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Abstract. Creating ensembles of random but “realistic” topologies for
complex systems is crucial for many tasks such as benchmark generation
and algorithm analysis. In general, explanatory models are preferred to
capture topologies of technological and biological complex systems, and
some researchers claimed that it is largely impossible to capture any
nontrivial network structure while ignoring domain-specific constraints.
We study topology models of specific spatial networks, and show that a
simple descriptive model, the generalized random graph model (GRG)
which only reproduces the degree sequence of complex networks, can
closely match the topologies of a variety of real-world spatial networks
including electronic circuits, brain and neural networks and transporta-
tion networks, and outperform some plausible and explanatory models
which consider spatial constraints.
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1 Introduction

Creating ensembles of random but “realistic” topologies for complex systems
is crucial for many tasks such as benchmark generation and algorithm analysis
[1]. The topology model generators can be classified into two main groups: ex-
planatory models, which attempt to capture the underlying growth process of
the system topology based on domain-specific details in the resulting model, or
descriptive models, which directly and randomly reproduce the specified topo-
logical statistics, independent of any complex system growth process [1].

Explanatory models are generally preferred to capture topologies of various
technological and biological systems [1], and some researchers claim that it is
largely impossible to capture any nontrivial network structure while ignoring
domain-specific constraints [2]. In this paper, we focus on topology models of
spatial networks which occupy some physical space, such that their nodes occupy
a position in two- or three-dimensional Euclidean space, and their edges are
real physical connections [3]. It is not surprising that the topology of spatial
networks is strongly constrained by their geographical embedding. However, we
found that a very simple descriptive model, the generalized random graph model
(GRG), which only reproduces the degree sequence of complex networks [3], can
closely match the topologies of a variety of real-world spatial networks including
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electronic circuits, brain networks and highway networks etc., and outperform
some plausible and explanatory models which consider spatial constraints. All
these man-made and biological networks share a common planning principle:
wire cost optimization over the entire network, which plays an important role in
generating corresponding network structures.

We organize the remainder of the document as follows. Sections 2 demon-
strates the topology model analysis on a variety of real-world spatial complex
networks. Sections 3 further analyzes and discusses the experimental results.
Finally, section 4 summarizes our contributions.

2 Analyzing Topology Model of Spatial Networks

First, we analyze a class of important engineering systems, digital circuits [4].
Second, we further analyze a more complicate biological network, the human
brain network [5]. Third, we study a transportation network, the German high-
way network [6].

2.1 Electronic Circuits

The widely-accepted ISCAS-85 benchmark circuits are presented in netlists of
fundamental logic gates, which provide a standard, non-hierarchical representa-
tion specifying both network topology and functionality [4]. These benchmark
sets are surrogate circuits chosen to represent the kinds of problems a tool will
encounter in real use [4].

Domain Analysis Most ISCAS-85 benchmark circuits exhibit power laws with
cutoffs in degree distributions [1]. In circuit design, wire length has been treated
as the prime parameter for performance evaluation since it has a direct impact on
several important design parameters [7]. Recent research on circuit placement
showed that the wire length of real circuits exhibits a power law distribution
[7]. Another driving force underlying circuit design is timing. Many design cost
metrics can be treated as technological parameters that can be optimized by
trading off delay and wire length [7]. The delay of signal transmission among
components can be approximately simplified as the characteristic path length.

Topology Model According to the above domain analysis, we propose two
plausible explanatory models. We also introduce a simple descriptive model in-
dependent of any domain-specific growth process.

Spatial Preferential Attachment (SPA) Model: Existing analysis has conjec-
tured that the cutoffs in power law degree distributions might result from the
presence of spatial constraints limiting the number of links when connections
are costly [8]. Hence, the SPA model [3], which combines preferential attach-
ment with the constraint of spatial layout, is a plausible candidate for topology
generation of circuits. In the SPA model, the node position is chosen randomly in
a 2-D square space with uniform density. Connections of a new node vj with each
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existing node vi are established with probability P (vi, vj) ∝ diw
−α
ij , where wij is

the spatial (Euclidean or Manhattan) distance between the node positions, di is
the degree of the node vi, and α ≥ 0 is tunable parameter used to adjust spatial
constraints and shape the connection probability in the preferential attachment
process.

Optimization (OPT) Model: Some researchers have suggested optimization
as an alternate mechanism which gives rise to power laws in degree distributions
[2]. According to the design principles of circuits discussed above, we propose
a plausible optimization model as well. We assign each component as a vertex,
and uniformly put them on a two-dimensional square grid. The topological struc-
tures are shaped and optimized under two conflicting constraints: information
transmission steps (characteristic path length L̄) and cost of constructing con-
nections (average wire length W̄ ) [7]. The objective function is formulated as
follows: f = λL̄ + (1− λ)W̄ , where 0 ≤ λ ≤ 1. The optimization process is look-
ing for a solution that minimizes the above objective function at an appropriate
value of λ.

Generalized Random Graph (GRG) Model: The classic Erdos and Renyi ran-
dom graph model (ER) [3] can be extended in a variety of ways to make random
graphs better represent real networks. In particular, one of the simplest proper-
ties to include is a prescribed degree sequence. The random graphs with an arbi-
trary degree distribution are called the generalized random graphs. In contrast
to the above two explanatory models, the descriptive generalized random graph
model [3] randomly forms edges by pairing nodes and reproduces the given de-
gree sequence. A Markov-chain Monte Carlo (switching) implementation is used
in our experiments [9].

We can tune the α parameter in the SPA model, or the λ parameter in the
OPT model, to fit real circuits. For example, Figure 1 shows that both models
can fit the degree distribution of C432 with appropriate parameters. According
to its definition, the GRG model maintains the same degree distribution of the
real circuits.

In addition to degree distributions, we also compare some other global prop-
erties of real circuits and graphs generated by the SPA model and the OPT
model. Table 1 shows that the characteristic path lengths and s-Metric values of
these models are very close to those of the real circuits.

Shortest paths play an important role in transport and communication within
a network. A measure of the typical separation in the network is given by the
characteristic path length, defined as the mean of shortest lengths over all pairs
of nodes [3]. The characteristic path length is also an important factor in the
OPT model.

The s-Metric is a summary statistic of node interconnectivity, and is linearly
related to the assortativity coefficient: assortative (disassortative) networks are
those where nodes with similar (dissimilar) degrees tend to be tightly intercon-
nected [2]. The s-Metric of the graph G is defined as s(G) =

∑
edge(i,j) didj ,

where (i, j) is the edges in the graph, and di and dj are the degrees of the node
i and j respectively.
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Fig. 1. Cumulative degree distribution of C432 circuit, and Cumulative degree distri-
butions of graphs generated by the SPA model and the optimization model (averaged
over 1000 graphs respectively).

Table 1. Global properties of the real circuits, the GRG model, the SPA model and the
optimization model(OPT). All values of three models are averaged over 1000 graphs
respectively.

Model Characteristic path length s-Metric

C432 4.53 6986
SPA (α = 2.5) 4.52± 0.13 7349.05± 523.84
OPT (λ = 0.2) 4.5± 0.07 7097.8± 263.47
GRG 4.33± 0.05 6875.99± 143.46

C499 4.65 9848
SPA (α = 2) 4.56± 0.1 9162.6± 654.98
OPT (λ = 0.22) 4.59± 0.07 9025.9± 371.33
GRG 4.4± 0.06 10491.57± 306.78

In the above experiments, the three models display similar global properties.
Recently, new systematic measures of a complex network’s local structure were
introduced and successfully applied to evaluate and validate models of protein-
protein interaction networks [10]. Middendorf et al. exploited discriminative clas-
sification techniques, recently developed in machine learning, to classify a given
real protein interaction network (as one of many proposed network models) by
enumerating local substructures [10]. They presented a predictive approach, us-
ing labeled graphs of known growth models as training data for a discriminative
classifier. This classifier is a generalized decision tree called an alternating deci-
sion tree (ADT) using the Adaboost algorithm [10]. Presented with a new graph
of interest, it can reliably and robustly predict the growth mechanism that gave
rise to that graph [10].

We use the same classifier to evaluate the models for real circuits. The classi-
fier quantifies the topology of a network by conducting an exhaustive subgraph
census up to a given subgraph size, and tries to identify network mechanisms by
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using the raw subgraph counts. Two different ways are used to count subgraphs
in order to show robustness of the experiments. We first count all subgraphs
containing up to 7 edges (130 non-isomorphic subgraphs), and the counts of
subgraphs are input features for the classifier. We generate 3000 graphs, 1000
graphs for each of three models we analyzed as experimental data. Table 2 and
Table 3 give the 7-edge subgraph prediction scores of several ISCAS-85 circuits
for each of the three models, averaged over folds.

Table 2. Prediction scores for C432 (7-edge subgraphs).

Model GRG OPT (λ = 0.2) SPA (α = 2.5)

fold=0 36.98 -39.72 -38.51
fold=1 21.52 -28.36 -29.31
fold=2 30.88 -31.08 -37.8
fold=3 40.19 -40.23 -40.16
fold=4 39.79 -39.85 -39.67

Average 33.87 -35.85 -37.16
STDEV 7.84 5.68 4.45

Table 3. Prediction scores for C499 (7-edge subgraphs).

Model GRG OPT (λ = 0.22) SPA (α = 2)

fold=0 24.8 -24.77 -24.8
fold=1 25.16 -25.27 -25.19
fold=2 28.08 -28.08 -28.07
fold=3 24.41 -24.6 -24.08
fold=4 20.6 -25.67 -18.69

Average 24.61 -25.8 -24.17
STDEV 2.67 1.41 3.42

A given network’s subgraph counts determine paths in the ADT dictated by
inequalities specified by the decision nodes. For each class, the ADT classifier
outputs a real-valued prediction score, which is the sum of all weights over all
paths of the decision tree. The class with the highest score wins. The prediction
score for a specific class is related to the probability for the tested network
to be in this class [10]. The GRG model is the only model having a positive
prediction score in every case. Also, the comparatively small standard deviations
over different folds indicate robustness of the classification against data sub-
sampling, and make sure that the GRG model is clearly separated from the
other two models by the machine learning approach.

2.2 Brain Network

The human brain is a large complex network with nontrivial topological prop-
erties. Recently researchers investigated a large-scale anatomical network of the
human cerebral cortex using cortical thickness measurements from magnetic res-
onance images [5].
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Domain Analysis Most structural analyses of brain networks have been carried
out on datasets describing the large-scale connection patterns of the cerebral
cortex regions [11]. New studies on human brain networks have showed that
corresponding degree distributions and anatomical distance distributions can be
well fitted by an exponentially truncated power-law [5].

In the brain, energy is consumed in establishing fibre tracts between areas,
and in propagating action potentials over these fibres. Thus, the total cost of all
wires should be kept as low as possible [12]. Although the exact origin of the
wiring cost is not completely known, the farther apart two neurons are, the more
costly is the connection between them [13]. In addition, minimizing the average
number of processing steps (characteristic path length)-that is, reducing the
number of intermediate transmission steps in neural integration pathways-has
several functional advantages [12].

Topology Model According to the above analyses, brain networks and elec-
tronic circuits share similar principles, so we can use the SPA, OPT and GRG
models for the giant component of the brain anatomical network discovered in
[5].

We can automatically tune parameters in each candidate model to match
the brain network in terms of the two similarity metrics discussed before. Both
s-Metric and Characteristic Path Length are monotonic functions of the param-
eters of the optimization model and the SPA model. The data in Table 4 show
that both the OPT model and the SPA model cannot find appropriate parame-
ters to satisfy values of s-Metric and characteristic path length of the real brain
network simultaneously. Figure 2 shows that the OPT model and the SPA model
can capture the general tendency, but they don’t match the degree distribution
of the human brain anatomical network very well.

In the above OPT model, wiring cost is simplified as total wire length. This
wiring cost metric fits electronic circuits well. But for brain networks or neuronal
networks, the exact origin of the wiring cost is not completely known, and one
can only guess a functional relationship of wiring cost based on wire length
between cortical regions or neurons. Recently, Chklovskii et al. [13] argued that
the wiring cost may scale as wire length squared, reducing the optimal layout
problem to a constrained minimization of a quadratic form. The results in Table 4
show that the updated optimization model with the quadratic wiring cost metric
(OPTQ) slightly improves, but still cannot match the s-Metric and characteristic
path length of the real brain network simultaneously. As shown in Figure 2,
the degree distribution of the OPTQ model doesn’t improve much. We further
compare the various optimization models, the SPA model and the GRG model
in Table 5: the results also show that the GRG model outperforms the SPA,
OPT and OPTQ model. Obviously, in addition to wiring cost, there are some
other important constraints on the structure and layout of the brain anatomical
network that must be incorporated. For example, Recent studies showed that
cortical region sizes have significant influence on structure and placement of
brain networks, and the size constraint substantially restricts the number of
permissible rearrangements [14, 15].
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Table 4. Global properties of the brain anatomical network, the GRG model, the
SPA model, the optimization model(OPT), the updated optimization model with the
quadratic wiring cost metric(OPTQ) and the extended SPA model (SPAE). All values
are averaged over 100 graphs respectively.

Model Characteristic path length s-Metric

Brain 3.05 3957

GRG 2.65± 0.05 3819.35± 65.61

SPA (α = 0) 2.47± 0.01 3920.84± 368.14
SPA (α = 3) 2.68± 0.08 3388.17± 241.74
SPA (α = 5) 2.83± 0.08 3136.1± 196.23

OPT (λ = 0.1) 3.06± 0.03 2598.72± 77.96
OPT (λ = 0.4) 2.6± 0.05 3438.16± 314.55
OPT (λ = 0.45) 2.50± 0.07 3854.29± 533.48

OPTQ (λ = 0.01) 3.07± 0.03 2605.45± 83.08
OPTQ (λ = 0.05) 2.84± 0.04 2892.84± 161.67
OPTQ (λ = 0.1) 2.53± 0.05 3851.8± 348.78

SPAE (α = 3, p = 0.44) 2.82± 0.14 4031.9± 681.12

 1

 10

 100

 1  10

C
um

ul
at

iv
e 

no
de

 n
um

be
r

Degree

Brain
SPA(α=3)

OPT(λ=0.45)
OPTQ(λ=0.1)

SPAE(α=3, p=0.44)

Fig. 2. Cumulative degree distribution of the brain anatomical network, and Cumu-
lative degree distributions of graphs generated by the SPA model, the optimization
model(OPT), the updated optimization model with the quadratic wiring cost met-
ric(OPTQ) and the extended SPA model (SPAE). All models are averaged over 100
graphs respectively.

2.3 Highway Network

Cancho et al. found small-world graph patterns for a small collection of electronic
circuits [16], and our experiments also showed that ISCAS-85 benchmark circuits
have small-world graph patterns. He et al. showed that the human brain anatom-
ical network had robust small-world properties with cohesive neighborhoods and
short mean distances between regions [5]. Here, we introduce a non-small-world
spatial network, the Germany highway system (Autobahn).
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Table 5. Prediction scores of the GRG model, the different optimization models(OPT
and OPTQ) and the SPA model fitting the brain anatomical network (7-edge sub-
graphs).

Model GRG OPT(λ = 0.45) OPTQ(λ = 0.1) SPA(α = 3)

fold=0 8.14 -16.96 -8.40 -8.00
fold=1 13.13 -17.56 -11.68 -16.98
fold=2 15.14 -17.62 -14.45 -13.95
fold=3 18.21 -19.54 -21.81 -19.43
fold=4 14.33 -19.07 -15.40 -11.17

Average 13.79 -18.15 -14.35 -13.91
STDEV 3.67 1.10 4.98 4.54

Domain Analysis As shown in Figure 3, the Autobahn displays a power law
degree distribution, and the power law exponent is much bigger than 3. In a
highway network most travelers look for routes that are short in terms of miles,
and the number of legs is often considered less important. Naturally, the Auto-
bahn is not a small-world network, as the characteristic path length is twice as
large as for comparable ER models [6].
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Fig. 3. Cumulative degree distribution of the Autobahn, and Cumulative degree dis-
tributions of graphs generated by the SPA model, the SPAD model and the PS model.
All models are averaged over 100 graphs respectively.

Topology Model Although we can regulate the degree distributions of the
SPA model by adjusting α, the exponents of the power law degree distributions
are limited in a narrow range near 3. Dorogovtsev et al. [17] proposed a simple
one-parameter extension of the basic model which allows tuning of the power
law exponent in a wide range (≥ 2). In this extended model, nodes are added
sequentially and attach to existing nodes with probability proportional to the
sum of the existing node’s current degree and an initial attractiveness parameter
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a. We can also generate an extended SPA model (SPAD) with the parameter a,
and increase the power law exponent by increasing a. As shown in Figure 3 and
Table 6, the SPAD model can generate a better matched power law exponent, but
it cannot satisfy the values of the characteristic path length and s-Metric. We also
tried to rule out the preferential attachment mechanism and degrade the SPA
model to a growth model with only spatial constraints. But as shown in Table 6,
this pure spatial model (PS) also cannot satisfy the values of the characteristic
path length and s-Metric by adjusting the spatial constraint parameter α. The
GRG model reproduces the degree distribution of the real network directly, and
can match the Autobahn topology very well compared with other models.

Table 6. Global properties of the German highway network (Autobahn), the corre-
sponding SPA model, SPAD model, PS model and GRG model. All values are averaged
over 100 graphs respectively.

Model Characteristic path length s-Metric

Autobahn 19.42 8025

GRG 17.33± 0.63 7904.1± 61.45

SPA (α = 0) 7.85± 0.37 23303.14± 2894.01
SPA (α = 5) 9.95± 0.38 12980.0± 454.40

SPAD (a = 10, α = 0) 9.62± 0.35 12932.01± 543.10
SPAD (a = 10, α = 5) 10.68± 0.42 11441.91± 265.01

PS (α = 0) 10.21± 0.30 11500.47± 285.71
PS (α = 5) 10.90± 0.36 11056.97± 268.38

3 Analysis and Discussion

All our experimental results on the above spatial networks show that the simple
GRG model outperforms the proposed plausible and explanatory models which
consider spatial constraints.

In general, we prefer the explanatory models when fitting complex systems,
since they can provide can provide underlying principles shaping topologies of
specific complex systems, and they have better predictive and rescaling power
for topology generation. We can always extend topology models and achieve
higher fidelity by introducing the richer sets of domain-specific parameters. For
instance, Dorogovtsev et al. [17] extended the preferential attachment mecha-
nism by adding links between existing nodes, with probability proportional to
the product of their degrees. This extended model can generate a power law
degree distribution with smaller exponents, and actually some researchers have
incorporated the spatial constraints and applied this approach to the analysis
of the airport network’s structure [18]. We can also introduce a new parameter
p to extend the current SPA model (SPAE): the proportions of edges created
by the preferential attachment and connecting existing nodes are p and 1 − p
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respectively. As shown in Table 4, the experiments show that the SPAE model
can match the brain network very well when α = 3 and p = 0.44. Figure 2 also
shows that the extended SPA model can match the degree distribution of the
brain network almost perfectly. However, discovering underlying mechanisms and
developing appropriate explanatory models with higher fidelity are not easy, and
adding parameters and fitting corresponding values generally lead to dramati-
cally increased computational complexity. As shown in Table 6, our current fun-
damental topology-based explanatory models and their extensions cannot match
the Autobahn network, which is a non-small-world graph. Although the OPT
model can approximately match the Autobahn with a small λ value (' 0.01), the
computational complexity is too high. It takes hours to generate only one graph
instance with the same size as the Autobahn, and takes even much more time
to fit the parameter values. In this case, the simple GRG model is a convenient
solution for creating ensembles of random but “realistic” topologies for specific
spatial networks. Furthermore, our experimental results, as shown in Table 7,
show that the GRG model can also closely match the Macaque brain network
[15], the C. elegans neuronal networks [15] and the Chinese airport network [19].

Table 7. Global properties of the Macaque brain network, the C. elegans neuronal
networks, the Chinese airport network, the Internet router-level network, and their
corresponding GRG models. All values of three models are averaged over 100 graphs
respectively.

Network Characteristic path length s-Metric

Macaque Brain 1.78 2368861
GRG 1.70± 0.08 2375055.27± 4136.29

C. elegans(local) 2.52 127622
GRG 2.35± 0.08 126103.72± 591.41

C. elegans(global) 2.64 916807
GRG 2.35± 0.06 911946.68± 9739.35

Chinese airport 2.07 1728592
GRG 2.06± 0.01 1716900.08± 3647.17

Internet (router) 6.81 28442
GRG 5.91± 0.17 54023.71± 4437.59

Overall, the results show that the GRG is a very good topological model for
a variety of spatial networks which have different structures and functions. All
these man-made and biological networks share a common planning principle:
wire cost optimization over the entire network [15, 6]. Our findings indicate that
the global spatial planning of these networks might have important implications
for understanding how structural and functional organization emerges from un-
derlying driving forces. The GRG model itself is independent of any systematic
growth process and only reproduces a prescribed degree distribution, but the
degree distributions of the above spatial networks are shaped and constrained
under domain-specific spatial constraints. Actually, we have shown that the pa-
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rameters corresponding to spatial constraints in the SPA and OPT model can be
tuned to generate diverse degree distributions. The degree distributions of the
above networks implicitly reflect specific spatial constraints shaping the network
structures. In addition, the input to the GRG model is the degree sequence of
the original network, whereas the other explanatory models only get the number
of nodes, the number of edges and a couple of spatial parameters as the input.

The s-Metric values of the above spatial networks are very close to those of
the corresponding GRG models. s-Metric is a scalar summary statistic of the
joint degree distribution which appears to play a central role in determining a
wide range of other topological properties [9]. The s-Metric potentially unifies
many aspects of complex networks, because it is closely related to betweenness,
degree correlation and graph assortativity. It also has a direct interpretation as
the relative log-likelihood of a graph synthesized by the GRG model, which can
only produce graphs with high s-Metric values [2]. The above observations on
the s-Metric support that empirical results showing that the GRG model can
match the above spatial networks well from a probabilistic view.

We also found that the GRG model cannot match the topology of the Inter-
net, which is a also spatial network, but is subject to more complicated techno-
logical and economic constraints [2]. Among these complicated constraints, the
physical geography seems to play only a small role in network formation. For
the Internet router-level topology, the deployment focuses on optimizing local
connection at the edge of network, known as the “Last Mile” [2] instead of over-
all wire cost-optimization. As shown in Table 7, the Internet topology [2] has
an s-Metric value much lower than that of the corresponding GRG model, so
the organizing principles of the Internet are completely different from the above
electronic circuits, neuronal and brain networks and transportation networks.
In the Internet, high-degree nodes can exist, but are found only within local
networks at the far periphery of the network, and would not appear anywhere
close to the backbone [2]. This pattern can result in high performance (traffic
flow) and robustness to failures [2]. In contrast, in the other spatial networks
analyzed in this paper, the high-degree nodes are likely to connect to each other
and appear in the cores of the networks [2], so these networks have high s-Metric
values close to those of the corresponding GRG models.

4 Conclusions

We studied topology models of a variety of real-world spatial networks, including
electronic circuits, brain and neural networks and transportation networks, and
found that the simple GRG model can match them well and even outperform
some plausible and explanatory models with spatial constraints. All these man-
made and biological networks share a common planning principle: wire cost
optimization over the entire network. Our findings indicate that the global spatial
planning of these networks plays an important role in generating corresponding
network structures.
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