
1 INTRODUCTION 

1.1 Motivation 

Given the importance of minimizing energy use in 
building applications, researchers are studying the 
role of many tools for such purposes. One tool, di-
agnostics, plays a key role in energy optimization 
and user comfort in buildings by identifying sub-
optimal energy use caused by component faults. 

Our work has addressed how to use detailed 
building systems models (such as energy simulation 
models) as the basis for automatically generating 
embeddable diagnostics code. In [Behrens, 2010] we 
showed how we can semi-automatically generate 
discrete propositional logic models ΦD for diagnos-
tics from a hybrid systems model, HS. We showed 
how to use a model-transformation approach to first 
abstract the HS model into a simpler discrete model, 
from which we generate propositional logic sen-
tences.  

In our work, we examine the diagnosis task of 
finding a representation of the system that is capable 
of isolating severe system faults while reducing false 
alarms. Defining such a diagnosis task includes 
analysis of the severity of faults. The complexity of a 
HS model is associated with the number of discrete 
states, the number of continuous state variables, and 
the type of equations defining continuous state-
evolution [Mazzi, 2008]; the corresponding diagno-
sis model ΦD will have lower complexity than HS, 
since there are only discrete states in ΦD. 

Fault-isolation using detailed models in on-board 
applications is resource-consuming, and models 
must be abstracted in order to compute diagnostics 
in real time. The challenge is to reduce the complex-
ity of ΦD such that we can still accomplish the diag-
nosis task. 

Granularity is the extent to which abstraction 
breaks down a system into smaller parts. The com-
plexity of an abstracted model is a result of the 
granularity of the abstraction function ξ. In general, 
fine granularity leads to high complexity whereas 
coarse granularity results in a model of lower com-
plexity. 

 Finding the right granularity of abstraction for a 
system in order to fulfill the diagnosis task at lowest 
possible complexity is challenging [Darwiche, 
2000]. In this paper we compare diagnosis models of 
different granularity, to show the types of faults that 
can be captured by the different granularity levels. 
We use a set of lighting system models as the appli-
cation domain. 

 
In summary, our contributions are: 
1. We propose a meta-model for lighting systems in 

buildings from which diagnostics at different 
granularity can be automatically generated.  

2. We outline how four different abstraction func-
tions bring forth diagnostics of different granu-
larity and complexity. 

3. We compare the different reduced-order models 
in terms of complexity and how they fulfill the 
diagnosis task given. 
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ABSTRACT: Intelligent buildings are complex systems consisting of embedded computation, technical de-
vices, (inter)acting users and physical quantities. Integrating such different aspects brings together sub-
systems that must be represented differently. Automated problem-solving on the other side is based on models 
that capture the essential aspects of the behavior in a uniform way. Here we focus on diagnostics for intelli-
gent buildings, and in particular the automated generation of diagnostics from design models for buildings. In 
particular, we extend previous work on diagnostics generation in two ways: (1) Defining a meta-model for a 
specific domain, as illustrated through the lighting control domain, allows us to fully automate the diagnostics 
generation process. (2) We propose a methodology that allows the system engineer to adjust and compare 
levels of granularity of the diagnosis according to a specific diagnosis task. 



 
The rest of this paper is organized as follows:  

We introduce our framework and the main technolo-
gies in section 2. Preliminaries that deal with model 
abstraction are briefly given in section 3, and the 
methodology of our diagnostics comparison is de-
scribed in section 4. In section 5 we illustrate our 
achievements through a detailed example. Section 6 
concludes our work and gives an outlook onto our 
future contributions. 

1.2 Related Work 

We summarize related work in two areas, model ab-
straction and auto-generated diagnostics. 

Concepts of model abstraction have been widely 
discussed in the literature [Krantz, 1995], [Cousot, 
2000], whereas ideas of adjusting abstraction to a 
specific “task” are relatively new [Sachenbacher, 
2004]. The application to building automation be-
havioral models is novel. 

Our research work concerns the auto-generation 
of diagnostics. The approach we propose is different 
from most existing approaches, which generate 
models from diagnosis components rather than ab-
stract a diagnosis model from more complex behav-
ior models. Among this class of approaches, we ex-
amine one particular paper. [Dressler, 2002] 
describes a methodology of diagnostics generation 
for car subsystems, based on the assumption that 
models of car systems can be automatically com-
posed from model libraries. 

2 ARCHITECTURE 

2.1 Global Framework  

Within the development of auto-generation of diag-
nostics for building automation systems, one of the 
main difficulties is to tap resources from which di-
agnostics models can be transformed. Building In-
formation Modeling (BIM) involves integration of 
CAD drawings, geospatial data and other graphical 
and non-graphical data. It serves as a shared source 
of information on a building. Yet, behavioral aspects 
are rarely modeled and the Industry Foundation 
Classes (IFC), the standard interchange format for 
building models, support for smart objects is limited 
[Halfawy, 2002]. 
 

  BIM  

Diagnosis
Model

Meta-Model
Repository

Fault
Detection

Rules

conforms to

rules
transformation

Library of
Behaviours

Global
Source
Model

Trans-
formation
Rule Base

SysML

Abst-
racted
Model

 
Figure 1. Global framework. 
 

We assume that a given BIM application provides 
a model that describes detailed information about 
components of control systems, i.e., types of sen-
sors, actuators and control strategies and component 
interconnectivity. Further, we assume a library that 
provides us with behavioural models associated with 
the components. Based on these assumptions, we 
have built our framework, which uses a global 
source model to combine the spatial data and inter-
connectivity extracted from the BIM application 
with behaviours extracted from the library of behav-
iour models. Fig. 1 illustrates the global architecture 
of the framework: This global source model is trans-
formed, using appropriate meta-models and trans-
formation rules, into a model for model-based diag-
nostics. 

2.2 Model-based Diagnostics  

Fault diagnosis is the process of analyzing abnormal 
system behavior in order to identify and localize the 
components that are the root cause of a failure. 
Compared to rule-based diagnostics, which associ-
ates sets of if-then rules to certain malfunctions, 
model-based diagnostics (MBD) uses forward mod-
els of systems and then applies diagnostics algo-
rithms on these to decide whether a certain behavior 
is normal or abnormal [Darwiche]. 
 

D i a g n o s i s
M o d e l

R e a s o n i n g  E n g i n e D i a g n o s i s

M a i n t e n a n c e
M o d u l e

d a t a
s t r e a m

R e a l  S y s t e m
i n  O p e r a t i o n

B A S

T r a c e  o f
O b s e r v a t i o n s

 
 
Figure 2. Model-based diagnostics in building automation. 

 
Fig. 2 illustrates how diagnostics is embedded in 

our framework for fault detection and diagnosis of 
building automation. The reasoning engine com-
pares the observed values with the predicted state of 
the system. In case of a conflict the reasoning engine 
provides the most possible affected component(s) as 
diagnosis output to be forwarded to a maintenance 
module. 

Although MBD has the capability to isolate more 
diagnoses than rule-based approaches, it faces the 
challenge of defining the appropriate MBD models. 
Typically, diagnostics are generated independent of 
the design process. In our work, we assume that we 
can use design models to automate the process of di-
agnostics, and we apply a model-transformation ap-
proach to the diagnostics, using design models to 
auto-generate the MBD models. 



A second drawback of MBD is the complexity of 
its models and inference, as compared to rules. 
Hence, it is important to use MBD models (in em-
bedded-systems applications) that provide a good 
tradeoff of fault-isolation capabilities for memory 
and CPU requirements. 

2.3 Model Transformation 

We have two applications, a source and a target ap-
plication, with a corresponding meta-model for each 
application. We use the theory of model transforma-
tion [Mens, 2006] to formalize our transformation 
process in terms of a rewrite procedure. Model trans-
formations that translate a source model into an out-
put model can be expressed in the form of rewriting 
rules. According to Mens et al. [Mens, 2006], the 
transformation we adopt is an exogenous transfor-
mation, in that the source and target model are ex-
pressed in different languages, i.e., behaviour mod-
els represented as FSM or hybrid automata and 
propositional logic languages. 

3 QUALITATIVE ABSTRACTION 

3.1 Preliminaries 

Abstraction is the process of separating essential in-
formation from details, focusing on the former while 
ignoring the latter. An abstraction function maps a 
model M into a model M′ of lower complexity. Any 
abstraction entails a loss of information. Therefore, 
not all questions can be answered through the ab-
stracted model; hence, in our application not all 
faults can be diagnosed precisely through the result-
ing diagnostics model. The diagnosability of the ab-
stract model depends on the type, granularity and 
coordination of the abstraction method.  

In this section we analyze the methods of domain 
abstraction and function abstraction, and evaluate 
the granularity of different aspects using the diag-
nostics of a lighting control system. 

3.2 Domain Abstraction 

A domain abstraction maps values of a domain 
dom1(v) to a domain dom2(v) that is an ordered set 
of intervals taken from dom1. Sachenbacher et al. 
[Sachenbacher, 2005] define an observable distinc-
tion that is the granularity of the observable vari-
ables and a target distinction that is the granularity 
of the solution of the diagnosis problem. They fur-
ther describe the “goal of task-dependant qualitative 
domain abstraction is to determine maximal parti-
tions for the variables’ domains […] that retain all 
the necessary distinctions”. 

Definition. (Domain Abstraction Function) Given 
a continuous domain domc(vi) for a variable vi and 
an ordered set of landmarks L(vi) = {l 1, l2, …, ln} as-

sociated with vi the domain abstraction function ξdom 
provides the abstracted discrete domain domd = 
ξdom(domc, L, Y(L)) where Y(L) assigns one of the 
values {b, o, a} to each landmark li indicating 
whether li is included in the interval below, forms an 
own interval [li, li] or is included in the above inter-
val. 

Definition. (Granularity of Domain Abstraction) 
The granularity of the domain abstraction g(ξdom) is 
the number of intervals in which a domain domc(vi) 
is split by a given abstraction function ξdom. 

Remark. It is obvious that n – 1 ≤ g(ξdom) ≤ 2n + 1 
for n = |L|. 

3.3 Function Abstraction 

Abstraction of a function f includes rewriting the 
continuous input and/or output to a representation 
that maps discrete arguments to discrete values. We 
define two different types of function abstraction: 
1. We represent f through discrete directions in 

which the value changes: increase, decrease, hold 
and jump-to. The output can then be modeled as 
a separate automaton. 

2. We represent the f by tracking its value. The 
number of discrete states of the system must 
therefore be multiplied by the granularity of the 
abstracted output domain 
We call (1) the local function abstraction because 

functions are replaced through additional states and 
transitions within the same component; and we call 
(2) the global function abstraction in which the 
functions are replaced through states and transitions 
in an additional component changing the global 
structure of the model. 

Definition. (Granularity of Function Abstraction) 
The granularity of the function abstraction g(ξfun) is 
the number of transitions between states that were 
created by the abstraction function ξfun in order to 
represent f. 

Remark. Given n possible output values for a 
function f, the granularity of the abstracted represen-
tation g(ξfun) is n ≤ g(ξfun) ≤ n2 for both abstraction 
types. 

3.4 Combined Abstraction 

Assuming a variable v that is the state/output vari-
able qi of a component Ci and that is forwarded as 
input yj to a component Cj, in the ideal case the 
landmarks L(v) = {l 1, l2, …, ln} are the same in Ci 
and Cj. However, if this is not the case, abstraction 
functions must be composed. 

We outline two methods of composition: 
1. Abstracting domains domc(qi) and domc(yj) with 

different abstraction functions and then provide a 
mapping function from qi to yj, that is from the 
discrete domain domd(qi) to the discrete domain 
domd(yj).  



2. Combining the abstraction functions ξ(qi) and 
ξ(yj) by either adding their granularities in case 
of domain abstraction of multiplying their 
granularities in case of function abstraction. 
Definition. (Granularity of Abstraction) Given an 

Abstraction A of a model M, the granularity of the 
abstraction is the pair of the granularity of the do-
main abstraction and the granularity of the function 
abstraction g(A) = (g(ξdom), g(ξfun)). 

4 METHODOLOGY OF DIAGNOSTICS 
COMPARISON 

A diagnosis problem arises when some symptoms 
are observed, that is, when the system’s actual be-
haviour is in contradiction with the expected behav-
iour. We adopt definitions from [Provan, 2009] for 
propositional diagnosis mode, observation and diag-
nosis: 

Definition. (Propositional Diagnosis Model) A 
discrete diagnosis model is specified by a tuple ΦD = 
{ I, V, Ε ,Π } where I ℵ⊂  is a temporal index; V is a 
set of discrete-values indexes by I, such that Vf ⊂ V is 
the set of failure mode variables, and VO⊂ V is the 
set of observable variables; Ε⊆  Vf×Ln consists of 
propositional equations (where Ln is a propositional 
well-formed formula over (V \ Vf); and Π is a dis-
crete probability distribution over the equations 
and/or variables. 

Definition. (Observation) An observation α is an 
instantiation of the set of observable variables VO. 

Definition. (Diagnosis) Given a diagnostic model 
ΦD = {I, V, Ε ,Π }, diagnosis δ is an assignment to 
all failure mode variables Vf of the diagnostic system 
ΦD such that ≠⊥∧∧Φ |δαD  for an observation α. 

We further define the abstraction of a diagnosis is 
the pair of the abstraction of the model and the ab-
straction of the observation. 

Definition. (System Abstraction) Assuming a 
System S that is represented through a model ΦH and 
instantiated with an observation α, an abstraction of 
S is the pair Ai = (M i,Οi) where Mi = ξi(ΦH) is the 
abstraction of the propositional diagnosis model and 
Οi = χi(α) is the abstraction of an observation. 

Remark. ΦD in this definition is the abstracted 
model Mk = ξk(ΦH) in case of highest possible granu-
larity of the abstraction function ξk.  

As shown in Fig. 3, different abstracted systems 
are constructed using different granularities. Each 
system is composed by the abstracted model and the 
corresponding observation. The diagnosability of the 
resulting systems is analyzed based on the granular-
ity and the complexity of the abstraction function.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Methodology for Abstraction Granularity  
   

In the following section we will compare four ab-
stractions of a typical lighting system in order to rea-
son about their granularity, complexity and whether 
the diagnosis task is fulfilled. 

5 EXAMPLE  

5.1 Lighting System Model 

We illustrate our approach through a simple example 
of a system that controls a lamp with four actuation 
levels in a zone that is also illuminated by natural 
(ambient) light. A light sensor and a presence sensor 
provide a numeric value for the combined light in-
tensity and a truth-value for the occupancy as input 
parameters to the control unit. A model of such a 
system is depicted in Fig. 4. 

The controller has four states QCtrl = {off, hold, 
decr, incr} to set the actuation level vActL within its 
domain dom(vActL) = {0, 1, 2, 3}. The input variables 
vCombL and vOccupancy guard the transitions between the 
states in such way that off is activated to set vActL′ = 
0 under the condition that vOccupancy = false. If vOccu-

pancy = true and the light-level is within an optimal 
range [α, β], the controller enters or remains in state 
hold and does not change vActL. If vOccupancy = true 
and the light-level is not in an optimal range, the 
controller can either decrease the actuation level 
step-wise or increase the actuation level “jump-
wise”. I.e., if vLightL > β the controller enters state 
decr with the function fdecr: vActL′ = vActL – 1. If vCombL 
< α, then vActL is increased through the function fincr 
(1) of the state incr: 
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Figure 4. Typical lighting system.  

 
Table 1 lists the combined light of the ambient 

and artificial light at the position where the light 
sensor is located. The artificial light directly depends 
on the actuation level that is discrete by its nature. 
There is no sensor to measure the intensity of the 
ambient light in the system; therefore it is estimated 
based on the time of day (and eventually astrological 
time).  

 
Ambient light 

Actuation 
level dark 

(< 100 lx) 
dawn 

(100 – 1000 lx) 
bright 

(> 1000 lx) 

0 (0 lx) 0 – 90 lx 50 – 900 lx > 500 lx 

1 (200 lx) 176 – 290 lx 226 – 1100 lx > 676 lx 

2 (400 lx) 352 – 490 lx 402 – 1300 lx > 852 lx 

3 (600 lx) 528 – 690 lx 578 – 1500 lx > 1028 lx 

 
Table 1.  Interference table.  
 

For the purpose of the diagnosability analysis we 
construct trace tables that contain the system obser-
vations and the corresponding unobservable system 
parameters. The following tables describe the traces 
for the nominal behavior (table 2) and behavior in 
case of a sensor fault (table 3) and in case of an ac-
tuation fault (table 4). 
 

t 7:10 7:15 7:16 7:25 … 

vAmbL 100 lx 120 lx 120 lx 250 lx … 

vCombL 83 lx 97 lx 598 lx 705 lx … 

vCombL_S 85 lx 95 lx 600 lx 705 lx … 

vOccupancy false true true true … 

vOccupancy_S false true true true … 

qCtrl off incr hold decr … 

vactL 0 3 3 2 … 

vArtL 0 lx 600 lx 600 lx 400 lx … 
 
Table 2.  Trace of the continuous model, nominal behavior.   

t 7:10 7:15 7:16 7:17 7:18 … 

vAmbL 100 lx 120 lx 120 lx 122 lx 122 lx … 

vCombL 83 lx 97 lx 598 lx 98 lx 455 lx … 

vCombL_S 85 lx 95 lx 2000 lx 100 lx 460 lx … 

vOccupancy false true true true true … 

vOccupancy_S false true true true true … 

qCtrl off incr decr incr incr … 

vactL 0 3 0 2 3 … 

vArtL 0 lx 600 lx 0 lx 400 lx 600 lx … 
 
Table 3.  Trace of the continuous model, sensor fault.  
 

t 7:10 7:15 7:16 7:17 7:18 … 

vAmbL 100 lx 120 lx 120 lx 122 lx 122 lx … 

vCombL 83 lx 97 lx 97 lx 98 lx 98 lx … 

vCombL_S 85 lx 95 lx 95 lx 100 lx 100 lx … 

vOccupancy false true true true true … 

vOccupancy_S false true true true true … 

qCtrl off incr incr incr incr … 

vactL 0 3 3 3 3 … 

vArtL 0 lx 0 lx 0 lx 0 lx 0 lx … 
 
Table 4.  Trace of the continuous model, actuator/light fault.  

5.2 Abstractions 

As mentioned earlier, four abstractions have been 
calculated mainly driven by the domain of the com-
bined light.  

• The coarse domain abstraction (A1) uses three 
intervals to determine the light level based on 
the optimal range that drives the controller. 

• The fine domain abstraction has a finer granu-
larity where the light level is represented by 15 
intervals corresponding to the interference table. 
The composed domain abstraction (A2), based 
on merging the landmarks of both the coarse 
and the fine domain abstraction, represents the 
domain of the light level by 16 intervals. 

• The function abstraction of fincr (A3) combines a 
local function abstraction with corresponding 
domain abstraction of five intervals. 

• The finest possible abstraction (A4 = ΦD) com-
bines all the domain abstractions used above 
with the finer local function abstraction. 

5.3 Discussions 

Table 5 shows evaluations of the four abstractions of 
the lighting system model. Since all of the abstrac-
tions either match or extend the range of nominal 
behavior of the original model, no false alarms are 
raised, if undisturbed operation of the diagnosis 
framework is assured. The fault of a sensor reading 
being out of range (table 3) is covered by those ab-
stractions with the finer granularity of the domain 
abstraction for vCombL, A2 and A4. A faulty actuator, 
i.e., a burnt-out bulb, (table 4) is detected by all ab-



stractions. However, only if we use the local abstrac-
tion function for fincr, as in A3 and A4, can we detect 
the malfunction immediately. Using global abstrac-
tion, the actuation level vActL cannot be tracked, and 
the detection of faulty behaviors of the actuator 
takes as many observations as there are actuation 
levels above the current one. 
 
 

 A1 A2 A3 A4 =ΦD 

Nominal behavior ok ok ok ok 

Faulty behavior 
Sensor out of range 

no ok no ok 

Faulty behavior 
Broken actuator 

3 steps 3 steps 1 step 1 step 

Granularity g(A)= 
(g(ξdom),g(ξfun)) 

(3,14) (16,14) (5,30) (18,30) 

Complexity of di-
agnosis 

low medium medium high 

 
Table 5.  Evaluation of four different abstractions. 

6 CONCLUSION AND FUTURE WORK 

The advantages of model-based diagnostics over 
state-of-the-art rule-based diagnostics increase with 
growing system complexity, because the number of 
possible fault combinations that explain an anoma-
lous observation rises exponentially with the number 
of components. We showed that a model-
transformation approach can generate model-based 
diagnostics using models defined for the design 
process. Through an example, we showed that dif-
ferent abstractions can be constructed using different 
granularities. We provided a methodology to con-
struct and compare the abstracted systems where the 
diagnosability and the complexity of the granularity 
are analyzed. Using this approach, we can tailor the 
abstraction level to the required diagnosis-model 
granularity. This can help embed diagnostics code 
that satisfies the goal of isolating faults appropri-
ately, while using the least amount of memory and 
CPU. 

We plan to extend this work in a variety of ways, 
including: (1) extend the class of diagnosis models 
to incorporate explicit fault behaviors, rather than 
simply deviations from nominal behavior; (2) extend 
the class of source (reference) models to cover a 
wider range of control systems, sensors, actuators 
and physical environments found in building auto-
mation systems.  
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