
Temporal Model-Based Diagnostics Generation

for HVAC Control Systems

Marion Behrens and Gregory Provan

Complex Systems Lab, University College Cork, Ireland

Abstract. Optimizing energy usage in buildings requires global mod-
els that integrate multiple factors contributing to energy, such as light-
ing, “Heating, Ventilating, and Air Conditioning” (HVAC), security, etc.
Model transformation methods can then use these global models to gen-
erate application-focused code, such as diagnostics or control code. In
this paper we focus on using model transformation techniques to gener-
ate model-based diagnostics (MBD) models from “global” building sys-
tems models. This work describes the automated generation of models
for MBD by considering control systems which are described through
behavior that also relies on the state of the system.
Our approach contributes to model-driven development of complex sys-
tems by extending model consistency up to models for diagnostics. We
transform hybrid-systems (HS) models into models based on proposi-
tional temporal logic with timing abstracted through sequentiality, and
illustrate the transformation process through a simple example.

1 Introduction

One emerging area of research is developing software to improve the energy ef-
ficiency of buildings. To fully realize this goal, it is necessary to integrate the
operation of all building systems, so that we can optimize the building’s opera-
tion on a global setting. In this case, a global building model is necessary. We can
then use such a global model to generate application-specific code, e.g., lighting
controls, diagnostics, etc. This use of a global model to drive code generation for
multiple applications will significantly reduce the cost of software development,
as opposed to generating code for each application from scratch.

In this article we focus on using model transformation techniques to gener-
ate MBD models from “global” building systems models. This transformation
process is a very challenging task, given the significant differences between the
global and MBD models. The global (or source) model is defined using a hybrid-
systems (HS) [1] language, which describes the continuous-valued dynamics of a
range of building parameters, such as temperature and light levels, movement of
people throughout the zones of the building, control of HVAC, lighting, etc. The
MBD (target) model focuses on discrete system parameters governing abnormal

operation of building components, such as the HVAC/lighting controllers and the
associated equipment, e.g., chillers, pumps, fans, etc. Consequently, the model
transformation process must extract just the diagnostic-related information from

2

the source model and further inject diagnostic-related information that is not
contained in the source model, e.g. failure probabilities, from other sources.

 B I M

D i a g n o s i s
M o d e l

M o d e l
T r a n s f o r m a t i o n

M o d e l
T r a n s f o r m a t i o n

H y b r i d
S y s t e m s

M o d e l

M e t a - M o d e l
R e p o s i t o r y

F a u l t
D e t e c t i o n

R u l e sP a r a m e t e r
E s t i m a t i o n

S i m u l a t i o n

S o u r c e - /
T a r g e t - M M

S o u r c e - /
T a r g e t - M M

Fig. 1. Model-Transformation Context

Fig. 1 shows the global context of a framework for fault detection and diag-
nosis of building automation in which the transformation from HS models into
models for diagnosis plays a key role. This framework has been roughly outlined
in [2]. The figure shows how the source global model, which is provided by a
building information modeling (BIM) tool, can be transformed. The BIM con-
tains information about 3D objects, i.e. the building’s geometry and quantities,
properties and interconnection of building components, as well as information
about the building control and a collection of data produced by components,
e.g. sensors and actuators, during its life cycle. From the BIM we can extract
an operational building model, represented as HS model. After simulating the
system in order to assign parameters with estimated values, an MBD model can
be generated from the refined HS model.

Our contributions are as follows:

1. We present a modeling methodology for HS models that extends existing
approaches and enables the generation of MBD models.

2. We show how we can abstract the continuous-time dynamics of an HS model
to create a discrete-event temporal model which can enable temporal diag-
nosis.

3. We illustrate our model-transformation approach through a detailed example
of an on/off control system of a thermostat.

The article is organized as follows: In section 2 we describe the architecture of
the model-transformation framework which we adopted. Section 3 describes the
source models of the transformation (hybrid systems), and the target models of
the transformation, temporal MBD models. Section 4 outlines the step-by-step
transformation process from a HS model towards a model for temporal MBD.

3

Fig. 2. Architecture of the Model Transformation

2 System Architecture

Fig. 2 depicts the main features of the system architecture for our model trans-
formation. This figure shows that we have two applications, a source and a target
application, with a corresponding meta-model for each application.

To generate a target model from a source model, two intermediate forms
are taken. Enrichment of the models is essential to inject information that is
specific to the target application. We inject these information through additional
models that contain general parameters as well as parameters referring to specific
elements of the model at each transformation step.

We use the theory of model transformation [3] to formalize our transformation
process in terms of a rewrite procedure. Model transformations that translate
a source model into an output model can be expressed in the form of rewriting
rules. According to Mens et al. [3], the transformation we adopt is an exogenous
transformation, in that the source and target model are expressed in different
languages, i.e., hybrid-systems and propositional logic languages. The exogenous
transformation step is encompassed by two endogenous transformation steps, in
which the source and target model are expressed in the same language.

We adopt the definitions of [4] for meta-model mapping and instance.

Definition 1. A meta-model mapping is a triple Ω = (S1, S2, Σ) where S1 is the

source meta-model, S2 is the target meta-model and Σ, the mapping expression,

is a set of constraints over S1 and S2 that define how to map from S1 to S2.

Definition 2. An instance of mapping ⊗ is a pair
〈

Š1, Š2

〉

such that Š1 is a

model that is an instance of S1, Š2 is a model that is an instance of S2 and the

pair
〈

Š1, Š2

〉

satisfies all the constraints Σ. S2 is a translation of S1 if the pair

〈S1, S2〉 satisfies definition 1. Hence, we must specify an appropriate mapping,

or set of rules Σ, to ensure that this holds.

4

We assume a component-based framework for meta-model mapping, in which
we map component by component. In other words, we assume that we can rep-
resent a model in terms of a connected set of components, where we call our set
of components a component library C. Further, we assume that for each com-
ponent Ci ∈ C, we have an associated meta-model. Given that we are mapping
from component library C1 to C2, we have two component libraries, with corre-
sponding meta-model libraries, S1 = {s1,1, . . . , s1,n} and S2 = {s2,1, . . . , s2,m}.

Given a component-wise transformation, we must then assemble the resulting
transformed model ΦT from the transformed components. In other words, given
input components Ci and Cj , we can create the original model as Φ = Ci⊗Cj . We
can then compose the transformed components, γ(Ci) and γ(Cj), to create the
transformed model, using the model composition operator ⊕ for the transformed
system. In this case, we have ΦT = γ(Φ) = γ(Ci) ⊕ (Cj).

In order to apply this approach to model transformation, we need to represent
our models in terms of their corresponding meta-models. The Eclipse Modeling
Framework Project (EMF)1 provides a generic meta-model called “Ecore” for
describing meta-models. To implement our model transformation process, we use
a suite of tools based on the Ecore model, i.e., Xtend for Model Transformation,
Xpand for Code Generation and a workflow language, which were formerly de-
veloped under the openArchitectureWare (oAW)2 platform and have now been
integrated into the EMF. Mapping rules are expressed in Xtend, which is a gen-
eral purpose transformation language that enables to build transformation rules
over meta-model elements.

3 Source and Target Model Formalisms

3.1 Hybrid-systems Model

A HS model can describe how a discrete controller can drive a system (plant)
whose state evolves continuously. A HS describes the evolution of its state space
over time. Each state can be either continuous, if it takes values in Euclidean
space R

n for some n ≥ 1, or discrete, if it takes values in a finite set {q1, q2, . . .}.

Hybrid Systems Language A hybrid automaton H is a mathematical model
for describing an HS. It is a finite state machine (FSM) augmented with dif-
ferential equations for continuous updates. The state of the system is a pair
S ≡ (x, q) in which x = (x1, . . . , xn) with xi ∈ R is the set of n continuous
state variables, and q ∈ Q with Q = {q1, q2 . . .} is the discrete state. The dis-
crete state might have multiple dimensions q ∈ Q1 × . . . × Qm when automata
are extended to enable modeling of hierarchical behavior, but through indices
over the Cartesian product of the finite sets Qi, the discrete state can always be
reduced to a single dimension. In the hybrid automaton, the discrete state can

1 http://www.eclipse.org/modeling/
2 http://www.openarchitectureware.org/

5

change only during a transition into another mode q → q′ while the continuous
state can also be updated through differential equations within a mode q. Dis-
crete changes E = {St+1 = gq→q′(St)} are called jumps and continuous updates

F = {Ṡ = fq(S)} are refered to as flows [1].

Composition of Hybrid automata When developing large scale systems,
the complexity of the system can be mastered by composing models of simple
components, each described through a hybrid automaton. In such composition,
hybrid automata H1,H2, . . . generally require an input V = VC ∪ VD and might
provide an output Y = YC ∪ YD where C refers to continuous and D to discrete
variables. Two components Hi and Hj can communicate through these inter-
faces. If an input variable v of Hj is renamed as an output variable y of Hi, that
dimension of the state of Hi which is represented by y becomes visible to Hj .

Example: Thermostat Our running example is a thermostat which controls
the temperature of a room as in fig. 3 by turning a radiator on and off. On this
activation the radiator increases its temperature towards a maximum heat and
decreases its temperature respectively. This control pattern causes the air tem-
perature to bounce between the minimum and maximum border of the defined
range, and even beyond these borders (fig. 4), depending on the response time
and thermal inertia.

Fig. 3. Room with temperature sensor,
thermostat and radiator

Fig. 4. Continuous flow of the air temper-
ature in a range of 20.0 ± 0.5◦

C

A model for the thermostat is represented as a simple discrete automaton
with a state q ∈ {ON,OFF}. The air temperature is defined to be optimal in
a range of ϑopt ± θ. Therefore the jump conditions between the modes ON and
OFF are defined as

σON→OFF ⇔ x1 ≥ ϑopt + θ

and σOFF→ON ⇔ x1 ≤ ϑopt − θ .

The radiator has been modeled as a hybrid automaton as illustrated in fig.
5 with a discrete state q ∈ {IncrTemp,HighTemp,DecrTemp,LowTemp} and

6

a continuous state of dimension two: x = (x1, x2), where x1 denotes the air
temperature in the room and x2 refers to a local timer. When the radiator is
in the state of HighTemp, the air temperature x1 ∈ R in the room increases
exponentially towards the hottest possible temperature TH according to the dif-
ferential equation ẋ1 = rateH(TH − x1) for some rateH > 0. When the radiator
is in the state of LowTemp, the temperature of the room decreases exponen-
tially towards the coldest possible temperature TC according to the differential
equation ẋ1 = rateC(TC −x1) for some rateC > 0. Between these steady modes,
transitional modes DecrTemp and IncrTemp implement the switchover points
by updating x1 through some unspecified functions ϕ and ψ. The local timer
x2 ∈ R is reset to 0 when entering one of the transitional modes and updated
through the differential equation ẋ2 = 1. The jump conditions from the steady
to the transitional modes refer to the state of the thermostat v ∈ {ON,OFF},
whereas the jump conditions from the transitional to the steady modes

σIncrTemp→HighTemp ⇔ x2 ≥ kincr

and σDecrTemp→LowTemp ⇔ x2 ≥ kdecr

ensure that the transient modes are activated for just the appropriate time
interval.

HighTemp

ẋ1 = rateH

(TH − x1)

DecrTemp

ẋ1 = ϕ
ẋ2 = 1

LowTemp

ẋ1 = rateC

(TC − x1)

IncrTemp

ẋ1 = ψ
ẋ2 = 1

v = OFF
/ x2 := 0

x2 ≥ kdecrv = ON
/ x2 := 0

x2 ≥ kincr

Fig. 5. Hybrid Automaton of the Radiator Component

THERMOSTAT

S = (q)

RADIATOR

S = ((x1, x2), q)y = q v y = x1v

Fig. 6. Composition of two Components: Thermostat and Radiator

7

3.2 Model-Based Diagnosis

Model-Based Diagnosis Language. Fault diagnosis is the process of analyz-
ing non-nominal system behavior in order to identify and localize the components
that are the root cause of a failure. Diagnosis is generally involved with fault
detection, known as FDD (Fault Detection and Diagnosis). Fault detection is
the indication of anomalies through verifying observed values of a real system
on the basis of rules. Diagnosis then isolates the underlying faults.

D i a g n o s i s
M o d e l

R e a s o n i n g E n g i n e D i a g n o s i s

M a i n t e n a n c e
M o d u l e

d a t a
s t r e a m

R e a l S y s t e m
i n O p e r a t i o n

B A S

T r a c e o f
O b s e r v a t i o n s

Fig. 7. Diagnosis Architecture

Fig. 7 illustrates how diagnosis is embedded in our framework for fault de-
tection and diagnosis of building automation systems (BAS). Once a fault has
been detected, the observed values are compared with the predicted state of the
system using the diagnosis model. Through reasoning strategies implemented in
MBD engines the malfunctioning components of the system can be located. De-
pending on the type of the diagnosis model the reasoning engine can even identify
which type of failure occurred in each malfunctioning component. However, the
generation of strong diagnosis models which describe not only the nominal but
also the faulty behavior, and therefore allow the distinction between different
failure types, is still work in progress. Weak models describe only the nominal
behavior in relation to a boolean health variable, e.g. h⇒ (o⇔ (i1 ∧ i2)) for an
and-gate with inputs i1 and i2, output o and the health variable h.

Most diagnoses in the intelligent building domain have a state- and time-
dependent behavior. Taking a temporal dimension into account makes diagnosis
significantly more complex than atemporal MBD with static models. Approaches
for temporal MBD are distinguished between different temporal phenomena, cat-
egorized in [5]. We pursue an approach which abstracts timing by sequentializa-
tion. The diagnosis model describes the behavior of a system as a sequence of

8

states. A diagnosis is no longer computed based on a single observation αt over
OBS made at a time t, but based on a sequence of observations.

We define a temporal diagnosis model using a standard temporal proposi-
tional logic [6]. A model for a diagnostic system, DS, consists of propositions
P over a set of temporal variables V, a set of assumables (health variables) AS
⊆ V and a set of observable variables OBS ⊆ V. For modularity reasons we
favor a modeling technique where each health variable h is encapsulated in a
component c ∈ COMPS with input and output parameters and instantiated by
a superordinate component.

4 Transformation

Structured System
Description (SSD)

dynamic ?

static ?

Dynamic,
Structured System
Description (DSSD)

cyclic ?

non-cyclic ? Structured System
Description (SSD)

Structured System
Description (SSD)

Diagnosis
Application

Hybrid
Systems

Model

Discrete
Systems

Model

HS Models

Diagnosis Models

Fig. 8. Transformation Process

This section describes each step of the transformation from an HS model to a
model for temporal MBD. Fig. 8 illustrates the steps of the model-transformation
process. In this work we present the transformation into a model for MBD for
the case of dynamic systems with feedback control through the following trans-
formation steps:

1. Discrete Abstraction of a HS model into a discrete-systems model.
2. Generation of Propositions from automata contained in the components

of the discrete-systems model results in a dynamic, structured system de-
scription (DSSD).

3. Temporal Unfolding creates a structured system description (SSD) from
a DSSD for a finite sequence of time slices.

4. Code Generation to receive a model executable with an MBD tool.

The intermediate models are (1) a discrete-systems model that is a discrete
abstraction of a HS model and therefore conforms to the HS meta-model, (2)
a dynamic, structured system description (DSSD) [7] is a system model that

9

describes component behavior through temporal propositional logic, permits di-
rected cycles of component interconnectivity and which conforms to the diagnosis
meta-model, (3) a structured system description (SSD) [7] that is a special form
of a DSSD with only acyclic component interconnectivity and therefore conforms
to the same diagnosis meta-model. The meta-models and transformation rules
are also documented in a technical report [8].

4.1 Summary of Transformation Approach

Our model transformation converts a model described in a HS language into a
model described in a diagnosis language, using meta-modeling as the method-
ology. We first outline the entities that are transformed, and then describe the
transformations in detail.

As described earlier, we can summarize a HS model using the tuple 〈SH ,∆H〉,
where SH = {Q,X} is the set of state-variables, where each state is represented
by its discrete and continuous parts, {q, x} respectively, for x ∈ X, q ∈ Q.
∆H = {E,F} is the set of flow equations, with E being the discrete and F

the continuous equations. Analogously, we can summarize a temporal diagnosis
model using the tuple 〈SD,∆D〉, where SD = {QD} is the set of discrete state-
variables. ∆D is the set of discrete-valued temporal propositional equations.

To generate a diagnosis model, we transform SH to SD, and ∆H to ∆D. We
must handle the continuous-discrete transformation differently than the discrete-
discrete transformation as presented in [9], and we outline some details below.

4.2 Discrete Abstraction

The initial system models are HS models which consist of components containing
hybrid automata. With reasoning engines however, only a finite number of sys-
tem states can be diagnosed. Therefore it is necessary to transform continuous
behavior with an infinite number of system states into discrete behavior.

Discrete abstractions involves in the first step the replacement of numeric
variables by finite sets of intervals. Second, we can substitute differential equa-
tions through additional modes and components. Finally we must evaluate the
model and eventually add primitive components that have not yet been consid-
ered.

Discrete Abstraction of Domains. We follow the approach of Sokolsky and
Hong [10] who define finite sets of landmarks to replace numeric variables with
enumerative variables. After screening the HS for all occurrences of numeric
variables, a finite set L = {l1, . . . , ln} is proposed as landmarks for each variable.
The condition that landmarks for a variable v are completely ordered as claimed
in [10], is fulfilled by the majority of control systems in intelligent buildings, and
taken for granted throughout this paper. 3 Therefore we can define a finite set of

3 If this condition is not fulfilled, e.g. if for a numeric variable two landmarks were
found, one is an expression and the other is a constant value in the range of that

10

disjoint intervals {(−∞, l1), [l1, l2), . . . , [ln,∞)} where −∞ and ∞ represent the
lower and upper bound of the domain. 4 After appropriate intervals have been
specified for each numeric variable, all occurrences must be rewritten following
the rules of interval arithmetics as described by Lunde [11].

Discrete Abstraction of Equations. For variables xk that represent a di-
mension of the continuous state of the superordinate component of a HS archi-
tecture, discrete behavior needs to be added in order to represent xk as part of
the discrete state of the overall system. That means that for each interval of the
discrete domain of xk, as defined in the first step of the discrete abstraction,
modes qk1 , . . . , q

k
n must be added. For xk that is updated in a hybrid automaton

H through a set of equations ẋk = Fq(xk) an additional automaton H ′ is created
to represent xk as its discrete state. In the new automaton H ′ the discrete state
of H is queried by the jump conditions and therefore required as input to H ′.

Local variables xl that represent a dimension of the continuous state of a
hybrid automaton without being connected to other components are substituted
by splitting modes q of the hybrid automaton H into modes ql1, . . . , q

l
n only if

xl is observable in the real system. Other local variables and equations for their
continuous updating are removed from the hybrid automata. The HS model,
after completing the discrete abstraction, has at this point been transformed
into a model of a purely discrete system with a finite number of possible states.
The automata that model the behavior of each component are now plain FSM
without the extension of differential equations.

Completion of Components. System models that are created for different
purposes may be decomposed differently. For example, a model that has been cre-
ated to simulate the behavior of a system is unlikely to contain components that
“do nothing” from the simulation point of view. But especially fault-prone sub-
systems must be detached from others and partitioned as a separate component
in order to generate a reliable diagnostics model. This might seem redundant
in many cases, but necessary in order to separate, for example, a broken sensor
from other malfunctioning components.

Example: Thermostat (cont.) In the following we illustrate the discrete
abstraction through the example of a thermostat described as a HS model in
3.1.

In the source model for the single-zone heating system we identify the land-
marks l1 = ϑopt − θ and l2 = ϑopt + θ for the variable x1 which represents
the air temperature. We define the discrete domain for x1 through the intervals

expression, total order is not assured. In such case, a structure type can be created
to represent the discrete domain of the variable.

4 The usage of inclusion or exclusion at the interval endpoints depends on the com-
parisons (>, ≥, <, ≤, =, 6=) used with the landmarks.

11

THERMOSTAT

{ON, OFF}

RADIATOR

{HIGHTEMP, DECRTEMP,

LOWTEMP, INCRTEMP}

AIRTEMP

{LOW, OPT, HIGH}

SENSOR

{LOW, OPT, HIGH}

Fig. 9. Composition after Discrete Abstraction

I1 = (− inf, ϑopt−θ], I2 = (ϑopt−θ, ϑopt +θ) and I3 = [ϑopt +θ, inf). Represent-
ing the intervals {I1, I2, I3} with an enumeration {LOW,OPT,HIGH}, we must
rewrite the occurrences of the variable in the model. For example, x1 ≥ ϑopt + θ

becomes x1 = HIGH.
The composition of components in fig. 9 shows that we substitute x1 glob-

ally through a new component AIRTEMP. Continuous updates of the numeric
variable x1 are substituted with an additional automaton in which each mode
refers to an interval of the discrete domain of x1. Transitions to activate these
modes are controlled through a variable representing the discrete state of the
RADIATOR component.

In our example the sensor that measures the air temperature that must be
included additionally. Its behavior is modeled with the same modes LOW, OPT
and HIGH as used already for the air temperature itself. For every state we
add transitions in order to reach this state from every other state at the same
condition.

4.3 Generation of Propositional Logic

In this transformation step we transform the FSM of each component into tem-
poral logic propositions. The FSM consists of a set of modes M and a set of
transitions ∆. Each transition δ ∈ ∆ is guarded by a condition cδ.

The next state (output) of an FSM is a function of the condition (input)
and of the current state of the FSM. Since the FSM is deterministic 5, it can be
reduced to a canonical form. For each component we introduce a state variable
x and define the following rule for generating propositions:

∧

δ∈∆

(

[x = startδ]t−1 ∧ [cδ]t ⇒ [x = endδ]t
)

∧

∧

m∈FSM

(

[x = m]t−1 ∧ ¬

(

∨

δ∈outm

[cδ]t

)

⇒ [x = m]t

)

where startδ/endδ is the mode from which the transition δ starts/ends, respec-
tively. For a mode m, outm denotes the set of all transitions that start from
m.
5 We assume that the extended automata of the HS was deterministic, therefore its

discrete abstraction is deterministic as well.

12

Logical propositions generated with the above rule describe the nominal be-
havior of a component and are therefore logically equivalent to the system health
[h]t at time t. The resulting model after this transformation step is a dynamic,
structured system description (DSSD) as defined by Darwiche et al in [7]. We
further assign values for the probability that the boolean health variable turns
out to be true to instances of components.

Example: Thermostat (cont.) Applying the transformation rule for genera-
tion of temporal logic to the example, the following proposition is automatically
generated for the thermostat component:

[hTHERMOSTAT]
t

⇔ (([x = ON]
t−1

∧ [v = LOW]
t
) ⇒ [x = OFF]

t
) ∧

(([x = OFF]
t−1

∧ [v = HIGH]
t
) ⇒ [x = ON]

t
) ∧

(([x = ON]
t−1

∧ ¬[v = LOW]
t
) ⇒ [x = ON]

t
) ∧

(([x = OFF]
t−1

∧ ¬[v = HIGH]
t
) ⇒ [x = OFF]

t
)

Some components are described through a behavior that is independent of the
previous state. These behaviors can be reduced to propositions that do not con-
sider the previous value of the state variable x as shown for the sensor component
of the example:

[hSENSOR]
t

⇔ ([v = LOW]
t
⇒ [x = LOW]

t
) ∧

([v = OPT]
t
⇒ [x = OPT]

t
) ∧

([v = HIGH]
t
⇒ [x = HIGH]

t
)

4.4 Temporal Unfolding of Cycles

In this step we transform the architecture of the DSSD which is a directed
graph depicting component interconnectivity into an acyclic architecture. We
adopt the approach of temporal unfolding described in Darwiche et al [7] for
diagnosis of discrete event systems. We clone the whole cyclic system in each
time slice and then disconnect each cycle between the same two components.
For the removed connections we reassign the output port of the component from
which the connection started to the input port of the target component in the
next time slice.

It conveys a certain meaning which connection between components is cut
in each clone and reassigned to the next time slice. Therefore, for each cycle
at least one component must be flagged as entry-point before the transforma-
tion can run automatically. Models of HVAC control systems, as a general rule,
contain components that represent embedded systems, sensors with very short
response time and components that represent unobservable physical phenom-
ena, e.g. the temperature of a medium, with a rather long response time. We
advise that the component of the cycle to be flagged as entry-point should be the
component of the system that takes most time to react. In most cases this is a
component describing a slowly changing physical phenomenon. This results from
the assumption that events from the real system are taken during the operation
of the component with the longest response time.

13

THERMOSTAT RADIATOR AIRTEMP SENSOR

THERMOSTAT RADIATOR AIRTEMP SENSOR

Fig. 10. Unfolded Composition

Example: Thermostat (cont.) We assume that observations of the system
are provided by the thermostat that submits the sensor reading and the cor-
responding actuation command periodically or event-driven. Therefore we can
choose either the air temperature or the sensor as entry point for the unfolding
of components. Choosing a temporal unfolding of two time slices with the sensor
as entry-point, the architecture of the unfolded model as shows in fig. 10 contains
two instances of each component. Except the sensor component whose behavior
could be reduced to an atemporal form as shown in 4.3, all components of the
second time slice require the state variable of the instance in the first time slice
as additional input.

5 Related Work

This section summarizes related work in three areas, hybrid systems transfor-
mations, auto-generation of diagnostics, and model transformation.

Due to the difficulty of analyzing hybrid systems models, a variety of transfor-
mations have been applied to these models, e.g., [12, 13]. We focus on abstraction
into a discrete model, which is similar to [10], which describe a qualitative version
of the Charon modeling language and the transformation from a hybrid-systems
model to its discrete abstraction. Our work is different in that the output model
is a diagnosis model.

This work is related to work on the auto-generation of diagnostics. Our ap-
proach is different from most existing approaches, which generate models from
diagnosis component models rather than abstract a diagnosis model from a more
complex hybrid systems model. Among this class of approaches, we examine two
particular papers. [14] describes a methodology of diagnostics generation for car
subsystems, based on the assumption that models of car systems can be au-
tomatically composed from model libraries. [15] presents an approach to build
models for temporal MBD for VHDL designs, in which they model the temporal
behavior of VHDL by temporal unfolding of process execution, which is then
converted into a component-connection model which can be used by a MBD
reasoner.

Our work applies the theory of model transformation in a novel way. We pro-
pose an exogenous translation, for which the source and target are from different

14

meta-models, and our target meta-model has the semantics of a temporal diag-
nosis model. This target model is unique in the model transformation literature,
and it also extends prior work in which the target model was a static diagnosis
model [9].

6 Conclusions and Future Work

This article has described an implemented framework for transforming hybrid
systems models to temporal propositional logic diagnosis models. Our approach
contributes to research in model-driven development of complex systems by ex-
tending model consistency up to models for diagnostics. We have illustrated the
transformation process using the domain of HVAC, with an on/off thermostat
control system.

This approach can make significant contributions to building automation
systems. Instead of needing to create multiple models, and maintain consistency
among multiple models, this transformation approach provides the methodology
for creating a single generic model, and then creating component-based meta-
models and transformation rules to automate the generation of the additional
models needed for building automation applications.

We hope to extend this work in a variety of ways. First, we plan to extend
the class of diagnosis models from the current approach, which describes only
the correct behavior of a system, to models that define explicit fault behaviours.
Second, we want to extend the current transformation rules, which only apply
to systems with observable or unobservable components, to rules that can deal
with observable and unobservable transitions in each state machine.

Acknowledgment

This work was funded by SFI grant 06-SRC-I1091.

References

1. Henzinger, T.A.: The theory of hybrid automata. In: LICS ’96: Proceedings of the
11th Annual IEEE Symposium on Logic in Computer Science, Washington, DC,
USA, IEEE Computer Society (1996) 278

2. Provan, G., Ploennigs, J., Boubekeur, M., Mady, A.: Using building information
model data for generating and updating diagnostic models. Conf. on Civil Engi-
neering and Computing (August 2009)

3. Mens, T., Czarnecki, K., Gorp, P.V.: A taxonomy of model transformations. In
Bezivin, J., Heckel, R., eds.: Language Engineering for Model-Driven Software
Development. Number 04101 in Dagstuhl Seminar Proceedings (2005)

4. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings:
Second-order dependencies to the rescue. ACM Trans. Database Syst. 30(4) (2005)
994–1055

15

5. Brusoni, V., Console, L., Terenziani, P., Dupr, D.T.: A spectrum of definitions for
temporal model-based diagnosis. Artificial Intelligence 102 (1998) 39 – 79

6. Emerson, E.: Temporal and modal logic. Handbook of theoretical computer science
8 (1990) 995–1072

7. Darwiche, A., Provan, G.: Exploiting system structure in model-based diagnosis
of discrete-event systems (1996)

8. Behrens, M.: Model transformation: Hybrid systems to temporal diagnosis models.
Technical report (2010) http://www.cs.ucc.ie/~mb20/.

9. Behrens, M., Provan, G., Boubekeur, M., Mady, A.: Model-driven diagnostics
generation for industrial automation. In: Proc. 7th IEEE International Conference
on Industrial Informatics. (June 2009)

10. Sokolsky, O., Hong, H.S.: Qualitative modeling of hybrid systems (2001) Presented
at the Monterey Workshop on Engineering Automation for Computer Based Sys-
tems. http://repository.upenn.edu/cispapers/87.

11. Lunde, K.: Object-oriented modeling in model-based diagnosis. In: Proceedings of
the First Modelica workshop, Lund, Sweden (2000)

12. Antoulas, A., Sorensen, D., Gugercin, S.: A survey of model reduction methods
for large-scale systems. Contemporary Mathematics 280 (2001) 193–219

13. Mazzi, E., Vincentelli, A., Balluchi, A., Bicchi, A.: Hybrid system reduction. In:
47th IEEE Conference on Decision and Control, 2008. CDC 2008. (2008) 227–232

14. Dressler, O., Struss, P.: Generating instead of programming diagnostics. In: 25
Jahre Elektronik-Systeme im Kraftfahrzeug, Haus der Technik Fachbuch 50. (2005)
159–169

15. Köb, D., Peischl, B., Wotawa, F.: Debugging vhdl designs using temporal process
instances. In: IEA/AIE’2003: Proceedings of the 16th international conference on
Developments in applied artificial intelligence, Springer Springer Verlag Inc (2003)
402–415

