
1 INTRODUCTION 

A major source of energy inefficiency in buildings is 
suboptimal control. Lighting is one of the main 
energy consumers in buildings, responsible for 20% 
of total energy usage in US commercial buildings 
(EIA, 2003). Up to 58% of this may be wasted due 
to inefficient lighting control (Delaney, D.T. et al. 
2009). The aim of our research is to define an intel-
ligent control methodology which will optimise the 
light actuation levels to minimise energy wastage. 

In this paper, we consider a two step approach, 
with a higher level controller periodically optimising 
initial settings, combined with a lower-level reactive 
controller actuating the light. There is existing work 
on both centralised optimisation (Singhvi, V. et al. 
2005, Mahdavi, A. 2008) and combining decision 
support with existing control systems (Davidsson, P. 
et al. 2000, Boman, M. et al. 1999). We formulate 
the higher-level problem as constraint optimisation. 
We use hybrid systems models to model and simu-
late the building environment and reactive control-
ler, to represent both the discrete and continuous 
components required in lighting control and pres-
ence sensing. 

We assume a tracking system which monitors the 
location of individual occupants within the con-
trolled area, and an interface which allows them to 
express preferences over the lighting. When signifi-
cant changes occur in the environment, the con-
straint based optimiser computes initial actuator set-
tings which minimise an objective function 
combining preferences and energy. The reactive 
controller then maintains the desired illuminance le-
vels by actuating window blinds and internal lights 
to compensate for changes in the external light level. 

The remainder of the paper is organised as fol-
lows: Section 2 introduces the reactive and optimis-
ing controllers and the process by which they share 
control. In Section 3 we specify the scenario and the 
reactive control strategy. Section 4 details the con-
straint based optimising controller. Section 5 briefly 
outlines the modeling methodology used in the si-
mulated scenario and the results of that simulation. 
We conclude the paper in Section 6. 

2 REACTIVE AND OPTIMISED CONTROL 

To allow for both optimised and reactive control our 
approach uses two separate controllers which work 
together. In this section we describe their operation. 

2.1  Controller Algorithm 

The actuators in the simulated environment are con-
trolled directly by the simulated reactive controller.  
This controller starts by actuating initial light set-
tings provided by the optimising controller, the ‘ini-
tial configuration’. The optimising controller pro-
vides both the optimal actuator settings and the 
predicted resulting sensed illuminance levels. It is 
assumed that any small changes to the environment, 
such as changes in daylight levels, will result in 
small changes to the configuration, and thus only 
small changes to the objective value. If, for instance, 
daylight increases gradually, the lighting nearest the 
window merely need to be reduced slightly. Thus by 
progressivly altering the initial configuration to 
maintain the predicted levels, the reactive controller 
alone can maintain an near-optimal configuration 
when small changes occur. 
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Figure 1. Control System 

 
However, there may be circumstances in which 

the new optimal configuration is no longer in the 
neighbourhood of the current configuration, and 
cannot be found through reactive control alone. In 
our model two such circumstances exist: the move-
ment of an occupant or significant drift from the ini-
tial configuration due to continued changes in the 
external light. In the case of an occupant moving the 
distribution of preferences across the environment 
will change, altering the preferred illuminance levels 
in a way the reactive controller cannot predict. In the 
case of configuration drift, we refer to small but cu-
mulative changes to the external lighting of the envi-
ronment causing the reactive controller’s configura-
tion to become increasingly distant from the initial 
configuration. When the initial configuration is mod-
ified beyond a certain margin, it is assumed that the 
external lighting may have changed sufficiently to 
move the optimal configuration out of the neigh-
bourhood of the initial configuration. In both of the 
above circumstances the reactive controller requests 
a new configuration from the optimising controller. 

The reactive controller includes the current actua-
tor settings, sensor readings and occupant locations 
in its request for a new configuration. The optimis-
ing controller uses these and the stored occupant 
preferences to compute the optimal configuration 
according to the objective function. It then returns 
this configuration, including both the optimal actua-
tor settings and predicted sensed illuminance levels, 
to the reactive controller. This is the new ‘initial 
configuration’, which the reactive controller imple-
ments and controls around as before. 

2.2 Model Assumptions 

The simulation is an approximation of the scenario 
environment. We currently make some assumptions 
about the hardware and the propagation of light 
within the environment, as follows. 

We assume that the propagation of light within 
the model is uniform and diffuse. The light received 
at any point from any source depends only on the 

distance between the point and the source. Similarly, 
blinding is assumed to uniformly decrease the 
amount of daylight entering the environment. With 
regard to the actuators and sensors, they function in 
an ideal fashion; the actuators emit exactly the 
amount of light that they are supposed to, and sen-
sors always correctly report the exact illuminance 
level at their location. Furthermore, it is assumed 
that these devices are perfectly reliable, that they 
never suffer from control failures of any kind.. 

Future work will involve removing these assump-
tions from the model. Daylight entering the envi-
ronment and the reduction of daylight via blinding is 
typically not uniform or diffuse. To account for this, 
the controller will need a model which can incorpo-
rate localised light and dark spots. The possibility of 
imprecise output from the actuators or inaccurate 
readings from the sensors adds uncertainty into the 
selection of the optimal configuration. The optimiser 
will have to account for the fact that its knowledge 
of the current configuration may be inaccurate, and 
that the suggested configuration may not have ex-
actly the predicted effect, and choose the solution 
most likely to minimise the objective function. Con-
trol failure of actuators or sensors could change the 
options available to the controller, and so it will 
have to be able to detect such problems to avoid 
suggesting configurations which cannot actually be 
implemented. 

3 INTELLIGENT LIGHTING SYSTEM 
SCENARIO 

In this section we specify the scenario we are simu-
lating and the reactive controller which controls the 
actuators. 

3.1 Scenario Specification 

We have adopted a typical architecture as shown in 
Figure 2. We focus on an open office area, which 
contains 6 controlled zones, where each zone con-
tains one artificial light and one light sensor. One 
Radio-Frequency Identification (RFID) receiver is 
used to cover the whole area; there is one win-
dow/binding in the left border of the considered area 
and a fix number of predefined occupant positions. 
 

 
 
 
 
 
 
 
 

Figure 2. Scenario Model Specification 



For the lighting model we integrate blinding and 
lighting controls. In order to enhance the efficiency 
of the resulting control model, an optimising con-
troller has been implemented, as explained later. 

As a summary, the lighting control scenario be-
haves as follows: 
1 The user can switch on/off the automatic lighting 

system for several zones, or for all the system 
through a technician. 

2 The occupants provide their light luminance pre-
ferences. 

3 An occupant is tracked in each zone using RFID, 
and his preferences are considered wherever he is 
located. 

4 The optimising controller receives the user prefe-
rences and sends back the optimal settings. 

5 The reactive controller controls the artificial light 
and the blinding actuators in order to reach the 
optimal settings and to respond to the influence of 
changes in the daylight luminance. 
 

3.2 Reactive Control Strategy 

Figure 3 shows the agents of the control model and 
its interactions with the environment agents. The 
controller follows the following scenario in order to 
control the light intensity: 
1 The optimising controller receives the user prefe-

rences for each person and its position, sends the 
optimal light setting and blinding position back to 
the reactive controller in order to refine the actua-
tion values using a PI-Controller. 

2 The reactive controller actuates the artificial light 
and the blinding position accordingly, then goes 
to 1 if the occupant preferences have been altered 
by the movement of an occupant or if a signifi-
cant deviation from the optimised configuration 
has occurred. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 3. Control Model 

The PI-Controller is used to predict the next actu-
ation setting for the lighting dimming level in a close 
loop fashion (Kolokotsa, D. et al. 2009). The PI-
Controller has two main status, first is unstable when 
the difference between the sensed light intensity and 
the optimal one is greater than 70 Lux (one light 
actuation level), and secondly, is stable, if the differ-
ence is less than or equal to 70 Lux. 

4 CONSTRAINT BASED OPTIMISATION 

The optimising controller is responsible for compu-
ting on request settings for the actuators which op-
timise both energy consumption and occupant satis-
faction. To this end we model the energy cost and 
the effect on the building environment of the actua-
tors, and the preferences of the occupants, as a Con-
straint Optimisation Problem (Dechter, R. 2003). A 
constraint problem consists of a set of variables, a 
domain of possible values for each variable, a set of 
constraints over the assignment of values to va-
riables which restrict the values that may be as-
signed simultaneously, and an objective function 
over the assignments. A solution is an assignment of 
one value to each variable such that no constraint is 
violated. An optimal solution is one with the highest 
objective value. Solutions may be obtained by any 
suitable method, including backtracking and logical 
reasoning, mathematical programming, or local 
search. 

4.1 Preference Modeling 

To quantify occupant satisfaction with a configura-
tion we must model their preferences over illumin-
ance levels.  We model each occupant’s preferences 
as a preference curve, which associates a satisfaction 
level from 0 to 1 with each possible lux level. These 
satisfaction levels may be derived from direct occu-
pant feedback or learned over time based on their ac-
tions with regard to the lighting. The preference 
curves in our simulated scenario peak in the range of 
400-500 lux, falling off to 0 satisfaction within 300 
lux above or below that range. 

Modeling an occupant’s preferences over the en-
tire range of illuminance levels allows us to deter-
mine an acceptable range of illuminance levels for 
that occupant. By constraining the occupant’s satis-
faction to be above a certain threshold, we compute 
a range of illuminance values within which the oc-
cupant is simply considered satisfied, and thus with-
in which the energy cost component of the objective 
function will be the deciding factor. Since we model 
the occupant’s preferences across all values, this sa-
tisfactory range is determined by the occupant’s own 
sensitivity to different lighting conditions. 

To apply these preferences to the physical envi-
ronment, we break it down into control zones, each 



of which contains a set of zero or more occupants. 
The zone is the smallest unit of the environment 
which the controller reasons over, so preference 
curves are grouped into these zones. By averaging 
the preference curves of the relevant set of occu-
pants, we produce a zone preference curve, which 
describes the overall satisfaction of that set of occu-
pants. 

Conflicts in occupant preferences may make it 
impossible to completely satisfy every occupant in a 
set. Thus the controller first determines the maxi-
mum achievable satisfaction for the set of occupants, 
and the satisfaction threshold is offset from this val-
ue. 

4.2 Actuation Modeling 

We evaluate actuation in terms of the energy cost of 
the actuator configuration and occupant satisfaction 
with the resulting illuminance levels. The energy 
cost of each actuator is simply a direct function of 
that actuator’s set point. However occupant satisfac-
tion depends on the lighting conditions effected by 
the actuators, which is dependent on the combined 
effects of all the actuators. Thus, as with the prefe-
rence model, we model the building environment as 
a set of zones, and model the effects the actuators 
have on that set of zones.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4. Optimising Controller Overview 

 
We model each actuator as a set point variable 

and a set of constraints which describe their energy 
cost and lighting effect. These set point variables are 
the decision variables of the constraint problem, the 
variables to which we assign values when searching 
for a solution. In our simulated scenario there are six 
lights and one blind. The lights have 11 possible set 
points ranging from 0 to 10, while the blind has 5 set 
points, from 0 to 4. In this model both the energy 
cost and light output are proportional to the set 
point. 

For each actuator a set of constraints relate the 
output of that actuator to the lux of each zone which 

it affects. The illuminance received by a zone from 
each actuator is proportional to the base output of 
that actuator and is modeled as a relational con-
straint. The total lux in each zone is the sum of the 
individual contributions. These predicted lux values 
are the dependant variables of the model, and are 
evaluated against the occupants preferences as part 
of the objective function. 

The objective value of a solution is the weighted 
sum of the total energy cost and total deviation from 
occupants’ preferred lux level ranges. The total 
energy cost is the sum of the energy costs of all ac-
tuators. The total deviation is the sum across all 
zones of the distance of the predicted lux level from 
the preferred lux level range. 

The blinding actuator is a special case which in-
tegrates both the effect of daylight on the environ-
ment and the effect of blinding on the daylight. The 
daylight entering the environment is treated as the 
base output of the blinding actuator, and it is as-
sumed to have no energy cost. The level of daylight 
is determined using the actuator settings and sensor 
readings supplied by the reactive controller when the 
optimising controller is invoked. Any light which is 
not accounted for by the settings of the internal 
lights is assumed to be daylight. 

We model the sensors in the environment in the 
same manner that we model zones. When we have 
determined the optimal configuration, we compute 
the illuminance levels the sensors should report 
when that configuration is implemented. These illu-
minance values are passed to the reactive controller, 
allowing it to control around the target illuminance 
levels as well as simply implementing the actuator 
set points it is given. 

Figure 4 shows the complete actuation model, in-
cluding the external data sources. When the model is 
instantiated we search through the space of possible 
assignments to find the one which minimises the ob-
jective function. We do this using backtracking 
search interleaved with constraint propagation, using 
the min-dom and min-value heuristics. The model is 
implemented in and solved with CP-Inside (Feld-
man, J. & Freuder, E. 2009). We find the optimal so-
lution in, on average, 250 milliseconds. 

5 SIMULATION 

The control system and its environment have been 
modelled and simulated using the Charon simulation 
tool-set (Charon). In this section we briefly describe 
the simulation models and discuss the results includ-
ing power savings comparing to a typical control 
technique used in building automation. 



5.1 Modelling for Simulation 

In order to model the system, two types of agent 
have been used: Control- and Environment Agents. 
The behaviour of each agent is described using a hi-
erarchy of modes.  

Regarding the Control Agents, one main agent is 
used for the reactive controller, such that one sub-
agent is used to refine the actuation values in each 
zone using a PI-Controller as depicted in Figure 5. 
Another agent is used to call the optimising control-
ler. This agent is triggered whenever the user prefer-
ences change or a significant change in the actuator 
configuration occurs. Finally, the sensor agent is 
used to update the internal light value every sam-
pling period, based on the actuation value, the light 
interference and the daylight light coming to the 
sensor. It considers an intensity attenuation factor of 
1/r

2
, where r is the distance from the light source to 

the sensor. 
For the Environment Agents, three Charon agents 

have been used to model Person Movements, Day-
light Intensity and Window Blinding Occlusion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. PI-Controller  

 
Due to space limitation we only show one of the 

control modes depicted in Figure 5.  

5.2 Simulation Results 

To provide an overview of the control strategy and 
resulting lighting conditions in the office we show 
Figures 6a-6d. Figure 6a shows the locations of the 
occupants by zone, with zone 0 referring to occu-
pants who are not present. Figure 6b shows the 
computed optimal light levels to be achieved by the 
reactive controller, while Figure 6c shows the actual 
sensed light levels. These levels differ due to 
changes made by the reactive controller to respond 
to the values in Figure 6d, the progression of day-
light over the course of the simulated day. 

To highlight the effects of the control strategy we 
consider zones 1, 3 and 6. Zone 1 is adjacent to the 
window and is thus heavily influenced by daylight. 
Due to this a pattern of decreases and increases in 
the internal light level of Zone 1 can be seen as the 

reactive controller corrects for the loss of daylight 
towards the end of the day. Shortly thereafter an-
other occupant enters the zone, causing a small in-
crease in the optimal light level, and a corresponding 
increase in the actual light level as the reactive con-
troller implements the new optimised solution. Zone 
6 is seen to have a more stable light level and more 
closely follow the optimal light level as it is further 
from the window. Zone 3 maintains a low but non-
zero optimal light level despite being unoccupied 
most of the day. This is due to the optimised light 
levels being predicted sensor readings, which take 
into account the effects of all actuators. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6a. Occupant Locations 

 
 
 
 
 
 
 
 
 
 
 

Figure 6b. Optimised Light Levels 

 
 
 
 
 
 
 
 
 
 
 

Figure 6c. Internal Light Levels 

 

 

 

 

 

 
 

 
 
 Figure 6d. Daylight 



 
 
 
 
 
 
 
 
 
 

 
Figure 6e. Occupant Satisfaction 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6f. Energy Consumption 

 
To evaluate the potential energy savings and ef-

fects on occupant satisfaction of our proposed strat-
egy, we compare the performance of our controller 
against a base line control system. This base line is a 
typical reactive control strategy used in building 
automation. We assume a passive infrared sensor for 
presence detection, with the light in each zone 
switching on to a predefined level whenever at least 
1 occupant is in that zone. We consider 400 lux to be 
the optimal lux level for this strategy, as it has the 
capacity to satisfy the occupants under all conditions 
without undue energy use. 

Figure 6e compares the actual occupant satisfac-
tion level against that which would be achieved by 
the base line system. Sudden changes in actual satis-
faction occur as there is a small delay between the 
movement of an occupant and the reaction of the 
controller. Note, though, that this effect is magnified 
in the results, since the simulation is running approx. 
350 times faster than real time. In practice, the delay 
is never more than 1 second. These delays are also 
responsible for the unstable data prior to time index 
118, which we disregard when evaluating energy 
performance below. These delays notwithstanding, 
our controller maintains occupant satisfaction at or 
above the base line. 

Figure 6f shows energy consumption in terms of 
lux as energy consumption scales linearly with ac-
tuator output. The results show a 30% energy saving 
over the base line strategy. 

6 CONCLUSION 

We have proposed a constraint based optimiser and 
control strategy for an intelligent automated lighting 
system. The system uses supplied occupant prefe-
rence data and a tracking system to maintain occu-
pant satisfaction while optimising energy use. Simu-
lation results show that the proposed strategy 
reduces energy consumption by around 30% com-
pared to a standard base line approach while main-
taining occupant satisfaction at high levels. Our cur-
rent model makes a number of assumptions about 
the environment and hardware; future work will be 
to remove these assumptions and find solutions to 
the resulting challenges. 
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