
1 INTRODUCTION

1.1 Motivation

Given the importance of minimizing energy use in
building applications, researchers are studying the
role of many tools for such purposes. One tool, di-
agnostics, plays a key role in energy optimization
and user comfort in buildings by identifying sub-
optimal energy use caused by component faults.

Our work has addressed how to use detailed
building systems models (such as energy simulation
models) as the basis for automatically generating
embeddable diagnostics code. In [Behrens, 2010] we
showed how we can semi-automatically generate
discrete propositional logic models ΦD for diagnos-
tics from a hybrid systems model, HS. We showed
how to use a model-transformation approach to first
abstract the HS model into a simpler discrete model,
from which we generate propositional logic sen-
tences.

In our work, we examine the diagnosis task of
finding a representation of the system that is capable
of isolating severe system faults while reducing false
alarms. Defining such a diagnosis task includes
analysis of the severity of faults. The complexity of a
HS model is associated with the number of discrete
states, the number of continuous state variables, and
the type of equations defining continuous state-
evolution [Mazzi, 2008]; the corresponding diagno-
sis model ΦD will have lower complexity than HS,
since there are only discrete states in ΦD.

Fault-isolation using detailed models in on-board
applications is resource-consuming, and models
must be abstracted in order to compute diagnostics
in real time. The challenge is to reduce the complex-
ity of ΦD such that we can still accomplish the diag-
nosis task.

Granularity is the extent to which abstraction
breaks down a system into smaller parts. The com-
plexity of an abstracted model is a result of the
granularity of the abstraction function ξ. In general,
fine granularity leads to high complexity whereas
coarse granularity results in a model of lower com-
plexity.

 Finding the right granularity of abstraction for a
system in order to fulfill the diagnosis task at lowest
possible complexity is challenging [Darwiche,
2000]. In this paper we compare diagnosis models of
different granularity, to show the types of faults that
can be captured by the different granularity levels.
We use a set of lighting system models as the appli-
cation domain.

In summary, our contributions are:
1. We propose a meta-model for lighting systems in

buildings from which diagnostics at different
granularity can be automatically generated.

2. We outline how four different abstraction func-
tions bring forth diagnostics of different granu-
larity and complexity.

3. We compare the different reduced-order models
in terms of complexity and how they fulfill the
diagnosis task given.

Comparison of Diagnostics Granularity for Lighting Control Systems

M. Behrens, G. Provan & M. Boubekeur
Cork Complex Systems Lab (CCSL),
Computer Science Department,
University College Cork (UCC),
Cork, Ireland.

ABSTRACT: Intelligent buildings are complex systems consisting of embedded computation, technical de-
vices, (inter)acting users and physical quantities. Integrating such different aspects brings together sub-
systems that must be represented differently. Automated problem-solving on the other side is based on models
that capture the essential aspects of the behavior in a uniform way. Here we focus on diagnostics for intelli-
gent buildings, and in particular the automated generation of diagnostics from design models for buildings. In
particular, we extend previous work on diagnostics generation in two ways: (1) Defining a meta-model for a
specific domain, as illustrated through the lighting control domain, allows us to fully automate the diagnostics
generation process. (2) We propose a methodology that allows the system engineer to adjust and compare
levels of granularity of the diagnosis according to a specific diagnosis task.

The rest of this paper is organized as follows:

We introduce our framework and the main technolo-
gies in section 2. Preliminaries that deal with model
abstraction are briefly given in section 3, and the
methodology of our diagnostics comparison is de-
scribed in section 4. In section 5 we illustrate our
achievements through a detailed example. Section 6
concludes our work and gives an outlook onto our
future contributions.

1.2 Related Work

We summarize related work in two areas, model ab-
straction and auto-generated diagnostics.

Concepts of model abstraction have been widely
discussed in the literature [Krantz, 1995], [Cousot,
2000], whereas ideas of adjusting abstraction to a
specific “task” are relatively new [Sachenbacher,
2004]. The application to building automation be-
havioral models is novel.

Our research work concerns the auto-generation
of diagnostics. The approach we propose is different
from most existing approaches, which generate
models from diagnosis components rather than ab-
stract a diagnosis model from more complex behav-
ior models. Among this class of approaches, we ex-
amine one particular paper. [Dressler, 2002]
describes a methodology of diagnostics generation
for car subsystems, based on the assumption that
models of car systems can be automatically com-
posed from model libraries.

2 ARCHITECTURE

2.1 Global Framework

Within the development of auto-generation of diag-
nostics for building automation systems, one of the
main difficulties is to tap resources from which di-
agnostics models can be transformed. Building In-
formation Modeling (BIM) involves integration of
CAD drawings, geospatial data and other graphical
and non-graphical data. It serves as a shared source
of information on a building. Yet, behavioral aspects
are rarely modeled and the Industry Foundation
Classes (IFC), the standard interchange format for
building models, support for smart objects is limited
[Halfawy, 2002].

 BIM

Diagnosis
Model

Meta-Model
Repository

Fault
Detection

Rules

conforms to

rules
transformation

Library of
Behaviours

Global
Source
Model

Trans-
formation
Rule Base

SysML

Abst-
racted
Model

Figure 1. Global framework.

We assume that a given BIM application provides
a model that describes detailed information about
components of control systems, i.e., types of sen-
sors, actuators and control strategies and component
interconnectivity. Further, we assume a library that
provides us with behavioural models associated with
the components. Based on these assumptions, we
have built our framework, which uses a global
source model to combine the spatial data and inter-
connectivity extracted from the BIM application
with behaviours extracted from the library of behav-
iour models. Fig. 1 illustrates the global architecture
of the framework: This global source model is trans-
formed, using appropriate meta-models and trans-
formation rules, into a model for model-based diag-
nostics.

2.2 Model-based Diagnostics

Fault diagnosis is the process of analyzing abnormal
system behavior in order to identify and localize the
components that are the root cause of a failure.
Compared to rule-based diagnostics, which associ-
ates sets of if-then rules to certain malfunctions,
model-based diagnostics (MBD) uses forward mod-
els of systems and then applies diagnostics algo-
rithms on these to decide whether a certain behavior
is normal or abnormal [Darwiche].

D i a g n o s i s
M o d e l

R e a s o n i n g E n g i n e D i a g n o s i s

M a i n t e n a n c e
M o d u l e

d a t a
s t r e a m

R e a l S y s t e m
i n O p e r a t i o n

B A S

T r a c e o f
O b s e r v a t i o n s

Figure 2. Model-based diagnostics in building automation.

Fig. 2 illustrates how diagnostics is embedded in

our framework for fault detection and diagnosis of
building automation. The reasoning engine com-
pares the observed values with the predicted state of
the system. In case of a conflict the reasoning engine
provides the most possible affected component(s) as
diagnosis output to be forwarded to a maintenance
module.

Although MBD has the capability to isolate more
diagnoses than rule-based approaches, it faces the
challenge of defining the appropriate MBD models.
Typically, diagnostics are generated independent of
the design process. In our work, we assume that we
can use design models to automate the process of di-
agnostics, and we apply a model-transformation ap-
proach to the diagnostics, using design models to
auto-generate the MBD models.

A second drawback of MBD is the complexity of
its models and inference, as compared to rules.
Hence, it is important to use MBD models (in em-
bedded-systems applications) that provide a good
tradeoff of fault-isolation capabilities for memory
and CPU requirements.

2.3 Model Transformation

We have two applications, a source and a target ap-
plication, with a corresponding meta-model for each
application. We use the theory of model transforma-
tion [Mens, 2006] to formalize our transformation
process in terms of a rewrite procedure. Model trans-
formations that translate a source model into an out-
put model can be expressed in the form of rewriting
rules. According to Mens et al. [Mens, 2006], the
transformation we adopt is an exogenous transfor-
mation, in that the source and target model are ex-
pressed in different languages, i.e., behaviour mod-
els represented as FSM or hybrid automata and
propositional logic languages.

3 QUALITATIVE ABSTRACTION

3.1 Preliminaries

Abstraction is the process of separating essential in-
formation from details, focusing on the former while
ignoring the latter. An abstraction function maps a
model M into a model M′ of lower complexity. Any
abstraction entails a loss of information. Therefore,
not all questions can be answered through the ab-
stracted model; hence, in our application not all
faults can be diagnosed precisely through the result-
ing diagnostics model. The diagnosability of the ab-
stract model depends on the type, granularity and
coordination of the abstraction method.

In this section we analyze the methods of domain
abstraction and function abstraction, and evaluate
the granularity of different aspects using the diag-
nostics of a lighting control system.

3.2 Domain Abstraction

A domain abstraction maps values of a domain
dom1(v) to a domain dom2(v) that is an ordered set
of intervals taken from dom1. Sachenbacher et al.
[Sachenbacher, 2005] define an observable distinc-
tion that is the granularity of the observable vari-
ables and a target distinction that is the granularity
of the solution of the diagnosis problem. They fur-
ther describe the “goal of task-dependant qualitative
domain abstraction is to determine maximal parti-
tions for the variables’ domains […] that retain all
the necessary distinctions”.

Definition. (Domain Abstraction Function) Given
a continuous domain domc(vi) for a variable vi and
an ordered set of landmarks L(vi) = {l 1, l2, …, ln} as-

sociated with vi the domain abstraction function ξdom
provides the abstracted discrete domain domd =
ξdom(domc, L, Y(L)) where Y(L) assigns one of the
values {b, o, a} to each landmark li indicating
whether li is included in the interval below, forms an
own interval [li, li] or is included in the above inter-
val.

Definition. (Granularity of Domain Abstraction)
The granularity of the domain abstraction g(ξdom) is
the number of intervals in which a domain domc(vi)
is split by a given abstraction function ξdom.

Remark. It is obvious that n – 1 ≤ g(ξdom) ≤ 2n + 1
for n = |L|.

3.3 Function Abstraction

Abstraction of a function f includes rewriting the
continuous input and/or output to a representation
that maps discrete arguments to discrete values. We
define two different types of function abstraction:
1. We represent f through discrete directions in

which the value changes: increase, decrease, hold
and jump-to. The output can then be modeled as
a separate automaton.

2. We represent the f by tracking its value. The
number of discrete states of the system must
therefore be multiplied by the granularity of the
abstracted output domain
We call (1) the local function abstraction because

functions are replaced through additional states and
transitions within the same component; and we call
(2) the global function abstraction in which the
functions are replaced through states and transitions
in an additional component changing the global
structure of the model.

Definition. (Granularity of Function Abstraction)
The granularity of the function abstraction g(ξfun) is
the number of transitions between states that were
created by the abstraction function ξfun in order to
represent f.

Remark. Given n possible output values for a
function f, the granularity of the abstracted represen-
tation g(ξfun) is n ≤ g(ξfun) ≤ n2 for both abstraction
types.

3.4 Combined Abstraction

Assuming a variable v that is the state/output vari-
able qi of a component Ci and that is forwarded as
input yj to a component Cj, in the ideal case the
landmarks L(v) = {l 1, l2, …, ln} are the same in Ci
and Cj. However, if this is not the case, abstraction
functions must be composed.

We outline two methods of composition:
1. Abstracting domains domc(qi) and domc(yj) with

different abstraction functions and then provide a
mapping function from qi to yj, that is from the
discrete domain domd(qi) to the discrete domain
domd(yj).

2. Combining the abstraction functions ξ(qi) and
ξ(yj) by either adding their granularities in case
of domain abstraction of multiplying their
granularities in case of function abstraction.
Definition. (Granularity of Abstraction) Given an

Abstraction A of a model M, the granularity of the
abstraction is the pair of the granularity of the do-
main abstraction and the granularity of the function
abstraction g(A) = (g(ξdom), g(ξfun)).

4 METHODOLOGY OF DIAGNOSTICS
COMPARISON

A diagnosis problem arises when some symptoms
are observed, that is, when the system’s actual be-
haviour is in contradiction with the expected behav-
iour. We adopt definitions from [Provan, 2009] for
propositional diagnosis mode, observation and diag-
nosis:

Definition. (Propositional Diagnosis Model) A
discrete diagnosis model is specified by a tuple ΦD =
{ I, V, Ε ,Π } where I ℵ⊂ is a temporal index; V is a
set of discrete-values indexes by I, such that Vf ⊂ V is
the set of failure mode variables, and VO⊂ V is the
set of observable variables; Ε⊆ Vf×Ln consists of
propositional equations (where Ln is a propositional
well-formed formula over (V \ Vf); and Π is a dis-
crete probability distribution over the equations
and/or variables.

Definition. (Observation) An observation α is an
instantiation of the set of observable variables VO.

Definition. (Diagnosis) Given a diagnostic model
ΦD = {I, V, Ε ,Π }, diagnosis δ is an assignment to
all failure mode variables Vf of the diagnostic system
ΦD such that ≠⊥∧∧Φ |δαD for an observation α.

We further define the abstraction of a diagnosis is
the pair of the abstraction of the model and the ab-
straction of the observation.

Definition. (System Abstraction) Assuming a
System S that is represented through a model ΦH and
instantiated with an observation α, an abstraction of
S is the pair Ai = (M i,Οi) where Mi = ξi(ΦH) is the
abstraction of the propositional diagnosis model and
Οi = χi(α) is the abstraction of an observation.

Remark. ΦD in this definition is the abstracted
model Mk = ξk(ΦH) in case of highest possible granu-
larity of the abstraction function ξk.

As shown in Fig. 3, different abstracted systems
are constructed using different granularities. Each
system is composed by the abstracted model and the
corresponding observation. The diagnosability of the
resulting systems is analyzed based on the granular-
ity and the complexity of the abstraction function.

Figure 3. Methodology for Abstraction Granularity

In the following section we will compare four ab-
stractions of a typical lighting system in order to rea-
son about their granularity, complexity and whether
the diagnosis task is fulfilled.

5 EXAMPLE

5.1 Lighting System Model

We illustrate our approach through a simple example
of a system that controls a lamp with four actuation
levels in a zone that is also illuminated by natural
(ambient) light. A light sensor and a presence sensor
provide a numeric value for the combined light in-
tensity and a truth-value for the occupancy as input
parameters to the control unit. A model of such a
system is depicted in Fig. 4.

The controller has four states QCtrl = {off, hold,
decr, incr} to set the actuation level vActL within its
domain dom(vActL) = {0, 1, 2, 3}. The input variables
vCombL and vOccupancy guard the transitions between the
states in such way that off is activated to set vActL′ =
0 under the condition that vOccupancy = false. If vOccu-

pancy = true and the light-level is within an optimal
range [α, β], the controller enters or remains in state
hold and does not change vActL. If vOccupancy = true
and the light-level is not in an optimal range, the
controller can either decrease the actuation level
step-wise or increase the actuation level “jump-
wise”. I.e., if vLightL > β the controller enters state
decr with the function fdecr: vActL′ = vActL – 1. If vCombL
< α, then vActL is increased through the function fincr
(1) of the state incr:

 −
+=

200
' LightL

ActLActL

v
vv

α
 (1)

M2 = ξ2(ΦH) M1 = ξ1(ΦH)

System S

model

data

Ο1 = χ1(α) Ο2 = χ2(α)

Diagnosis D1 Diagnosis D2

reasoner

Continuous system Abstraction 1 Abstraction 2

A1(S) A2(S)

Model ΦH

Observation α

…

…

…

…

reasoner

…

hold

incr

decr

off

LightSensor

PresenceSensor

Controller

Light
Actuation

Light
Interference
Table

Occupancy

Time
Of
Day

Ambient
Light

Figure 4. Typical lighting system.

Table 1 lists the combined light of the ambient

and artificial light at the position where the light
sensor is located. The artificial light directly depends
on the actuation level that is discrete by its nature.
There is no sensor to measure the intensity of the
ambient light in the system; therefore it is estimated
based on the time of day (and eventually astrological
time).

Ambient light

Actuation
level dark

(< 100 lx)
dawn

(100 – 1000 lx)
bright

(> 1000 lx)

0 (0 lx) 0 – 90 lx 50 – 900 lx > 500 lx

1 (200 lx) 176 – 290 lx 226 – 1100 lx > 676 lx

2 (400 lx) 352 – 490 lx 402 – 1300 lx > 852 lx

3 (600 lx) 528 – 690 lx 578 – 1500 lx > 1028 lx

Table 1. Interference table.

For the purpose of the diagnosability analysis we
construct trace tables that contain the system obser-
vations and the corresponding unobservable system
parameters. The following tables describe the traces
for the nominal behavior (table 2) and behavior in
case of a sensor fault (table 3) and in case of an ac-
tuation fault (table 4).

t 7:10 7:15 7:16 7:25 …

vAmbL 100 lx 120 lx 120 lx 250 lx …

vCombL 83 lx 97 lx 598 lx 705 lx …

vCombL_S 85 lx 95 lx 600 lx 705 lx …

vOccupancy false true true true …

vOccupancy_S false true true true …

qCtrl off incr hold decr …

vactL 0 3 3 2 …

vArtL 0 lx 600 lx 600 lx 400 lx …

Table 2. Trace of the continuous model, nominal behavior.

t 7:10 7:15 7:16 7:17 7:18 …

vAmbL 100 lx 120 lx 120 lx 122 lx 122 lx …

vCombL 83 lx 97 lx 598 lx 98 lx 455 lx …

vCombL_S 85 lx 95 lx 2000 lx 100 lx 460 lx …

vOccupancy false true true true true …

vOccupancy_S false true true true true …

qCtrl off incr decr incr incr …

vactL 0 3 0 2 3 …

vArtL 0 lx 600 lx 0 lx 400 lx 600 lx …

Table 3. Trace of the continuous model, sensor fault.

t 7:10 7:15 7:16 7:17 7:18 …

vAmbL 100 lx 120 lx 120 lx 122 lx 122 lx …

vCombL 83 lx 97 lx 97 lx 98 lx 98 lx …

vCombL_S 85 lx 95 lx 95 lx 100 lx 100 lx …

vOccupancy false true true true true …

vOccupancy_S false true true true true …

qCtrl off incr incr incr incr …

vactL 0 3 3 3 3 …

vArtL 0 lx 0 lx 0 lx 0 lx 0 lx …

Table 4. Trace of the continuous model, actuator/light fault.

5.2 Abstractions

As mentioned earlier, four abstractions have been
calculated mainly driven by the domain of the com-
bined light.

• The coarse domain abstraction (A1) uses three
intervals to determine the light level based on
the optimal range that drives the controller.

• The fine domain abstraction has a finer granu-
larity where the light level is represented by 15
intervals corresponding to the interference table.
The composed domain abstraction (A2), based
on merging the landmarks of both the coarse
and the fine domain abstraction, represents the
domain of the light level by 16 intervals.

• The function abstraction of fincr (A3) combines a
local function abstraction with corresponding
domain abstraction of five intervals.

• The finest possible abstraction (A4 = ΦD) com-
bines all the domain abstractions used above
with the finer local function abstraction.

5.3 Discussions

Table 5 shows evaluations of the four abstractions of
the lighting system model. Since all of the abstrac-
tions either match or extend the range of nominal
behavior of the original model, no false alarms are
raised, if undisturbed operation of the diagnosis
framework is assured. The fault of a sensor reading
being out of range (table 3) is covered by those ab-
stractions with the finer granularity of the domain
abstraction for vCombL, A2 and A4. A faulty actuator,
i.e., a burnt-out bulb, (table 4) is detected by all ab-

stractions. However, only if we use the local abstrac-
tion function for fincr, as in A3 and A4, can we detect
the malfunction immediately. Using global abstrac-
tion, the actuation level vActL cannot be tracked, and
the detection of faulty behaviors of the actuator
takes as many observations as there are actuation
levels above the current one.

 A1 A2 A3 A4 =ΦD

Nominal behavior ok ok ok ok

Faulty behavior
Sensor out of range

no ok no ok

Faulty behavior
Broken actuator

3 steps 3 steps 1 step 1 step

Granularity g(A)=
(g(ξdom),g(ξfun))

(3,14) (16,14) (5,30) (18,30)

Complexity of di-
agnosis

low medium medium high

Table 5. Evaluation of four different abstractions.

6 CONCLUSION AND FUTURE WORK

The advantages of model-based diagnostics over
state-of-the-art rule-based diagnostics increase with
growing system complexity, because the number of
possible fault combinations that explain an anoma-
lous observation rises exponentially with the number
of components. We showed that a model-
transformation approach can generate model-based
diagnostics using models defined for the design
process. Through an example, we showed that dif-
ferent abstractions can be constructed using different
granularities. We provided a methodology to con-
struct and compare the abstracted systems where the
diagnosability and the complexity of the granularity
are analyzed. Using this approach, we can tailor the
abstraction level to the required diagnosis-model
granularity. This can help embed diagnostics code
that satisfies the goal of isolating faults appropri-
ately, while using the least amount of memory and
CPU.

We plan to extend this work in a variety of ways,
including: (1) extend the class of diagnosis models
to incorporate explicit fault behaviors, rather than
simply deviations from nominal behavior; (2) extend
the class of source (reference) models to cover a
wider range of control systems, sensors, actuators
and physical environments found in building auto-
mation systems.

7 ACKNOWLEDGEMENT

This work was funded by SFI grant 06-SRC-I1091.

8 REFERENCES

Behrens, M. & Provan, G. 2010. Temporal Model-Based Diag-
nostics Generation for HVAC Control Systems. Proceed-
ings of the 3rd International Conference on Theory and
Practice of Model Transformation, 2010.

Cousot, P. 2000. Abstract Interpretation Based Formal Meth-
ods and Future Challenges. Lecture Notes in Computer Sci-
ence, Volume 2000, 2001, Pages 138-156.

Darwiche, A. 2000. Model-Based Diagnostics under Real-
World Constraints. AI Magazine, Vol. 21, No 2, Summer
2000, Pages 57-73.

Dressler, O., Struss, P.: Generating instead of programming di-
agnostics. 25 Jahre Elektronik-Systeme im Kraftfahrzeug.
Haus der Technik Fachbuch 50. 2005, Pages 159–169

Fagin, R. & Kolaitis, P.G. & Popa, L. & Tan, W.-C. 2005.
Composing schema mappings: Second-order dependencies
to the rescue. ACM Transactions on Database Systems
(TODS), Volume 30, Issue 4, December 2005, Pages 994-
1055.

Halfawy, M.R. & Froese, T. 2002. Modeling and Implementa-
tion of Smart AEC Objects: An IFC Perspective. Proceed-
ings of the International Council for Research and Innova-
tion in Building and Construction, Aarhus School of
Architecture.

Krantz, F.K. 1995. A taxonomy of model abstraction tech-
niques. Proceedings of the 27th conference on simulation,
1995, Pages 1413-1420.

Mazzi, E., Vincentelli, A.S., Balluchi, A. & Bicchi, A. 2008.
Hybrid Systems Reduction. Proceedings of the 47th IEEE
Conference on Decision and Control, Cancun, Mexico,
Dec. 2008.

Mens, T. & Van Gorp, P. 2006. A Taxonomy of Model Trans-
formation. Electronic Notes in Theoretical Computer Sci-
ence, Volume 152, March 2006, Pages 125-142.

Provan, G. 2009. Model Abstraction for Diagnosing Hybrid
Systems. Proc. Intl. Workshop on Principles of Diagnosis,
DX-09, June 2009.

Sachenbacher, M. & Struss P. 2004. Task-dependant qualita-
tive domain abstraction. Artificial Intelligence, Volume
162, Issue 1-2, February 2005, Pages 121-143.

