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Abstract Lighting systems consume a considerable proportion of total energy bud-
gets, particularly for retail and public-office applications, and hence their optimi-
sation can save considerable amounts of energy. This paper proposes an intelligent
control strategy to operate the office luminance in order to enhance user comfort
and reduce energy consumption. The strategy is applied to an open office scenario,
where the controller and the environments are modelled using a hybrid/multi-agent
platform. The developed controller uses a constraint-based optimisation technique
to compute the optimal settings. We describe the different modelling steps, including
the optimisation technique, and outline the simulation results and potential energy
benefits of the proposed controller.
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1 Introduction

An intelligent building incorporates a Building Management System (BMS) which
aims to optimise energy usage while trying to optimise user comfort. One major
energy consumer in buildings is lighting, which can account for up to 30% of total
energy waste in some retail and public offices [1]. This energy inefficiency is due to
a lack of energy-efficient lighting controllers.
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The aim of our research is to define a methodology for efficient modelling and
integration of building management system services, in particular lighting and Heat-
ing, Ventilating, and Air Conditioning (HVAC) systems. We assume that build-
ing automation models can be represented using hybrid systems models [2], since
hybrid systems can represent both the discrete-valued and continuous differential-
equation-based relations essential for such models.

In this paper we show how we can use component-based hybrid systems to model
and simulate an intelligent lighting controller. The developed lighting system tracks
the presence of people in the different controlled areas and allows users to express
preferences for interior lighting levels. The control system accommodates such pref-
erences for all occupants within a zone, by optimising a global preference/energy
function using a constraint-based optimiser to compute the optimal light luminance
levels specified by the user preferences, and the power consumed by the artificial
light and the blinding actuators. The centralized controller then maintains this set-
point by adjusting window blinds to control the exterior light levels, and by dimming
the interior lights.

The remainder of the paper is organized as follows: Section 2 introduces our
modelling platform and describes the system scenario specification, the control
strategy and the corresponding hybrid modelling for the control and its environ-
ments. The constraint-base optimisation technique is explained in Section 3. Section
4 outlines the simulation results. Finally, we conclude the paper in Section 5.

2 Hybrid Modelling for Intelligent Lighting System

We now apply our design methodology to develop an intelligent controller for a
lighting system. In this section we introduce our modeling framework, describe the
scenario specification for the lighting system model, the control strategy and finally
the corresponding hybrid modelling.

2.1 Hybrid Platform for Building Control

Building systems are a perfect example of hybrid systems, where continuous and
discrete dynamics must be used for modelling. For example, heat dissipation and
luminosity follow a continuous dynamics whereas presence detection is a discrete
nature. In our work we show how we can use a component-based hybrid-systems
modelling framework to generate models for simulation and verification.

To implement the hybrid systems for building models, we using the CHARON
tool [3]. We assume that we can create/redesign a system-level model by compos-
ing components from a component library [[4], [5]]. We call a well-defined model
fragment a component. We assume that each component can operate in a set of
behaviour-modes, where a mode M denotes the state in which the component is op-
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erating. For example, a pump component can take on modes nominal, high-output,
blocked and activating.

Our ongoing research work consists of developing an integrated platform for
intelligent control of building automation systems. This platform provides, among
other features, predictability, reconfiguration, distribution and building energy opti-
misation.

The system design flow starts by defining relevant scenarios to be operated within
the building. These scenarios are defined using the Unified Modelling Language
(UML) [6]. The UML models are interpreted using specific models for simulations
and analysis purposes. At this level we allow an optimisation loop to optimise the
model at an early stage of the development. When the simulation gives satisfac-
tory results, the models are auto-translated into embeddable code to be deployed
over a distributed sensor/actuator network [7]. The integration process is performed
through the implementation of a model-/service-based middleware [8] platform al-
lowing components connection and data exchange. All the different components of
the architecture collaborate with the requirements module.

The main features of our platform will be illustrated through an example of
a lighting system for an office area. This example illustrates the combination of
discrete-event behaviour (presence detection, light actuation levels) and hybrid
properties for the luminosity control, i.e., where both discrete and continuous as-
pects are considered.

2.2 Scenario Specification

We have adopted the architecture shown in Fig. 1(a) for our work. We focus on
an open office area, which contains 6 controlled zones, where each zone contains
one artificial light and one light sensor. One Radio-Frequency Identification (RFID)
receiver is used to cover the whole area; there is one window/binding in the left
boarder of the conceded area and a fix number of predefined person positions. For
the lighting model we integrate blinding and lighting controls. In order to enhance
the efficiency of the resulting control model, an optimisation technique has been
implemented, as explained in Section 3.

As a summary, the lighting control scenario, as described in Fig. 1(b), behaves
as follows:

1. The user can switch on/off the automatic lighting system for several zones, or for
all the system through a technician.

2. The users provide their light luminance preferences.

3. A person is tracked in each zone using RFID, and his preferences are considered
wherever he is located.

4. An optimisation engine receives the user preferences and sends back the optimal
settings.
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Fig. 1 Lighting System Specification

5. The controller controls the artificial light and the blinding actuators in order to
reach the user preferences considering the daylight luminance and the light inter-
ferences coming from the adjacent zones.

2.3 Control Strategy Modelling

Fig. 2 shows the agents of the control model and its interactions with the environ-
ment agents. The controller follows the following scenario in order to control the
light intensity:
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Fig. 2 Control Model

1. The optimisation engine receives the user preferences for each person and its
position, sends the optimal light luminance and blinding position back to the
refinement controller in order to refine the actuation values using a PI-Controller.

2. The refinement controller actuates the artificial light and the blinding position
accordingly, then goes to 1 if the preference has been changed or a significant
change in the sensed light occurs otherwise the PI-Controller actuates relying on
the external light and the light interference changing.

The PI-Controller is used to predict the next actuation setting for the lighting
dimming level in a close loop fashion [9] using Eq. 1. The PI-Controller has two
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main status, first is unstable when the difference between the sensed light intensity
and the optimal one is greater than 70 Lux (one light actuation level), and secondly,
is stable, if the difference is less than or equal to 70 Lux.

Alt+1)=A(t) + o (D
U(t)=A@t)+E()+I1(1)

1 xe, VSt -U(t)>e
0, VIS@)-U@)<e

Where, A(t) is the actuation setting for light/blinding actuators, E(z) is the day-
light intensity (Lux), /(¢) is the interference light intensity (Lux), U (7) is the sensed
light intensity (Lux), S(¢) is the optimal preference settings and € is the luminance
level produced from a single dimming level (70 Lux).

2.4 Hybrid Modelling

In the Charon modelling shown in Fig. 2, two types of agent have been used to
model the control- and environment agents.

Control Agents : One main agent is used for the refinement controller, such that
one subagent is used to refine the actuation values in each zone using a PI-Controller
as depicted in Fig. 3(c). Another agent is used to call the optimisation engine; it
follows the behavioral mode depicted in Fig. 3(b). This agent is triggered whenever
the user preferences change or a significant change in the sensed light is observed.
Finally, the sensor agent has been modelled as shown in Fig.3(a), as it updates the
internal light value every sampling period, based on the actuation value, the light
interference and the daylight light coming to the sensor. It considers an intensity
attenuation factor of 1/r%, where r is the distance from the light source to the sensor.

Three environment agents have been used to verify the control behaviour as fol-
lowing:

Person Movements : One agent is used to model a person’s movements. This
agent uses a Markov chain to model the person presence in the zones using a Phase-
type Distribution [10]. As shown in Fig. 4, A is the transition probability between
each zone and the ambient area. The time consumed (¢) in each zone follows Eq. 2.
Fig.3(e) shows the hierarchal hybrid automata for the Markov chain model. When a
person moves from his zone (current zone) to the next zone, the model goes to the
deeper level in order to reflect his transition to the other zones. If the user moves to
the absorption state, that means he goes out of the controlled area.
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Daylight Intensity : In the daylight model shown in Fig. 3(d), five periods have
been modelled as a first order differential equation with a constant slope using linear
hybrid automata [11]. During the first and last four hours of the day, the daylight
slope and luminance are equal to zero, while during the second four hours the slope
is equal to 100 which means that the maximum intensity in the day is 4000 Lux. In
the next eight hours the slope is equal to zero and then goes to -100 in the following
four hours in order to reach zero luminance again at the end of the day. The light
intensity that comes to the controlled zone is a percentage of the daylight intensity;
this percentage relies on the dimensions of the window. In this model, 8% of the
daylight is considered as the external light coming into the controlled zone [9].

Window Blinding Occlusion : One Charon agent is used to model the blinding
occlusion as an algebraic equation. It calculates the daylight percentage coming to
the controlled zone as a linear proportion from the blinding position as following

alge{ExternalIndoorLight ==
Externallight« (BlindAct/TotalControlLevels) }

3 Constraint-Based Optimisation

The purpose of the optimisation engine is to compute settings for the lights which
optimise both the energy use and the occupant satisfaction levels. The computa-
tion is based on the inferred external sunlight and the stated occupant preferences,
and uses an idealised model of the domain. The derived settings together with the
preferences are sent to the controller as initial actuator settings. The controller then
controls the lighting around these initial values. When the occupants change, or
the actuated levels diverge significantly from the initial values, the problem is re-
specified to the optimisation engine, which re-computes and issues new settings.

We model the building environment, the actuated lights and their effect on the
environment as a Constraint Optimisation Problem. A constraint problem [12] con-
sists of a set of variables, a domain of possible values for each variable, a set of
constraints over the assignment of values to variable which restrict the values that
may be assigned simultaneously, and an objective function over the assignments. A
solution is an assignment of one value to each variable, such that no constraint is
violated. An optimal solution is one with the highest objective value. Solutions may
be obtained by any suitable method, including backtracking and logical reasoning,
mathematical programming, or local search.

The variables in our model include the setpoints of the actuated lights, the blind-
ing level, the lux levels at the zone sensors, and the lux level of the external light.
The domains for the light setpoints are the 11 integer values from O (off) to 10 (full
power) and the domain for the blinding is the 5 integer values from 0 (fully closed)
to 4 (fully open). The constraints relate the actuation values to the lux levels (and so
in our model the setpoints are decision variables, the external light is a constant, and
the sensed lux levels are dependent variables). We assume that each light source con-
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tributes a fraction of its luminance to each zone, using the same underlying model in
the simulator. A solution is then a set of actuation points and lux levels such that the
constraints are satisfied. When the optimisation model is activated, the controller
passes it the actuation values and the sensed lux levels for the current state; from

this, we can infer the current value of external light.
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We associate with each individual occupant a preference curve, which associates
a degree of satisfaction from O to 1 with each possible lux level. These preference
curves may be explicitly stated by the occupant, or learned from their actions. We
then create a preference curve for each zone, by averaging the preference curves of
the occupants in each zone. From this zone preference curve we can determine the
overall preferred lux level in each zone. For a candidate solution (i.e. tuple of actua-
tion points), we can extract the value of the sensed lux level for each occupied zone,
and compute the deviation between the preferred and sensed levels. In addition, for
each actuation setting, we can compute the power required to achieve it, and we
then combine these two measures as a weighted sum to get the objective value of
the solution. Fig. 5 shows the complete process, including the inference of the ex-
ternal light. Our aim is then to search through the space of possible assignments to
find the one which maximises the objective value. We do this using backtracking
search interleaved with constraint propagation, using the min-dom and min-value
variable and value selection heuristics. The model is implemented in and solved
with CP-Inside [13]. We find the optimal in, on average, 250 milliseconds.
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variations in external light. When the controller changes the set points of the lights
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Fig. 5 Opimisation Process
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to such an extent that a light is 2 or more set points away from its initial setting,
we assume that the external light has changed, and so we re-state the problem to
the optimiser, which computes a new set of intended lux levels and a new initial
settings for the lights. Similarly, when we detect that an occupant has left, arrived,
or changed position, we again pass this new problem to the optimiser.

4 Simulation Results

The Charon model described earlier and its environment have been simulated using
the Charon simulation tool-set. In this section we provide the simulation results and
evaluate the power saving comparing to a typical control technique used in building
automation.

4.1 Lighting Control

In order to observe the control- and the environment behaviour, Fig. 6(e) shows the
external light coming to the controlled area and how it is affected by the blinding
occlusion changes of Fig. 6(f) (5:06 - 5:24pm and 7:24-7:54 pm) and the clouds
move (11:36am-4:54 pm). However, Fig. 6(c) shows the person movements among
the zones and their effect on the optimal light that calculated by the optimisation
engine for each zone, as depicted in Fig. 6(b).

To evaluate the control strategy, we consider 2 zones: the first one (Zone 1) is
highly affected by the daylight whereas the other one (Zone 6) is less affected. Re-
garding internal light in Zone 1 (shown in Fig .6(a)), when there is no presence in
zone 1, the internal light is affected only by the external light and the interferences
from the neighbour zones. However when a person comes inside, internal light 1
gets actuated to reach the optimal light decided by the optimiser. Zone 6 follows the
same routine, but with reduced daylight influence; for example at 9:42 pm, when
zone 6 is unoccupied, internal light 6 equals to 82 Lux which mainly comes from
the light interference.

4.2 Energy Saving

In order to evaluate the potential energy efficiency of the proposed control strategy,
we have considered a typical control strategy used in building automation as base-
line for comparison. The base-line model uses Passive Infrared (PIR) sensor for
presence detection in order to switch on the artificial light to a predefined luminance
level. In our case, we consider 350 Lux as the optimal light in the entire zone since
it is almost the average optimal intensity requested as in Fig. 6(b). Due to the fact
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that energy consumption has a linear relation with the consumed Lux over time, we
have compared the consumed Lux in each case as shown in Fig. 6(d). The results
show that the proposed control strategy reduces energy consumption by 42% in

comparison to the baseline model.
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5 Conclusion

In this article we have proposed a hybrid/muti-agent model for an intelligent auto-
mated lighting system. The control strategy maintains user comfort through system-
atically tracking occupants in each zone in order to integrate their preferences. The
control system incorporates a constraint-based optimiser that computes the optimal
setting, thereby optimising energy usage while providing adequate user comfort.
The simulation results shows that the proposed controller saves around 42% of the
energy consumption compared to a standard baseline control strategy.

As future work, we intend to deploy a demonstration of the developed system in
the Environmental Research Institute (ERI) building, which is the ITOBO Living
Laboratory [14].
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