Comparison of Diagnostics Granularity for Lighti@gntrol Systems

M. Behrens, G. Provan & M. Boubekeur
Cork Complex Systems Lab (CCSL),
Computer Science Department,

University College Cork (UCC),

Cork, Ireland.

ABSTRACT: Intelligent buildings arcomplex systems consisting of embedded computat@mmnical e-
vices, (inter)acting users and physical quantitiesegrating such different aspects brings togethds-
systems that must be represented differently. Aatethproblem-solving on the other side is basechodels

that capture the essential aspects of the behavimmuniform way. Here we focus on diagnosticsifdelli-

gent buildings, and in particular the automatedegation of diagnostics from design models for bagg. In
particular, we extend previous work on diagnosgjeseration in two ways: (1) Defining a meta-modeld
specific domain, as illustrated through the liggtoontrol domain, allows us to fully automate thagdostics
generation process. (2) We propose a methodologfyalfows the system engineer to adjust and compare
levels of granularity of the diagnosis accordingtspecific diagnosis task.

1 INTRODUCTION Fault-isolation using detailed models in on-board
1.1 Motivation applications is resc_)urce-consuming, and_ models
: must be abstracted in order to compute diagnostics
Given the importance of minimizing energy use inin real time. The challenge is to reduce the comple
building applications, researchers are studying thay of ®p such that we can still accomplish the diag-
role of many tools for such purposes. One tool, dinosis task.
agnostics, plays a key role in energy optimization Granularity is the extent to which abstraction
and user comfort in buildings by identifying sub- breaks down a system into smaller parts. The com-
optimal energy use caused by component faults.  plexity of an abstracted model is a result of the
Our work has addressed how to use detailedranularity of the abstraction functi@n In general,
building systems models (such as energy simulatiofine granularity leads to high complexity whereas
models) as the basis for automatically generatingoarse granularity results in a model of lower com-
embeddable diagnostics code. In [Behrens, 2010] waexity.
showed how we can semi-automatically generate Finding the right granularity of abstraction for a
discrete propositional logic modet®; for diagnos- system in order to fulfill the diagnosis task awést
tics from a hybrid systems modélS. We showed possible complexity is challenging [Darwiche,
how to use a model-transformation approach to firs2000]. In this paper we compare diagnosis models of
abstract thédS model into a simpler discrete model, different granularity, to show the types of fauhst
from which we generate propositional logic sen-can be captured by the different granularity levels
tences. We use a set of lighting system models as the -appli
In our work, we examine thdiagnosis taskof  cation domain.
finding a representation of the system that is blgpa
of isolating severe system faults while reducirigéa In summary, our contributions are:
alarms. Defining such a diagnosis task included. We propose a meta-model for lighting systems in
analysis of the severity of faults. Themplexityof a buildings from which diagnostics at different
HS model is associated with the number of discrete granularity can be automatically generated.
states, the number of continuous state variabtes, a2. We outline how four different abstraction func-
the type of equations defining continuous state- tions bring forth diagnostics of different granu-
evolution [Mazzi, 2008]; the corresponding diagno- larity and complexity.
sis model®p will have lower complexity than HS, 3. We compare the different reduced-order models
since there are only discrete state®in in terms of complexity and how they fulfill the
diagnosis task given.



We assume that a given BIM application provides
The rest of this paper is organized as follows: a model that describes detailed information about
We introduce our framework and the main technoloecomponents of control systems, i.e., types of sen-
gies in section 2. Preliminaries that deal with elod sors, actuators and control strategies and componen
abstraction are briefly given in section 3, and thenterconnectivity. Further, we assume a libraryt tha
methodology of our diagnostics comparison is deprovides us with behavioural models associated with
scribed in section 4. In section 5 we illustrate outhe components. Based on these assumptions, we
achievements through a detailed example. Sectioni@ave built our framework, which uses a global
concludes our work and gives an outlook onto ousource model to combine the spatial data and inter-
future contributions. connectivity extracted from the BIM application
with behaviours extracted from the library of behav
lour models. Fig. 1 illustrates the global archiee
1.2 Related Work of the framework: This global source model is trans
We summarize related work in two areas, model abkformed, using appropriate meta-models and trans-
straction and auto-generated diagnostics. formation rules, into a model for model-based diag-
Concepts of model abstraction have been widelyostics.
discussed in the literature [Krantz, 1995], [Cousot
2000], whereas ideas of adjusting abstraction to : .
specific “task” are relatively new [Sachenbacher,ﬁl'2 Model-based Diagnostics
2004]. The application to building automation be-Fault diagnosis is the process of analyzing abnbrma
havioral models is novel. system behavior in order to identify and localize t
Our research work concerns the auto-generatiocomponents that are the root cause of a failure.
of diagnostics. The approach we propose is diftererCompared to rule-based diagnostics, which associ-
from most existing approaches, which generatates sets of if-then rules to certain malfunctions,
models from diagnosis components rather than abmodel-based diagnostics (MBD) uses forward mod-
stract a diagnosis model from more complex behawels of systems and then applies diagnostics algo-
ior models. Among this class of approaches, we exithms on these to decide whether a certain behavio
amine one particular paper. [Dressler, 2002Js normal or abnormal [Darwiche].
describes a methodology of diagnostics generation
for car subsystems, based on the assumption that,... ga@| iy =
models of car systems can be automatically com-" ME@T@& =>

posed from model libraries. ﬂi P

2 ARCHITECTURE
2.1 Global Framework

Within the development of auto-generation of diag-
nostics for building automation systems, one of the
?g?:gs?ilégcﬂgzsells (t:grfatr))er?f;nusrf((:) er?ngél)_mB\lljvim?r?gdllnl-:igure 2. Model-based diagnostics in building atgtion.
formation Modeling (BIM) involves integration of
CAD drawings, geospatial data and other graphicaéu
and non-graphical data. It serves as a shared esourg |
of information on a building. Yet, behavioral asizec
are rarely modeled and the Industry Foundatio
Classes (IFC), the standard interchange format f
building models, support for smart objects is ledit
[Halfawy, 2002].

Fig. 2 illustrates how diagnostics is embedded in
r framework for fault detection and diagnosis of
ilding automation. The reasoning engine com-
I5Jares the observed values with the predicted efate
he system. In case of a conflict the reasoningneng
Opgrovides the most possible affected component(s) as
diagnosis output to be forwarded to a maintenance
module.

Trans-
formation
Rule Base

N Although MBD has the capability to isolate more
ﬁ Ejp diagnoses than rule-based approaches, it faces the
SYSUL | Joehaviours confopelo challenge of defining the appropriate MBD models.
Typically, diagnostics are generated independent of
—— —— oo the design process. In our work, we assume that we
J—» Facted X _— can use design models to automate the process of di
*Res agnostics, and we apply a model-transformation ap-
Figure 1. Global framework. proach to the diagnostics, using design models to

auto-generate the MBD models.
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A second drawback of MBD is the complexity of sociated withv; the domain abstraction functi@gom
its models and inference, as compared to rulegrovides the abstracted discrete domain gom
Hence, it is important to use MBD models (in em-&gon{dom, L, Y(L)) where Y(L) assigns one of the
bedded-systems applications) that provide a goodalues {b, o, a} to each landmark indicating
tradeoff of fault-isolation capabilities for memory whether |is included in the interval below, forms an
and CPU requirements. own interval [], li] or is included in the above inter-
val.
Definition. (Granularity of Domain Abstraction)
The granularity of the domain abstractiofqg() is
We have two applications, a source and a target afie number of intervals in which a domain dom
plication, with a corresponding meta-model for eachs split by a given abstraction functigg,m
application. We use the theory of model transforma- Remark It is obvious that n — & g(gom) <2n + 1
tion [Mens, 2006] to formalize our transformation for n = |L|.
process in terms of a rewrite procedure. Modelstran
formations that translate a source model into &n ou 3 Function Abstraci
put model can be expressed in the form of rewriting;" unction Abstraction
rules. According to Mens et al. [Mens, 2006], theAbstraction of a functiorf includes rewriting the
transformation we adopt is an exogenous transfocontinuous input and/or output to a representation
mation, in that the source and target model are exhat maps discrete arguments to discrete values. We
pressed in different languages, i.e., behaviour-modiefine two different types of function abstraction:
els represented as FSM or hybrid automata antl. We representf through discrete directions in
propositional logic languages. which the value changes: increase, decrease, hold
and jump-to. The output can then be modeled as
a separate automaton.
3 QUALITATIVE ABSTRACTION 2. We represent thé by tracking its value. The
number of discrete states of the system must
therefore be multiplied by the granularity of the
Abstraction is the process of separating esseintial abstracted output domain
formation from details, focusing on the former vehil We call (1) thdocal function abstractiofmecause
ignoring the latter. Arabstraction functiormaps a functions are replaced through additional states an
model M into a model Mof lower complexity. Any transitions within the same component; and we call
abstraction entails a loss of information. Therefor (2) the global function abstractionin which the
not all questions can be answered through the alfunctions are replaced through states and transitio
stracted model; hence, in our application not alin an additional component changing the global
faults can be diagnosed precisely through the tresulstructure of the model.
ing diagnostics model. The diagnosability of the ab  Definition. (Granularity of Function Abstraction)
stract model depends on the type, granularity an@ihe granularity of the function abstractiorg:g{ is
coordination of the abstraction method. the number of transitions between states that were
In this section we analyze the methods of domaiereated by the abstraction functi&p, in order to
abstraction and function abstraction, and evaluateepresent.
the granularity of different aspects using the diag Remark Given n possible output values for a
nostics of a lighting control system. functionf, the granularity of the abstracted represen-
tation g€un) is N< gwn) < N’ for both abstraction

types.

2.3 Model Transformation

3.1 Preliminaries

3.2 Domain Abstraction

A domain abstraction maps values of a domai , .
domy(v) to a domain doatv) that is an ordered set 3.4 Combined Abstraction

of intervals taken from dom Sachenbacher et al. Assuming a variable that is the state/output vari-
[Sachenbacher, 2005] define an observable distin@ble g, of a component Cand that is forwarded as
tion that is the granularity of the observable variinput y; to a component |Cin the ideal case the
ables and a target distinction that is the graitylar landmarks L¢) = {l4, I, ..., I} are the same inC
of the solution of the diagnosis problem. They fur-and G. However, if this is not the case, abstraction
ther describe the “goal of task-dependant qualiati functions must be composed.

domain abstraction is to determine maximal parti- We outline two methods of composition:

tions for the variables’ domains [...] that retaim al 1. Abstracting domains dogfy;) and dorgly;) with

the necessary distinctions”. different abstraction functions and then provide a
Definition. (Domain Abstraction Function) Given mapping function frony; to y;, that is from the
a continuous domain dqfw;) for a variablev; and discrete domain dogq;) to the discrete domain

an ordered set of landmarksv}(= {1, I2, ..., |} as- domy(y;).



2. Combining the abstraction functioriﬁqi) and Continuous svstel  Abstraction ! Abstraction

&(fyj)dby ei_ther deing_ their fgranullarilti_es in rc]:a_se Model @, 3 o
of domain abstraction of multiplying their % M. = (D M, = E(D
granularities in case of function abstraction. mode 1= &) 2= 620n)

Definition. (Granularity of Abstraction) Given an System A(S) As(S)
AbstractionA of a model M, the granularity of the
abstraction is the pair of the granularity of the d date
main abstraction and the granularity of the funttio [Opservatiora 3 Y
abstraction g&) = (9€don), 9Eun))- 0= XAc) O2= Xao(0)

Ny

4 METHODOLOGY OF DIAGNOSTICS . .
COMPARISON

A diagnosis problem arises when some symptom
are observed, that is, when the system’s actual b
haviour is in contradiction with the expected behav
iour. We adopt definitions from [Provan, 2009] for Figure 3. Methodology for Abstraction Granularity
propositional diagnosis mode, observation and diag-
nosis:

Definition. (Propositional Diagnosis Model) A
discrete diagnosis model is specified by a tdple=
{I,V, E I1} wherel OO is a temporal index/ is a
set of discrete-values indexesIhguch thav; 1V is
the set of failure mode variables, a¥dllV is the
set of observable variableg;[] V;x.4, consists of 5 EXAMPLE
propositional equations (whei& is a propositional 5.1 Lighting System Model
well-formed formula over\( \ V;); andII is a dis-
crete probability distribution over the equations
and/or variables.

Definition. (Observation) An observatianis an
instantiation of the set of observable varialMgs

Definition. (Diagnosis) Given a diagnostic mode
®p ={l,V, E I}, diagnosisd is an assignment to
all failure mode variable¥; of the diagnostic system : . iy
®p such thatd, Oa 00 |20 for an observation. system is depicted in Fig. 4. ~

We further define the abstraction of a diagnosis is, 1€ controller has four statese® = {off, hold,

the pair of the abstraction of the model and the af!€CT, Incr} to set the actuation levelsy within its
stragtion of the observation. domain dom¥ac) = {0, 1, 2, 3}. The input variables

Definition. (System Abstraction) Assuming a YcombLaNdVoceupancyguard the transitions between the

System S that is represented through a modeind ~ States in such way that off is activated towset’ =
instantiated with an observatien an abstraction of O Under the condition thabceupancy= false If Voceu-
S is the pairdy = (M;,0) where M = &(®y) is the  Pancy = true and the light-level is within an optimal
abstraction of the propositional diagnosis model an'@n9€ & A, the controller enters or remains in state
O =i(a) is the abstraction of an observation. hold and does not chang@e. If Voceupancy= true

Remark @p in this definition is the abstracted @nd the light-level is not in an optimal range, the

model M. = &(®y) in case of highest possible granu-Controller can either decrease the actuation level
larity of the abstraction functict. step-wise or increase the actuation level “jump-
As shown in Fig. 3, different abstracted systemdViS€”- l-€., if Vign. > S the controller enters state
are constructed using different granularities. EacH€cr With the functioffdec: Vact” = Vacw — 1 If VoombL
system is composed by the abstracted model and tﬁf)a' thenvacy is increased through the functiog;
corresponding observation. The diagnosability ef th (1) Of the state incr:

resulting systems is analyzed based on the granular [ a_vughﬂ

Diagnosis [; Diagnosis [,

In the following section we will compare four ab-
stractions of a typical lighting system in orderd¢a-
son about their granularity, complexity and whether
the diagnosis task is fulfilled.

We illustrate our approach through a simple example
of a system that controls a lamp with four actuatio
levels in a zone that is also illuminated by ndtura
(ambient) light. A light sensor and a presence @ens
| provide a numeric value for the combined light in-
tensity and a truth-value for the occupancy astinpu
parameters to the control unit. A model of such a

(1)

ity and the complexity of the abstraction function.  Vacw = Vact 200
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Figure 4. Typical lighting system.

t| 7:10 7:15 7:16 7:17 7:18
VamoL | 100 Ix | 120 Ix| 1201Ix| 12214 1221
Veombl | 831X | 97Ix | 598Ix | 98Ix | 455 Ix
VeombL_s| 85Ix | 95Ix |2000 Ix| 100 Ix | 460 Ix
Voccupancy| false true true true true
Voceupaney_s|  false true true true true
et off incr decr incr incr
Vactl 0 3 0 2 3
Var | OIx | 6001Ix| OlIx | 400Ix| 600 Ix

Table 3. Trace of the continuous model, sensdt.fau

Table 1 lists the combined light of the ambient
and artificial light at the position where the ligh
sensor is located. The artificial light directlypgads
on the actuation level that is discrete by its ra&tu

t| 7:10 7:15 7:16 7:17 7:18
Vambl | 100 Ix | 120 Ix| 1201Ix| 1221 1221
Veombl | 831X | 97Ix | 97Ix | 98Ix | 98 Ix
VeombL_s| 85Ix | 95Ix | 95Ix | 100 Ix | 100 Ix
Voccupancy| false true true true true
Voceupaney_s|  false true true true true
Oetrl off incr incr incr incr
Vactl 0 3 3 3 3
Var | O IX 0 Ix 0 Ix 0 Ix 0 Ix

There is no sensor to measure the intensity of theable 4. Trace of the continuous model, actuagt/fault.

ambient light in the system; therefore it is estieda
based on the time of day (and eventually astro&gic
time).

5.2 Abstractions

As mentioned earlier, four abstractions have been

calculated mainly driven by the domain of the com-

bined light.
The coarse domain abstractioA] uses three
intervals to determine the light level based on
the optimal range that drives the controller.

* The fine domain abstraction has a finer granu-

larity where the light level is represented by 15
intervals corresponding to the interference table.

. Ambient light

Actuation
level dark dawn bright

(< 100 Ix) (100 - 1000 Ix) (> 1000 Ix)
0 (01x) 0-90 Ix 50 — 900 Ix > 500 Ix
1 (200 Ix) 176 — 290 Ix 226 — 1100 Ix > 676 |
2 (400 Ix) 352 — 490 Ix 402 — 1300 Ix > 852 |
3 (600 Ix) 528 — 690 Ix 578 — 1500 Ix > 1028 |
Table 1. Interference table.

For the purpose of the diagnosability analysis we
construct trace tables that contain the systemrobse
vations and the corresponding unobservable system
parameters. The following tables describe the frace
for the nominal behavior (table 2) and behavior in

The composed domain abstractioky)( based

on merging the landmarks of both the coarse
and the fine domain abstraction, represents the
domain of the light level by 16 intervals.

The function abstraction df,.r (As) combines a
local function abstraction with corresponding
domain abstraction of five intervals.

The finest possible abstractioAs(= ®p) com-

case of a sensor fault (table 3) and in case @fcan
tuation fault (table 4).

t| 7:10 7:15 7:16 7:25
VampL | 1001Ix | 1201Ix | 1201Ix| 250 Ix
VeombL | 831X 97 Ix 598Ix | 705Ix
Veombl_s| 851x 95Ix | 600Ix | 705Ix
Voceupaney|  false true true true
Voccupancy_s|  false true true true
Jct off incr hold decr
VactL 0 3 3 2
VAriL 0 Ix 600 Ix | 600Ix| 400 Ix

Table 2. Trace of the continuous model, nominabver.

bines all the domain abstractions used above
with the finer local function abstraction.

5.3 Discussions

Table 5 shows evaluations of the four abstractains
the lighting system model. Since all of the abstrac
tions either match or extend the range of nominal
behavior of the original model, no false alarms are
raised, if undisturbed operation of the diagnosis
framework is assured. The fault of a sensor reading
being out of range (table 3) is covered by those ab
stractions with the finer granularity of the domain
abstraction fovcomb, A2 and A4. A faulty actuator,
i.e., a burnt-out bulb, (table 4) is detected Hyaht
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diagnosability and the complexity of the granuiarit
are analyzed. Using this approach, we can tailer th
abstraction level to the required diagnosis-model
granularity. This can help embed diagnostics code
that satisfies the goal of isolating faults appropr
ately, while using the least amount of memory and
CPU.
We plan to extend this work in a variety of ways,
including: (1) extend the class of diagnosis models
to incorporate explicit fault behaviors, rather rtha
simply deviations from nominal behavior; (2) extend
the class of source (reference) models to cover a
wider range of control systems, sensors, actuators
and physical environments found in building auto-
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Table 5. Evaluation of four different abstractions
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