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Abstract— A Building Automation System (BAS) aims to
provide good user comfort within occupied zones in a building.
One can enhance the functionality of a BAS through embedding
advanced control strategies within a Wireless Sensor/Actuator
Network (WSAN), and also make retrofit applications possible.
However, control systems that are embedded in a WSAN
can perform sub-optimally if the control system and WSAN
are designed independently. In this context, we develop a co-
design approach for embedding BAS code within a Network
Control System. We compare our developed system for building
lighting control with (a) a standard PI control method to
empirically demonstrate a 19% reduction in energy use and
65% improvement in user comfort, and (b) an MPC strategy
that uses only presence-based control, to show 25% reduction
in energy use. Our approach also improves network delay and
sensor battery usage by 68% over the PI baseline.

I. INTRODUCTION

The household and industrial building sector consumes
around 40% of total energy use in the West, and accounts for
nearly one-third of greenhouse gas emissions. Of this figure,
approximately one-third can be attributed to the lighting
systems present in buildings [1]. There is now a significant
effort being devoted to reducing these energy costs.

Many buildings incorporate a Building Management Sys-
tem (BMS) to maintain a comfortable environment in an
energy-efficient manner. A typical BMS provides a core
functionality that keeps the building’s climate within a spec-
ified range, automates the lighting and Heating, Ventilation
and Air-Conditioning (HVAC) based on building schedules,
and monitors system performance and device failures.

In this article, we focus on advanced lighting control sys-
tems, which aim to minimize energy use while maintaining
comfortable indoor light levels by adapting to variations in
external light while minimizing glare from windows. Glare
can be a particular problem in offices, as it can hamper the
use of computer monitors. More recent approaches for reduc-
ing energy use in advanced lighting systems have included
presence-based lighting, which activates indoor lights only
when rooms are occupied, and automated blinds, which op-
timize indoor light levels, minimize glare and control indoor
temperatures. To introduce such new higher-performance
lighting systems in legacy systems, it is typically cheaper
to embed the new sensor/control systems within a Wireless
Sensor/Actuator Network (WSAN) rather than rewire legacy
systems. In this article, we assume that we will embed an
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advanced lighting system within a WSAN. Such a WSAN-
based control architecture is called a Networked Control
System (NCS).

We examine the hardware/software co-design of a wireless
WSAN for building actuation control applications, in which
we aim to minimize user discomfort and energy usage. To
study the tradeoffs in the design process, we define our
objective function as consisting of two parts: (a) a Quality
of Service (QoS) function for the WSAN, defined as a joint
function of network delay and sensor battery usage; and (b) a
Quality of Control (QoC) function for the control application
running on the WSAN, defined as a joint function of user
discomfort and HVAC energy usage.

We empirically show how reduced QoS results in de-
creased QoC. Given this relationship, the optimization func-
tion allows us to design a WSAN that minimizes QoS while
maintaining a particular QoC level.

We apply our approach to a building lighting system in
which we control the light level and glare by adjusting
artificial lights and venetian blinds. In contrast to traditional
(and relatively inefficient) local feedback strategies (e.g., P or
PI controllers), which are still widely employed for even the
most advanced lighting control systems [12], we introduce
a more sophisticated control approach that incorporates the
impact of network delays and packet-loss within a Model-
Predictive Control (MPC) algorithm. MPC [22] is a con-
trol algorithm that computes the current control action by
solving, at each sampling instant, a finite-horizon open-loop
optimal control problem, using the current state of the plant
as the initial state. The optimization process generates an
optimal control sequence, the first control value of which is
applied to the plant.

Our contributions are as follows:

• We formulate a building lighting control system as an
optimal control problem where we minimize network
delay and battery energy while maintaining fixed QoC
levels (measured in terms of lighting energy usage and
user discomfort).

• We empirically study how WSAN QoS affects our QoC
metric.

• We compare our proposed algorithm with two baseline
controllers (PI and MPC) that use a presence-based
strategy, and show that it improves user comfort by an
average of 65% for the PI baseline, while decreasing en-
ergy usage by 19% and 25% for the PI and MPC base-
lines, respectively. Furthermore, our algorithm shows
a 68% improvement for the QoS compared to the PI
baseline networks.



II. RELATED WORK

There is clear empirical evidence that automated blinds
can reduce energy usage, e.g., [14], [18]. However, [9]
reports that integrated blinding/lighting systems have not
been successful to date, and that the most successful systems
use customized control algorithms rather than simple PI
controls [14], i.e., the controller must be able to compute
optimal combinations of blind tilt/position and indoor light
illumination simultaneously. Mukherjee et al. [18] showed
that integrating lighting/blinding controls saved 66% over
a benchmark of fixed lighting, and 23% over independent
control of lighting and blinding. We extend the work of
[18] by optimizing user comfort in addition to saving energy,
rather than focusing just on energy savings.

In the context of the impact of daylight glare on luminance
control, [2] provided a numerical simulation for the blind
transmittance based on the glare angle and blind tilt angles,
from which we have adopted the same blind transmittance
model. [2] augments the daylight coming to the controlled
zone using a dimming controller for electric lights, in order
to maintain the required luminance. On the other hand, [11]
has reported that the occupants often dislike automatic blind
control, and has developed manual control models for win-
dow blinds that can be a basis for the development of future
automated systems. These prior works control blinds in order
to provide indoor luminance and visual privacy. However, our
design extends venetian-blind control to minimize the impact
of reflected glare on user comfort.

BMSs typically incorporate simple control mechanisms in
practical applications [6], [13]. We study the use of MPC in
such applications. There have been a few approaches that
have used MPC for building systems, such as [5], [17],
[20]. The novelty of our approach in comparison to this
prior work is that we incorporate network QoS within the
control loop, whereas prior work assumes fixed deterministic
sensor/actuator feedback loops.

There is growing interest in the co-design of networked
control systems, e.g., [3], [4]. One of the major focuses of
recent work has been the study of scheduling at the network
or MAC layer [3], [8], [19]. Other work [16] has put in
methods for coping with delays in NCSs using PI control.
In contrast to the prior work on NCS co-design, we use MPC
rather than PI controls.

III. APPLICATION DOMAIN

We design a lighting controller within buildings with the
objective of enhancing user comfort and reducing energy
consumption. We achieve this by controlling (a) luminance
levels of artificial lights, and (b) reflected glare angle α
(using a motorized blind to control the blind angle β), as
shown in Fig. 1.

A. Design Specification

We assume that we have sensors to measure luminance
level (in Lux) in the middle of the controlled zone, in addition
to sensors to measure the incident glare angle γ (in arc-
degree) from outside.

Fig. 1. Luminance/Glare Control, where γ is the incident glare angle, α
is the reflected glare angle, αo is the farthest reflected glare angle from the
occupant vision, β is the blind tilt angle and βo is the optimal blind tilt
angle that provides maximum blind transmittance.

In order to demonstrate our control approach, we have
modelled a single room that contains two main groups of
components, as shown in Fig. 2: (a) environment components
reflect the plant physics (e.g., daylight, window blind); (b)
control components house the control/sensing algorithm that
modify/monitor the environment. Hybrid Systems (HS) [10]
are used to create our model, where both discrete (e.g., pres-
ence detection) and continuous (e.g., luminance) dynamics
are represented. In this context, Linear Hybrid Automata
(LHA) are used to describe our HS, where the continuous
dynamics are represented using differential/algebraic equa-
tions.

Fig. 2. Environment/Control Model

The main independent variables considered for single-zone
control are: (a) the packet-loss probability for the wireless
channel; and (b) the sampling period for the sensor (glare an-
gle, light, presence). These variables affect both control and
WSAN performance. The environment and control models
used for co-design are as follows:

1) Environment Models: Seven environment components
have been used; daylight, glare angle, window blind, artificial
luminance, indoor luminance, person movement and wireless
channel model. We define these as follows:
• Daylight Model: The daylight luminance Ld is modelled

as a linear differential equation that has five different
slopes based on the time of day; during the first and
last four hours of the day, the luminance is equal to
zero; the differential equation has positive slope during
the second four hours; in the next eight hours the slope
is equal to zero and then has a negative slope in the
following four hours in order to reach zero luminance
again at the end of the day.

• Glare Angle Model: Our model captures the impact
of shifting cloud cover, which randomly changes the
glare angle. Hence, we model glare angle γ using a



random variable in the range [15◦,65◦], triggered for a
specific daytime period (i.e. 10am-2pm) and sampled
every hour. The variation range of glare angle is based
on a real world data set, as described in [2].

• Window Blind Model: The blinding model is responsible
for identifying the window transmittance τ for the
daylight intensity [2] and the reflected glare angle, as
depicted in Fig. 1. In this context, two modes are used
to calculate the luminance transmittance, where Eq. 1
is used if glare is detected in order to give maximum
transmittance at 80◦, while Eq. 2 is used if no glare is
present, where maximum transmittance τng is given at
90◦. Finally, as in Eq. 3, the external luminance Lout
that comes from daylight is calculated as a proportion
of the daylight luminance Ld based on the window
transmittance τ .

τ(β, γ) = 0.55.e
−(β−80)2

1900 .(−4.917.10−7.γ4

+0.00009.γ3 − 0.00567.γ2

+0.13.γ − 0.00437) (1)

τ(β) =
τng.β

90
(2) Lout = τ.Ld (3)

• Artificial Luminance Model: We compute the artificial
light (e.g. bulb) intensity La in Lux based on the actua-
tion value ua. In our model we consider the actuator as
a luminance dimmer that is linearly proportional to the
product of the actuation value and maximum luminance
Lmaxa (i.e., 700 Lux).

La = Lmaxa .ua (4)
• Indoor Luminance Model: This component provides the

total luminance of the controlled zone, and incorporates
external luminance, artificial luminance and the lumi-
nance interference from the adjacent zones Ladja (in case
of multiple zones), based on the distance r between the
adjacent artificial light source and the light sensor, as
in Eq. 5.

Lin = Lout + La +
Ladja
r2

(5)

• Person Movement Model: A Markov chain has been
used to predict each user’s movement in the controller
zone (assumed that 3 persons occupy each zone). Three
transition matrices P are identified to reflect the user
behaviour during the working hours, as in Eq. 6, Eq. 7
and Eq. 8. For example, P8−12 is the transition matrix
used in the period 8-12 in the morning, where the user
movement is predicted each hour.

P8−12 =
in
out

in out︷ ︸︸ ︷[
0.9 0.1
0.95 0.05

]
(6)

P12−14 =
in
out

in out︷ ︸︸ ︷[
0.5 0.5
0.5 0.5

]
(7)

P14−17 =
in
out

in out︷ ︸︸ ︷[
0.1 0.9
0.05 0.95

]
(8)

• Wireless Channel Model: In this model, we assumed
that the wireless channel has no delay and noise, since
these factors have a minor effect on our QoS metric. The
channel packet-loss is modelled as a random process
whose parameters are related to the behaviour of the
network [21]. The measurement at the controller side is
given by:

v̂(k) =
{
v(k), γ(k) = 1
v(k − 1) γ(k) = 0, (9)

where v(k) is the sample value sent from a sensor, v̂(k)
is the received sample value at the controller, γ(k) is a
Bernoulli random variable with Pr(γ(k) = 1) = 1 −
p, and p is the packet-loss probability in the wireless
channel model.

2) Control Model: A light sensor, glare angle sensor, Ra-
dio Frequency Identification (RFID) detector and controller
models are used to monitor and control the environment
model. The light sensor samples the indoor luminance once
per sample period, and sends the sampled value to the
controller. Similarly, the glare angle sensor and the RFID
detector are used to sample the glare angle and the person
movement, respectively. For the RFID, we use an event-based
process that is activated whenever an occupant is detected in
the controlled zone.

IV. CO-DESIGN PROCESS

In modern buildings, controllers embedded in large wire-
less/wired sensor/actuator networks may have their con-
trol performance compromised by WSAN delays and lost
data. Control theory requires accurate, timely and lossless
feedback data; however, random delays and packet-loss are
generally accepted in communication networks, particularly
in wireless networks. Therefore, the performance of the
control model relies on the network performance, due to
the distribution and communication-based control. From the
control perspective, the more knowledge the controller has
about the system, the better the controller can be designed
to tolerate communications problems. Additional knowledge
about the system can be obtained by increasing the number
of sensors or sending sensor measurements more frequently.
However, this increases the communication burden on the
network, leading to network congestion. The congestion
results in longer delays and more packet-losses, which de-
grade the control performance. The fact that control systems
and communication networks are typically designed using
different platforms and principles means that co-design is
necessary to optimize performance of both systems.

This section defines the overall co-design problem that
we are solving, and then outlines the components of this
problem. We define in Section IV-A the co-design objective
function, and we then define in Section IV-B and Section
IV-C the QoS and QoC evaluation, respectively.

A. Co-Design Objective Function

Our co-design methodology considers the correlated pa-
rameters between the control application and the other
WSAN layers (e.g. MAC, link), which mutually affect both



WSAN QoS and the control performance QoC. In this
context, we have selected three parameters that affect both
control and WSAN performance: the sampling period h
for the light sensor, glare angle sensor and RFID detector
(assuming all the sensors use the same h), channel packet-
loss probability p and the controlled zone status z (single or
multiple).

Our co-design objective function J is decomposed into
two sub-functions J = (JQoS , JQoC), where JQoS optimises
the WSAN performance and JQoC optimises the control
performance, as follows:
J = (JQoS , JQoC)

= min
h

JQoS(h, p, z) s.t. JQoC(h, p, z) ≤ Jreq,
where
• h is the decision variable,
• JQoC is the quality of control objective function, given

by JQoC = DI + E, where DI is the discomfort
indicator and E is the energy consumption, Jreq is the
upper bound on control quality. In order to avoid having
an infeasible solution, Jreq should be greater or equal
than the minimum of the empirical result for JQoC , i.e.,
Jreq ≥ min(JQoC); and

• JQoS is the quality of service objective function, given
by JQoS = d+ ebattery, where d is the network delay,
i.e., the average time between sending a sample and
receiving an actuation, ebattery is the energy use for
the sensor battery.

In the context of controlling the blind and the indoor
luminance, the control objective function is decomposed such
that JQoC = (Jb, Jl), where Jb optimizes the blind setting
and Jl optimizes the indoor luminance, as will be explained
later.

Our co-design methodology considers two optimization
stages: (a) the first stage empirically evaluates JQoC over the
search space of the decision variables h in order to identify
the acceptable range of h that gives JQoC ≤ Jreq; (b) the
second stage optimizes JQoS conditionally on JQoC in order
to empirically evaluate the values of h (among the identified
range from the first stage) that minimizes JQoS .

B. WSAN and QoS Evaluation

We assume that we have a WSAN consisting of a set of
n wireless nodes, all of which send data to and receive data
from a single base station node. Therefore, the average delay
over the WSAN is calculated as:

d =
N∑
k=1

tr(k)− ts(k)
N

,

where ts(k) is the time of sending a sample, tr(k) is the
time for receiving the response at the actuator, and N is
the total number of samples. In case of missing a sample,
the delay time for this sample is calculated as the sampling
period for the corresponding wireless node. The battery
energy use ebattery is evaluated as a linear proportion of
the sampling frequency (1/h), where more samples lead to
more battery energy use ebattery.

In order to evaluate each term of JQoS in an equivalent
manner (avoiding the dominance from any of the terms),
each of ebattery and d have been normalized.

1) Network Structure: Fig. 3 presents the wireless net-
work topology, where the actuators are hooked up to the
wired network. Each controlled zone contains one light
sensor “S”, one glare angle sensor “G” (in case the zone
includes a window), one actuator “A”, three RFIDs “R” and
one local controller “C”.

Fig. 3. Network Topology, where C is local controller, G is glare angle
sensor, S is light sensor and R is RFID detector.

2) WSN Layered Structure: In our model, we considered
three layers of the international standard of an Open System
Interconnection (OSI): application, Medium Access Control
(MAC), and network layer. The application layer handles
the control algorithm, while the MAC layer provides the ad-
dressing and channel access control mechanism that enables
several network nodes to communicate. Through studying
our network structure, we can conclude that the network
layer does not have a significant role, given that point-to-
point (single-hop) routing is used, i.e., either S/G/R-to-C or
C-to-C.

3) MAC Protocol: In our model, a Time Division Mul-
tiple Access (TDMA-base) MAC protocol [15] is used in
the contention-free period, which leads to a free collision
probability. In this protocol, new sensor measurements are
generated at the beginning of each sample period, and old
packets are dropped when new packets are generated. A
packet is declared lost if it has not been received by the end
of the sample period. TDMA is a collision-free protocol in
which time slots are assigned in advance and never changed.
We consider fixed TDMA, and assume that time slots are
divided evenly among all the transmitter/receiver pairs. Since
the time slots are pre-assigned, a time slot can be wasted if
the pre-assigned transmitter no longer has a packet to send.

4) Modelling Aspects: In order to model the MAC pro-
tocol, two issues have to be considered:
• For modelling the TDMA protocol, we implement a

timer for each network node (controller, sensor, RFID)
and assign the transmitting time to it. We assume that
the node is ideal (no process) until the transmission time
is reached.

• We have identified the time slot (the transmission period
for the data packet) based on the IEEE 802.15.4 physical
layer [23]. In this case, the transmitting data rate is 20
Kbps and the packet length is almost 25 bytes. There-
fore, the time slot is equal to ∼15ms. For modelling the
time slot, we have added the transmission period to the
TDMA timer (mentioned in the previous point).

5) Network Assumptions: Our assumptions about network
transmission are as follows:



1) Wireless channel delay and transmitting/receiving time
are negligible.

2) A packet is declared lost if it has not been received by
the end of the sample period.

3) The controller commands are always successfully re-
ceived by the actuator.

4) The sensing and actuation execution time is negligible.

C. Lighting Application Domain and QoC Evaluation

JQoC = DI + E, where DI is the discomfort indicator
and E is the energy consumption.

• DI =
kf∑
k=ks

(y(k)− r(k))2

Npz
pz(k) +

kf∑
k=ks

(α(k)− αo)2

Npz
pz(k), where the first term considers

luminance discomfort measured using the Mean Square
Error (MSE) between the indoor luminance y(k) (k
varies from ks to kf ) and the luminance set-point r(k),
but only during the occupation periods identified by
presence detection variable pz(k) (equals to 1 in case
of presence detection, 0 otherwise) and Npz is the
number of samples for pz(k) = 1. The second term
calculates the glare discomfort using MSE between
the reflected glare angle α(k) and the farthest glare
angle, αo, from the occupant’s vision (which provides
the maximum glare visual comfort). In our model, we
have selected αo = 0o, in which case we can guarantee
an acceptable level of visual privacy as well.

• E =
kf∑
k=ks

ua(k)hP , where ua(k) is the actuation value

(the dimming percentage) at the kth sample, h is the
sampling period and P is the maximum power.

Similar to JQoS evaluation, the JQoC terms are normal-
ized.

V. CONTROL ALGORITHM

As explained earlier, our co-design methodology aims
to evaluate the decision variable (i.e., the sensor sampling
period h) that optimizes both JQoS and JQoC . We will show
that DI and d are monotonic functions of h, but E and
ebattery are inverse monotonic functions of h. Therefore, the
control objective function JQoC is identified to minimize DI
and E at each sampling time k.

In this section we formulate an Integrated Model Pre-
dictive Controller (IMPC) that decomposes the objective
function JQoC into (Jb, Jl), where Jb and Jl are used to
optimize the blinding actuation and the artificial luminance,
respectively. Since controlling the blind can provide a lu-
minance source with no energy cost, we execute Jb with a
high priority. IMPC is considered as a case-study for our
co-design methodology, in order to show its QoC and QoS
efficiency, as will be explained later.

A. Window Blind Control

The Jb aims to get the maximum luminance from the
daylight while reducing the discomfort caused by glare, as in

Eq. 10. The first term of Jb improves DI as it minimizes the
glare discomfort, and the second term improves E as it leads
to less artificial luminance needed to reach the set point:

Jb = (α(k)− αo)2 + (β(k)− βo)2, (10)
where αo is the user preference for reflected glare angle

(αo = 0o) and βo is the blind actuation angle that provides
the maximum external luminance (the luminance influenced
from the daylight). In case of glare detection, the maximum
blind transmittance in our model (as described in [2]) is
detected at βo = 80o. However in case of no glare, it is
detected at βo = 90o, where there is no reflected glare.

The glare plant equation is thus given by:
α(k) = γ(k) + 2β(k)− 90.

We minimize Jb by setting the first derivative δJb
δβ to 0, to

produce Eq. 11, from which we can calculate β based on γ.
In this context, the glare angle variation γ ∈ [15o, 65o] leads
to variation of β ∈ [0o, 180o].

β(k) = 0.2βo − 0.4(γ(k)− αo − 90). (11)

B. Artificial Light Control

The Jl objective function considers DI by minimizing
the difference between the indoor luminance y(k) and the
reference signal r(k), while minimizing E, using the power
consumed by the artificial light. r(k) is calculated as the
average of the preferences for the detected persons (using
RFID detectors).

MPC is used in this control stage, in order to predict
Y = [y(k+1|k) . . . y(k+Np|k)]T within a prediction horizon
Np, where y(k + 1|k) is the indoor sensed luminance at
(k+ 1)st sample given the kth sample. Then, the predictive
control system Jl minimizes the energy consumption and
tries to reach the reference signal Rs, where we assume
that the reference signal remains constant in the optimization
window, as in Eq 12. Thus, the objective is to find the “best”
actuation vector (in Lux) ∆U = [∆u(k) . . .∆u(k+Nc−1)]T

such that we minimize Jl.

RTs =

Np︷ ︸︸ ︷
[11 . . . 1] r(k) (12)

The cost function Jl (solved only when pz(k) = 1) reflects
the control objective described in Eq. 13, where the first
term is linked to the objective of minimizing the errors
between the predicted output and the reference signal. The
second term reflects the power used at each sample time
starting from (k + 1) to (k + Nc), where Nc is the control
horizon. Finally, the last term considers the size of ∆U .
R is a diagonal matrix with the form R = rwI , wehre I
is a Nc ×Nc identity matrix, and rw is used as a tuning
parameter for the desired closed-loop performance.

Jl = (Rs − Y )T (Rs − Y )
+(u(k) + ∆U)T (u(k) + ∆U)
+R∆UT∆U (13)

Varying Np identifies the system sensitivity: ∆U is rela-
tively insensitive to long Np, but more sensitive (i.e., changes
faster to reach the set-point) for short Np. Since the light
system requires fast control, we have selected Np = 2 to
enable sufficiently fast lighting-system reactions.



The system model for the lighting process can be described
by a linear model, represented in a discrete state space as in
Eq. 14 and Eq. 15:
xm(k + 1) = Amxm(k) +Bmu(k) + Cmw(k) (14)

y(k) = Dmxm(k), (15)
where u ∈ R is the actuation variable (artificial light

luminance); w ∈ R is the adjacent actuation value (neighbour
artificial light luminance); y ∈ R is the process output
(sampled indoor luminance); and xm ∈ Rn×1 is the state
variable.

In order to have a scalable solution for multiple-zone
control, we have introduced w in order to capture the
adjacent zone actuation. Therefore, our algorithm can predict
the interference luminance coming from the adjacent zones
using Eq. 5.

Due to the principle of receding-horizon control, where
current information of the plant is required for prediction
and control, we have assumed that the input u(k) cannot
affect the output y(k) at the same time.

We denote the difference of the state variable by ∆xm(k+
1) = xm(k + 1) − xm(k), the difference of the actuation
variable by ∆u(k) = u(k)− u(k − 1) and the difference of
the adjacent actuation value by ∆w(k) = w(k)−w(k − 1).
Based on this notation, we see that:

x(k+1)︷ ︸︸ ︷[
∆xm(k + 1)
y(k + 1)

]
=

A︷ ︸︸ ︷[
Am oTm

DmAm 1

] x(k)︷ ︸︸ ︷[
∆xm(k)
y(k)

]

+

B︷ ︸︸ ︷[
Bm

DmBm

]
∆u(k) +

C︷ ︸︸ ︷[
Cm

DmCm

]
∆w(k)

y(k) =

D︷ ︸︸ ︷[
om 1

] [∆xm(k)
y(k)

]
(16)

where om =

n︷ ︸︸ ︷
[00 . . . 0] and (A,B,C,D) is called the

augmented model.
Therefore, a compact matrix form can be concluded from

Eq. 16 as:

Y = Fx(k) + Φ∆U + Ψ∆W ; F =


DA
DA2

...
DANp

 ,

Φ =


DB 0 0 · · · 0
DAB DB 0 · · · 0

...
...

...
. . .

...
DANp−1B DANp−2B DANp−3B · · · DANp−NcB

 ,

Ψ =


DC 0 0 · · · 0
DAC DC 0 · · · 0

...
...

...
. . .

...
DANp−1C DANp−2C DANp−3C · · · DANp−NcC

 .
In order to evaluate the optimal ∆U that minimizes Jl,

we express Jl as in Eq. 17:
Jl = (Rs − Fx(k) + Ψ∆W )T (Rs − Fx(k) + Ψ∆W )

+u2(k)− 2∆UT (ΦT (Rs − Fx(k) + Ψ∆W )
−u(k)) + ∆UT∆U(ΦTΦ +R+ 1) (17)

We have used quadratic programming to optimize the
objective function Jl, constraining ∆U to the interval ∆U ∈
[∆Umax,∆Umin], where ∆Umax and ∆Umin are the max-
imum and minimum ∆U variation, respectively.

In order to evaluate the computational complexity of
our developed distributed control versus centralized, [7] has
studied a similar control algorithm and showed that: the
computational complexity is O(n3) for the centralized con-
troller, whereas our algorithm is O(n). Moreover, the sensor
cost for the centralized network is significantly higher than
the distributed algorithm, as the receiver sensor node needs
high computational/memory resources in order to support the
centralized computational complexity.

VI. EXPERIMENTAL DESIGN

In our experiments, we vary the correlated parameters
between the control application and the other WSAN layers
(e.g. MAC, link) such as sensor sampling period and channel
packet-loss (h, p), which mutually affect both JQoS and
JQoC . For example, if we have an input 2-tuple (5min, 3%),
we will measure outputs JQoC = 0.97 and JQoS = 0.39.

This section describes the experimental design used to
study (done through simulation) the relevant parameters in
our co-design process.

A. Baseline Specification

In order to evaluate the efficiency of our developed control
algorithm (IMPC), we have used standard PI and MPC
control algorithms as a baseline control model. In this model,
one light sensor is used to detect the indoor luminance
and one Passive InfraRed (PIR) sensor detects the user
motion. The controller set point is fixed to 500 Lux (optimal
luminance at European law UNI EN 12464) whenever a
person is detected in the controlled zone. In this case, the
blind is controlled manually, where the user avoids glare by
shutting the blind whenever glare is detected.

B. Dependent/Independent Variable

In our experimental design, we consider three independent
variables as follows:

• Sensor sampling period h: considers the sam-
pling period for light sensor, glare angle sensor
and RFID detector. The search space is h ∈
{1, 5, 10, . . . , 30}[minutes].

• Channel packet-loss probability p: has search space p ∈
{1, 2, . . . , 5}[%].

• Controlled zone status (i.e. single (S) or multiple (M)):
z ∈ {S,M}.1

The dependent variables JQoC , JQoS are evaluated for
each experiment in the search space of the independent-
variable cross product h×p×z. Considering the probabilistic
components in our model, we run each experiment several
times and then average the resulting outputs over p.

1In this article, we consider only a single controlled zone, i.e. z = S.



C. Empirical Results

As explained in Section IV-A, firstly we consider the
control performance JQoC in order to identify the values of
the decision variable h that give acceptable performance. The
control performance JQoC evaluates two matrices: (a) energy
consumption E as shown in Fig. 4; and (b) user discomfort
indicator DI , which considers luminance discomfort as in
Fig. 5 and glare discomfort as in Fig. 6.

Fig. 5 and Fig. 6 show that DI increases when h increases,
because the controller needs time proportional to h to tune
its decision, which leads to hampering the user. Fig. 5 shows
improvement in the visual luminance comfort for IMPC com-
pared to the PI baseline. However, the MPC baseline shows
better visual luminance comfort than IMPC, as controlling
the daylight luminance in IMPC slightly hampers the user.

Fig. 4 and Fig. 5 show the trade-off between the energy
consumption and luminance discomfort. The energy con-
sumption for the PI baseline decreases when h increases;
in contrast, for the MPC and IMPC algorithms energy use
is “almost” constant. Furthermore, IMPC shows the most
efficient energy use in comparison to the MPC and PI
baselines.

Fig. 7 summarizes our JQoC results. In our analysis, we
have normalized each term of JQoC , given a maximum value
of JQoC of 3. Assuming Jreq = 1.5, the decision-variable
values that satisfy JQoC ≤ Jreq, in case of our developed
controller, are h ∈ {1, 5, 10}. However, in case of a PI
controller h = 1 and for MPC h ∈ {1, 5, 10, ..., 30}.

The WSAN performance, denoted by JQoS , is governed
by the network delay d and battery energy ebattery terms.
d increases when h increases, as in Fig. 8, and ebattery
increases when 1/h increases (sensor sampling rate). Fig.
8 shows “almost” the same d for the baseline and the
IMPC network topology, as d evaluates the average delay
value. However the developed topology has a higher absolute
network delay, because it contains more sensors than the
baseline topology.
JQoS is calculated as the sum of normalized d and ebattery

terms, as shown in Fig. 9. At this stage, we can identify the
value of h that satisfies the JQoC limit and minimizes JQoS .
h = 5 is the optimal value in our developed algorithm and in
the MPC baseline. The PI baseline controller has only one
choice (from the control performance evaluation stage), i.e.,
h = 1.

Our developed controller shows 19% and 25% aver-
age energy consumption saving (over all the experiments)
compared to the PI and MPC baselines, respectively, and
63% average improvement in the user comfort over the PI
baseline. Moreover, it shows 68% QoS improvement over the
PI baseline. The use of a higher value of h is the main source
of the QoS improvement for IMPC over the PI baseline.

On the other hand, a TDMA-based MAC protocol shows
a drawback in glare detection (Fig. 6) at h = 25, where the
glare angle change (occurring each hour) is missed at the
beginning of the sampling period, and hence it is detected
in the next sample (which introduces user dissatisfaction).

Therefore, we will consider in future work a dynamic sam-
pling period technique at the MAC protocol.
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VII. CONCLUSIONS AND FUTURE WORK
This article introduces a co-design methodology that opti-

mizes the WSAN performance while maintaining the control
performance within an acceptable range. We have applied
the developed co-design methodology on a novel lighting
controller. We compared our proposed algorithm with two
state-of-the-art controllers (PI and MPC) that use a presence-
based strategy, showing that it improves user comfort by
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an average of 65% over the PI baseline, while decreasing
energy usage by 19% and 25% over the PI and MPC
baselines, respectively. Furthermore, our algorithm shows
a 68% improvement for the QoS in comparison to the PI
baseline networks.

In future work, we plan to extend this co-design method-
ology to consider a distributed control system as well as
multi-zone building applications, and to extend our co-design
objective function to consider different MAC protocols.
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