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Abstract. Although recent research has shown that the complexity of
a network depends on its structural organization, which is linked to the
functional constraints the network must satisfy, there is still no system-
atic study on how to distinguish topological structure and measure the
corresponding structural complexity of complex networks. In this paper,
we propose the first consistent framework for distinguishing and measur-
ing the structural complexity of real-world complex networks. In terms of
the smallest d of the dK model with high-order constraints necessary for
fitting real networks, we can classify real-world networks into different
structural complexity levels. We demonstrate the approach by measuring
and classifying a variety of real-world networks, including biological and
technological networks, small-world and non-small-world networks, and
spatial and non-spatial networks.
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1 Introduction

Heavy-tailed or scaling degree distributions, found in many real-world networks
(including a variety of social networks, biological systems and technological sys-
tems) [1], have been posited as a “universal class” of such complex systems.
However, recent research has challenged the arguments that such distributions
are special and signify a common architecture, independent of the system’s func-
tional properties or domain role [2, 3]. Although people realized that the com-
plexity of a network depends on its structural organization, which is linked to the
functional constraints the network has to satisfy [4], there is still no systematic
study on how to distinguish topological structure and measure the corresponding
structural complexity of various real-world networks. The structural complex-
ity measures of complex networks have been discussed before [5, 6]. However,
there is little consistency among the proposed measures, and most analyses are
based on very small graphs with only a few nodes [5, 6]. More importantly, prior
work [5, 6] only showed that real-world networks are “complex” in the sense
that different topological features deviate from classic ER random graphs or
simple structures like regular lattices [1]. In contrast, we try to finely distinguish
structural complexity among real-world networks.
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One approach to characterize the structure of real-world networks is to com-
pare them to “appropriate” null models. Appropriate null models include ran-
dom network ensembles with some of the statistical features being present in the
real-world network under investigation. The classic ER ensemble is the simplest
example of the so-called “maximally random” graphs [1], and the only constraint
is the average degree of the real network. The deviation of data collected on real-
world networks from the predictions of the ER model triggered interest in more
advanced random network models [1], because it implied that those graphs were
not created just by joining vertices at random, but required the existence of addi-
tional constraints. The classic random graph model can be naturally extended to
define network ensembles that have other high-order topological characteristics
in common with a real network [7, 4].

Recently, a dK-random graph model was proposed to specify all degree cor-
relations within d-sized subgraphs of a given network [7]. The 1K-distribution
defines a family of 1K-graphs which reproduce the original graph’s node de-
gree distribution, and is equal to generating the widely-used generalized random
graph (GRG) model. 2K-graphs reproduce the joint degree distribution, the 2K-
distribution, of the original graph. 3K-graphs consider interconnectivity among
triples of nodes, and so forth. Generally, the set of (d + 1)K-graphs is a subset
of dK-graphs. In other words, larger values of d capture increasingly complex
properties of the original graph and further constrain the number of possible
graphs, so any specified topology metric we can define on a real network will
eventually be captured by dK-graphs with a sufficiently large d. However, the
computational complexity of generating dK-graphs increases exponentially in d.
One main concern with dK-graphs is how fast the dK model converges toward
the real network. So for creating realistic but “random” ensembles, it is impor-
tant to find the smallest d which can match the real network with sufficient
fidelity in terms of the specified topology metrics of specific applications. Since
the smallest d in the dK-graphs determines the number of constraints, as well
as the computational complexity necessary for fitting the real network, we use
the smallest value of d as an indicator of the level of structural complexity of
the real network.

We also need a set of graph metrics to evaluate the fidelity of generated
random graphs, and a wide range of topological metrics have been proposed
recently [7]. Not all topology metrics are mutually independent: some either fully
define others, or significantly narrow down the spectrum of their possible values
[7]. Therefore, identifying the underlying principles of such definitive metrics
reduces the number of topology characteristics that models must reproduce.
The dK-distributions themselves present one possible approach to constructing
a family of such simple metrics which define all others. Recent research showed
that the 2K-distribution, the joint degree distribution, appears to play a central
role in determining a wide range of other existing topological properties [7].
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The s-Metric1 is a scalar summary statistic of the joint degree distribution, and
potentially unifies many aspects of complex networks, because it is closely related
to betweenness, and linearly related to graph assortativity [3]. Obviously, the s-
Metric is a succinct but rich topology metric. In addition, shortest paths play an
important role in transport and communication within a network. A measure of
the typical separation in the network is given by the characteristic path length,
defined as the mean of shortest lengths over all pairs of nodes [1]. The above
two metrics help to characterize the topological structures of various real-world
complex networks, and are effectively applied to experimental analyses in this
paper.

This paper makes two main contributions. First, based on the dK model
analysis, we propose the first consistent framework for distinguishing and mea-
suring structural complexity of real-world complex networks. The approach can
be applied to complex networks with different topologies in any application do-
main.

Second, we demonstrate our analyses on a variety of real-world complex net-
works, and classify them into different levels of structural complexity. This pro-
vides the first clear classification of real-world networks in terms of their struc-
tural complexity. In our analyses, we surprisingly found that a wide range of
complex networks, including electronic circuits, transportation systems, brain
and neuronal systems, and protein interaction networks (PINs), have the same
level of structural complexity and can be matched well by the simple 1K (GRG)
model. We argue that these networks have a common set of explicit or implicit
geometric constraints. The router-level Internet and transcription regulatory net-
works (TRNs) show higher structural complexity, and at least the 2K model is
necessary for fitting them. Recent research showed that highly complicated tech-
nological and economic constraints have big impacts on shaping the topological
structure of the Internet. It will be very interesting to study why the topologi-
cal structure of the TRN is much more complex than that of the PIN. We also
surprisingly found that a pulp mill system has a very high level of structural
complexity, which cannot even be captured by the 3K model. We think that
different types of devices and complicated interfaces between them lead to the
high level of structural complexity of the system.

We organize the remainder of the document as follows. Section 2 introduces
some related work. Section 3 applies the dK model analysis to a variety of real-
world complex networks and classifies them into different levels of structural
complexity. Finally, section 4 summarizes our work.

2 Related Work

This level of structural complexity based on the dK model is consistent with
the concept of entropy in statistical mechanics. In Bianconi’s definition [4], the
1 The s-Metric of a graph G is defined as s(G) =

∑
edge(i,j)

didj , where (i, j) ranges

over the edges in the graph, and di and dj are the degrees of the node i and j
respectively.
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entropy of a network ensemble under specific constraints is proportional to the
logarithm of the number of networks belonging to the ensemble. The complexity
of a given ensemble of networks increases as the number of networks in the
ensemble decreases. As we add further constraints that a desired ensemble is
to have in common with a given real network, we effectively consider ensembles
with decreasing cardinality. Consequently a network ensemble of high complexity
corresponds to a small variability of the networks in the ensemble. We expect
that a very complex network belongs to an ensemble of functionally equivalent
networks of small entropy. A larger value of d reflects higher complexity and
smaller entropy.

Real-world networks generally are classified based on specific topological
properties, such as different (power-law or exponential) degree distributions [8],
or power-law exponents of the betweenness centrality distributions [9]. In con-
trast, our approach classifies real-world networks from a new dimension using
the corresponding random graph models necessary for fitting original networks.

3 Analyzing Structural Complexity of Real-world
Complex Networks

In this section we analyze a variety of real-world complex networks and classify
them into the corresponding levels of structural complexity. Figure 1 shows a
general view of our results, and the details are discussed in the following sections.

3.1 Networks with 1K Complexity

We surprisingly found that the simple 1K (GRG) model, which is independent of
any domain-specific growth process and only reproduces the degree distribution
[1], can closely match the topologies of a variety of technological and biological
networks, as listed in Table 1. In this paper, the Markov-chain Monte Carlo
(MCMC) switching algorithm [10, 11, 7] has been used to implement the 1K, 2K
and 3K models, and to generate experimental data in order to reduce statistical
variance 2.

All networks listed in Table 1 have highly heterogeneous heavy-tailed degree
distribution [17, 18, 13, 14, 15, 16]. Except the core S. Cerevisiae protein interac-
tion network [16], all networks are spatial networks which occupy some physical
space, such that their nodes occupy a position in two- or three-dimensional
Euclidean space, and their edges are real physical connections [1]. It is not sur-
prising that the topology of spatial networks is strongly constrained by their
geographical embedding. All these man-made and biological spatial networks
2 The MCMC switching algorithm generates uniform sample of graphs having the dK-

distribution, while remaining unbiased (random) with respect to all other properties.
However, this results in non-uniform sampling of graphs with different values of
properties that are not fully defined by the dK-distribution. In this sense, the graphs
generated by the dK model are the maximally random graphs [11, 7].



Characterizing the Structural Complexity of Real-world Complex Networks 5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

N
or

m
al

iz
ed

 s
-M

et
ri

c

Normalized Characteristic Path Length

1K of circuit, transportation, brain, 
neuronal and PIN networks.
2K, 3K of the Internet and TRNs. 

1K of the Internet and TRNs

1K, 2k and 3K of
the pulp mill

Fig. 1. The plot of the normalized values of characteristic path length and s-Metric of
1K (squares), 2K (open circles) and 3K (solid circles) models of a variety of real-world
networks discussed in this paper. The values are normalized by those of real networks,
so the coordinate (1, 1) means perfect fitting of the real networks.

Table 1. Comparing topology metrics for the real-world networks (the digital circuits
in ISCAS-85 benchmark suite [12], the German highway network (Autobahn)[13], the
Chinese airport network [14], the giant component of the anatomical network of the
human cerebral cortex using cortical thickness measurements from magnetic resonance
images [15], the Macaque cortical connectivity network within one hemisphere [13], the
C. elegans neuronal networks [13], the giant component of the core S. Cerevisiae protein
interaction network [16]) and the corresponding 1K model. All values of random graphs
are averaged over 100 graphs respectively.

Network Characteristic path length s-Metric
real 1K real 1K

Circuit C432 4.53 4.33± 0.05 6986 6875.99± 143.46

Circuit C499 4.65 4.4± 0.06 9848 10491.57± 306.78

German highway 19.42 17.33± 0.63 8025 7904.1± 61.45

Chinese airport 2.07 2.06± 0.01 1728592 1716900.08± 3647.17

Human Brain 3.05 2.65± 0.05 3957 3819.35± 65.61

Macaque Brain 1.78 1.70± 0.08 2368861 2375055.27± 4136.29

C. elegans(local) 2.52 2.35± 0.08 127622 126103.72± 591.41

C. elegans(global) 2.64 2.35± 0.06 916807 911946.68± 9739.35

S. Cerevisiae PIN 5.26 4.48± 0.01 749149 846220.16± 11800.32
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share a common planning principle: wire cost optimization over the entire net-
work [19, 13, 20]

Wire cost optimization is obvious and natural in transportation planning.
In circuit design, wire length has been treated as the prime parameter for per-
formance evaluation since it has a direct impact on several important design
parameters [20]. In the brain and neuronal systems, energy is consumed in es-
tablishing fibre tracts between neurons, and in propagating action potentials
over these fibres. Thus, the total cost of all wires should be kept as low as pos-
sible [21]. Although the exact origin of the wiring cost is not completely known,
the farther apart two neurons are, the more costly is the connection between
them [21].

In addition, the graph distance (the number of hops between nodes) also has
an important impact on functions of spatial networks. For instance, graph dis-
tance can capture another driving force underlying circuit design, timing, where
it is important to reduce the delay of signal transmission among components.
Similarly, minimizing the average number of processing steps–that is, reducing
the number of intermediate transmission steps in neural integration pathways–
has several functional advantages [21]. Too many transfer flights are bothering
in an air journey, but most road travelers look for routes that are short in terms
of miles, and the number of legs is often considered less important. The graph
distance can be characterized by the characteristic path length.

Recent research showed that an optimization model (OPT) trading-off the
wire cost and the graph distance can capture the topologies of specific spatial
networks, like the electronic circuits [18], and under appropriate parameters, a
preferential attachment model with spatial constraints (SPA) can generate small-
world network structure close to that of networks generated by the OPT model
[18, 22]. The SPA model and its extension can closely match the topologies of
electronic circuits, the brain networks and airport networks [18]. Our experi-
ments also showed that the OPT model with setting of strong preference for
reducing wire cost can also capture the topology of the highway network. Nat-
urally, the highway network is not a small-world network, as the characteristic
path length is twice as large as for comparable ER models [13]. All other spatial
networks listed in Table 1 are small-world graphs [17, 18, 13, 14, 15, 16]. So the
1K model can match both small-world networks and non-small-world networks
well.

The 1K model itself is independent of any system growth process, but the
degree distributions of the above spatial networks are shaped and constrained
under domain-specific spatial constraints. Actually, the parameters correspond-
ing to spatial constraints in the SPA and OPT model can be tuned to generate
diverse degree distributions. The degree distributions of the above networks im-
plicitly reflect some spatial constraints with various strength shaping the network
structures. Maybe that’s the reason why the 1K model can closely match these
spatial networks.

In addition to our results in Table 1, there is also a lot of other solid ev-
idence that the 1K model closely captures the topologies of the PINs. Przulj
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et al. proposed a “Stickiness Index” model for the a series of PINs and showed
that it outperforms other models in terms of a range of topology metrics in-
cluding relative subgraph frequency [23]. Actually, the “Stickiness Index” model
is a stochastic implementation of the 1K model proposed by Chung et al., in
which the connection between nodes i and j is chosen independently with prob-
ability pij , with pij proportional to the product of the degree of i and j [24].
This approach is convenient for theoretical analysis, since rigorous proofs for a
random graph with exact degree sequences is rather complicated and usually
requires additional “smoothing” conditions because of the dependency among
the edges [24]. This stochastic implementation and the MCMC switching imple-
mentation are “basically asymptotically equivalent, subject to bounding error
estimates” [3]. Ivanic et al. recently also analyzed a series of PINs and found
the so-called “degree-weighted behavior” that the probability of an interaction
between two proteins is generally proportional to the numerical product of their
individual interacting partners, or degrees [25]. The “degree-weighted behavior”
is consistent with the definition of the stochastic 1K model. They found that
the degree-weighted behavior is manifested throughout the PINs studied, except
for the high-degree, or hub, interaction areas. Their finding is also consistent
with our results of the s-Metric in Table 1, in which the s-Metric of the cor-
responding 1K model is about 12% higher than that of the S. Cerevisiae PIN.
But the probabilities of interaction between the hubs are still high, and these
hubs are separated by very few links, so the discrepancy of s-Metric data of the
S. Cerevisiae PIN in Table 1 is only about 12%. Ivanic et al. further proposed
a degree-conserving degree-weighted (DCDW) model [25], which actually is a
matching implementation of the 1K model and has only very small deviations
from the MCMC switching implementation [11], and showed that this model can
closely capture the PINs in terms of a series of topological properties. Friedel
et al. showed that PINs are in general most similar to uncorrelated networks,
which are implemented by the MCMC switching 1K model, with regard to de-
gree correlations and all other network properties considered [26].

The PINs are different from the above spatial networks because they are
not explicitly embedded in any observable physical space. However, Przulj et al.
showed that a random geometric model can accurately capture the PIN struc-
tures in terms of relative subgraph frequency [27]. Higham et al. [28] pushed
the research further by exploiting the fact that the geometric property can be
tested for directly. They applied a algorithm, which has been verified in the sense
that it successfully rediscovers the geometric structure in artificially constructed
geometric networks, to a series of publicly available PINs of various organisms,
and indicated that geometric effects are present. Testing on a high-confidence
yeast data set produced a very strong indication of geometric structure. Overall,
the results add support to the hypothesis that PINs have a geometric structure.
Serrano et al. discussed the hidden variables formalism, taking as hidden vari-
ables nodes’s coordinates in a metric space [29]. Each two nodes are located at a
certain hidden metric distance, and connected with a probability, which relates
the network topology to the underlying metric space. This probability depends
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on the metric distance [29]. It seems that hidden metric spaces do exist for the
PINs, and implicit geometric constraints play an important role in shaping the
observed PIN topologies.

According to the above analyses, we think that the explicit or implicit geo-
metric constraints are probable underlying driving forces shared by all the above
networks with 1K complexity. For these networks, reproducing only the 1K con-
straints can also closely fit the 2K statistics represented by the s-Metrics.

3.2 Networks with 2K Complexity

In this section, we show additional complex networks which also have power law
degree distributions but need higher-order statistics to capture their structures.
As shown in Table 2, the 1K model is not sufficient to match the topologies of
the router-level Internet [3, 7] and the transcriptional regulatory networks of E.
Coli [30].

Table 2. Comparing topology metrics for the real-world networks (the router-level
topology of the Internet of a single ISP (HOT) [3, 7], the giant components of two E.
coli transcriptional regulatory networks, collected by Shen-Orr. et al. and Ma et al.
[30], respectively, and the pulp mill [31]), and the corresponding 1K, 2K, 3K models.
All values of random graphs are averaged over 100 graphs respectively.

Network Characteristic path length s-Metric
real 1K 2K 3K real 1K 2K 3K

Internet 6.81 5.91 6.33 6.55 28442 54023.71 28442 28442
±0.17 ±0.13 ±0.13 ±4437.59

TRN(Shen-Orr) 4.83 3.99 4.28 4.65 26621 42402.61 26621 26621
±0.06 ±0.06 ±0.05 ±1782.63

TRN(Ma) 3.99 3.25 3.51 3.96 1301244 2375893.92 1301244 1301244
±0.02 ±0.01 ±0.01 ±43876.86

Pulp Mill 11.62 6.71 6.87 7.43 3629 3647.44 3629 3629
±0.13 ±0.14 ±0.16 ±54.88

The router-level Internet shown in Table 2 has an s-Metric value much lower
than that of the corresponding 1K model, so the organizing principles of the
Internet are completely different from the networks with 1K complexity listed
in Table 1. The s-Metric is linearly related to the network assortivity coefficient,
and a relatively lower s-Metric value means a relatively disassortive connectivity
pattern in which high-degree nodes are less likely to be connected with each
other [3]. The router-level Internet is also a spatial network, but it is subject to
more complicated technological and economic constraints [3], and has much more
complex topology structure. In general, a router can have a few high bandwidth
connections or many low bandwidth connections, because limits in technology
fundamentally preclude the possibility of high-degree, high-bandwidth routers
[3]. The high-end backbone routers in the network core have only a few high-
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speed and long-haul connections, and edge routers (in the “last mile”) are typi-
cally slower overall, but have many low-speed connections. So, for the router-level
Internet, high-degree nodes can exist, but are found only within local networks
at the far periphery of the network, and would not appear anywhere close to
the backbone [3]. This pattern can result in high performance (traffic flow) and
robustness to failures [3]. In contrast, in the networks shown in Table 1, the
high-degree nodes are more likely to connect to each other and appear in the
cores of the networks, because these networks have high s-Metric values close to
those of the corresponding 1K models [3].

As we mentioned before, the joint degree distribution can determine a wide
range of other important topological properties, except clustering [3, 7]. The
2K model reproduces the joint degree distribution, so the s-Metric, which is
scalar summary statistics of the joint degree distribution, can be completely
matched when d ≥ 2. As shown in Table 2, by increasing d the dK-random
graphs constantly converge toward the real networks. Actually, in additional to
the topology metrics listed in Table 2, clustering coefficients and 3-node motifs
[1], which depend on interconnectivity among tripes of nodes, can be completely
matched when d = 3, and 4-nodes motifs can be completely matched when
d = 4. But model selection has to make trade-offs between fidelity and complexity
according to domain requirements. The implementations of 1K and 2K models
are relatively simple, but when d ≥ 3 the implementations become much more
complex due to the increasing number of non-isomorphic simple connected graph
of size d [7]. As shown in Table 2 and Figure 1, from 1K to 2K the fidelity
improves dramatically, but there is only relatively mild improvement from 2K
to 3K. Mahadevan et al. also found that the d = 2 case is sufficient for most
practical purposes for the Internet topology [7].

Furthermore, we analyzed two widely-used TRNs listed in Table 2. The TRNs
are directed networks where a transcription factor positively or negatively regu-
lates the RNA transcription of the controlled protein. In this paper, we mainly
focus on general organizational principles of networks, so we ignore the direction
of links in the TRNs and treat them as undirected graphs. But all methods in
our analyses can be easily applied to directed graphs as well. The structures
of the TRNs have patterns similar to the Internet: links between high-degree
nodes are systematically suppressed, whereas those between high-degree nodes
and low-degree nodes are favored, so as shown in Table 2, they naturally have
much lower s-Metric values than those of the 1K model. Maslov et al. also quan-
tified correlations between connectivities of interacting nodes in the TRN of the
yeast S. cerevisiae and compared them to the 1K model, and their empirical
results showed the disassortive pattern similar to that in the TRNs of E. Coli
we analyzed [10]. It is feasible that molecular networks in a living cell have or-
ganized themselves in an interaction pattern that is both robust and specific.
Topologically, the specificity of different functional modules can be enhanced by
limiting interactions between hubs and suppressing the average connectivity of
their neighbors. This effect decreases the likelihood of cross talk between dif-
ferent functional modules of the cell, and increases the overall robustness of a
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network by localizing effects of deleterious perturbations [10]. Similarly, the 2K
model captures the structures of the TRNs listed in Table 2 and Figure 1 much
better than does the 1K model, and setting d = 3 only improves fitting mildly.
Some researchers conjectured that it appears likely that the 3K model will be
sufficient for self-organized small-world graphs in general [7].

Maslov et al. also claimed that they found a similar disassortative pattern in
the yeast PIN [10], but as we discussed before, many recent studies showed no
such disassortative correlation between node degrees in yeast for high-confidence
interaction sets, and the opposite results discovered by Maslov et al. may be ex-
plained by a bias in the yeast–two hybrid system which might artificially increase
negative degree correlations [26]. Molecular networks guide the biochemistry of
a living cell on multiple levels: its metabolic and signaling pathways are shaped
by the network of interacting proteins, whose production, in turn, is controlled
by the genetic regulatory network, so it will be very interesting to study why
these two tightly-related molecular networks have completely different topolog-
ical structures.

3.3 Networks with Higher Complexity

We studied a real pulp mill benchmark model developed by Castro and Doyle
[31], which consists of modular representations of unit operations in a complete
pulp mill. The benchmark can be used for studying several process-system tasks,
including modeling, control, estimation and fault diagnosis [31]. In the pulp mill,
the major units of operation are: a digester, pulp washers, oxygen tower, storage
vessels, bleaching towers, evaporators, recovery boiler, smelt dissolving tank,
clarifiers, slaker, causticizers and lime kiln [31]. There are also many valves,
which are used to connect components in and between various key units.

The system structure has big impacts on a series of test and control tasks in
engineering systems. For example, the complexity of specific diagnosis algorithms
only depends on the system topology [32, 17]. We analyzed physical connections
between the fundamental components, and studied the corresponding topology
of the whole pulp mill system. The degree distribution of the pulp mill follows
a power law as well. However, as shown in Table 2 and Figure 1, the pulp mill
is a non-small-world network, and even the 3K model highly deviates from the
pulp mill and the corresponding characteristic path length can only reach about
64% of the real network.

Although the router-level Internet and electronic circuits we analyzed are
also highly-engineered complex systems under specific design principles, their
elementary components and connection interfaces are relatively homogeneous.
In digital circuits the components are only different types of basic logic gates,
and in the router-level Internet the components are only routers with various
speeds. Different types of logic gates in circuits and routers in the Internet can
be easily connected with each other, respectively. But in the pulp mill, the com-
ponents are diverse heterogeneous devices, and only specific types of devices,
which are functionally related and have compatible interfaces, can be connected
with each other. For an complex engineering system like the pulp mill, it is
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largely impossible to fit any nontrivial network structure while ignoring domain-
specific constraints [3], and the random graph generators seems not suitable for
capturing topologies of this kind of complex systems since the cost of the dK-
distribution representation and resulting computational complexity will be too
high for practical applications when d > 3.

4 Summary

This article describes a consistent framework for distinguishing and measuring
structural complexity of real-world complex networks. As shown in Figure 1,
the experiments show that our approach can clearly distinguish the underlying
structure of various real-world complex networks, and convincingly classify these
networks from a new dimension.

We can apply the approach to measure structural complexity of more real-
world networks, and the measured results can provide useful guidance on syn-
thetic benchmark model generation for various simulation tasks. As shown in
this paper, for complex systems with relatively low structural complexity, we
can generate realistic (high-fidelity) but “random” benchmark models [17] with
computationally efficient and simple random graph generators. In contrast, ran-
dom graph generators cannot feasibly synthesize complex systems classified into
high-complexity levels, due to the corresponding high computational cost and
small ensemble-size generated.
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