of the numerical

probabilities. Overall, we have found a surprising level of robustness to impre-

cision in the probabilities. Here we summarize the key �ndings, explore their

implications, and discuss their limitations.

Extreme changes in the probability mapping from the qualitative frequency

weights to numerical link probabilities had modest e�ects on the diagnostic

performance. The curvilinear mapping, which interprets the frequencies as

order-of-magnitude probabilities, provided performance that was worse than

the standard mapping on average. The uniform mapping which ignores all

di�erences in link strength degraded performance further on average, although

it performed better than the curvilinear mapping with limited evidence (the

Phase 1 cases).

The addition of massive amounts of random noise to the link, leak, and prior

probabilities produced only modest decrements in diagnostic performance.

Noise in the link probabilities had the largest e�ect in reducing performance

for all three networks. Noise in the leak and prior probabilities had smaller

e�ects, but performance consistently degraded with the level of noise for all

three networks.

The surprisingly small e�ect of large amounts of random noise should be re-

assuring for those constructing belief networks. It provides empirical evidence

that it is much more important to obtain the correct qualitative information,

identifying �ndings, and diseases, IPSs, and their relationships, than to quan-

tify the relations with a high level of precision. Experience suggests that do-

main experts are much more comfortable providing these kinds of qualitative

knowledge than they are providing quantitative probabilities, although use of

probability elicitation methods can make the latter more acceptable. Knowl-
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edge that high levels of precision are not necessary should greatly improve

acceptance of these techniques.

The surprising lack of detectable e�ect of simplifying from the quaternary to

binary representation for each variable, if it turns out to be general, is also

good news for the BN knowledge engineer. A binary BN requires, at most, one

third of the number of probabilities of a quaternary BN, assuming noisy OR

and noisy MAX inuences. If the network contains more complex inuences,

the relative advantage of binary domains increases rapidly. Moreover, small

domains require much less computational e�ort than larger ones. Our results

suggest that a binary representation may be adequate for many applications.

In our fourth experiment, we report one of the few studies to examine sys-

tematically the e�ect of one class of incompleteness of the knowledge base.

The belief net representation, with leaky, noisy ORs and MAXes, provides a

representation as leaks of the potential existence of causes (diseases or faults)

that are not explicit in the knowledge base. We found that, as we expected,

performance on test cases in which the diseases were missing was degraded,

even for the diseases inside the network. However, the e�ect was moderate.

An important question that we did not address was to provide an estimate of

the probability that a disease was present outside the network.

Ultimately the purpose of any diagnostic system is to lead to better decisions

| more cost-e�ective treatments of diseases, or repair to complex artifacts.

In this paper, we have measured performance by accuracy of diagnosis, not

by improved decisions. However, if imprecision in the representation does not

degrade the diagnosis, it should not degrade the decision. In general, diag-

nostic accuracy is more sensitive to imprecision in the model of system being

diagnosed than is the quality of the decision. Therefore, where we �nd that

the quality of diagnosis is robust to imprecision, we can be con�dent that the

quality of decisions will be equally or more robust.

While we believe that these results provide intriguing and suggestive evidence,

we should caution that they should not be viewed as de�nitive for all BNs.

First, note that these results are for a diagnostic application. There is reason

to believe that predictive applications may show greater sensitivity. Second,

these networks, like most existing large BNs, use noisy-OR inuences, or their

generalization to noisy MAX inuences. In fact, in most diagnostic belief net-

works constructed hitherto, the large majority of inuences noisy OR

links. But, BNs that make extensive use of other types of inuence may show

di�erent sensitivities.

Clearly, there is a need for additional work to explore these possibilities. While

we believe that further experimental work is essential, we expect that theoret-

ical analysis will also help to provide a deeper understanding of some of the
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