Approximating All Most-Preferred
Diagnoses using Greedy Algorithms*

Gregory Provan *

* Department of Computer Science, University College Cork, Cork,
Ireland (Tel: 353-21-490-1816; e-mail: g.provan@ cs.ucc.ie).

Abstract: For applications in which computing the set of all diagnoses is important, algorithms
that compile the system model, such as the ATMS, are well-known. However, the space-
and time-complexity of such approaches can be prohibitively large. We show how we can
use a preference function over the space of diagnoses to develop approximation algorithms
for computing the most-preferred diagnoses (MPD). We show that the MPD problem can be
approximated by greedy algorithms such that the preference weighting of the approximate set
of diagnoses is within (1 — 1) of that of the exact set of diagnoses. We demonstrate how the
MPD problem can be solved for iterative diagnosis using a fast stochastic diagnosis engine,
and by compilation approaches using prime implicant and DNNF compilation languages. We
present empirical evidence that the compilation algorithms enable space reductions of several
orders-of-magnitude over the full compilation, while losing relatively little query completeness.

1. INTRODUCTION

A variety of applications require computing the set of all
diagnoses. All diagnoses can be computed using compi-
lation approaches, such as the DNNF [Darwiche [2001]],
OBDD [Bryant [1992]], or prime implicate [de Kleer [1986]]
encodings; alternatively, one can use a single-diagnosis
algorithm multiple times. However, the space- and/or
time-complexity of both approaches can be prohibitive.
In particular, the size of the compiled representation can
be exponentially larger than that of the original function;
for DNNF the size is exponential in the treewidth of the
interaction graph [Darwiche [2001]].

In many applications, one is really interested in the set
of preferred diagnoses, based on a preference relation,
e.g., as defined in terms of the probabilistically most-
likely diagnoses, or the cardinality-minimal diagnoses. For
such applications, we define the most-preferred diagnosis
(MPD) problem as the task of computing a subset of
diagnoses, given an observation a, which is most-preferred
with respect to a preference function ¢.

In this article we propose a sound but incomplete ap-
proximation technique for solving the MPD problem. We
assume that we have a preference function that identifies
the most likely diagnoses (or satisfying assignments) of the
diagnosis model ®. Given a preference function ¢ over @,
we calculate an approximate compilation ¢(®) by pruning
diagnoses whose preference value is below a threshold p.

Our contributions are as follows:

(1) We prove that we can define a submodular function
for the MPD problem, based on the subset, set-
cardinality and probability-ordering preference func-
tions.

(2) Given that the MPD problem is submodular, we
show that we can approximate the set of most-

* Supported by SFI grants 04/IN3/1524 and 06/SRC/11091.

preferred diagnoses by a set whose preference weight
is guaranteed to be within (1 — 1) of the optimal
preference weight.

(3) We show that we can significantly bound the diag-
nosis space by searching only over the most-preferred
diagnosis sub-space.

(4) We show that the greedy approach can work over a
bounded sub-space for both the iterative and compi-
lation diagnosis approaches.

(5) We empirically validate this approach for two im-
portant compilation targets, prime implicants and
DNNF, showing that we can achieve space reductions
of several orders-of-magnitude over the full compila-
tion, while losing relatively little query completeness.

2. RELATED WORK

This section reviews prior work in related areas.

Several algorithms have been applied to the task of com-
puting all diagnoses. The primary algorithms are all meth-
ods that compile the diagnostic system model prior to
diagnostic inference. All such algorithms have exponential
worst-case space complexity. The complexity of compila-
tion has been addressed in many papers, including [Cadoli
et al. [2002]]. Ferrara et al. [2007] have proven that for
temporal logic model checking, preprocessing cannot re-
duce complexity, given polynomial space bounds (in the
size of the input) on the output. In the case of compiling
using BDDs, one cannot guarantee that a BDD will not
be of size exponential in the number of variables, since the
problem of finding the best variable ordering is NP-hard
[Bollig and Wegener [1996]]. Further, the approximation
problem is also hard, as for any constant ¢ > 1 it is NP-
hard to compute a variable ordering resulting in an OBDD
with a size that is at most ¢ times larger than optimal
[Sieling [2002]]. In the case of DNNF, the size of the DNNF
generated for problems in propositional logic, Bayesian

networks and constraint satisfaction is exponential in the
treewidth of their interaction graph [Darwiche [2001]].

We extend the approximate compilation work of [Ven-
turini and Provan [2008]] by showing that we can have
guarantees on approximate diagnosis for compilations, and
showing that similar guarantees exist not just for com-
piled diagnosis approaches but also for iterative diagnosis
algorithms. Our notion of preference-based compilation is
different to the use of cost functions for DNNF minimal-
diagnosis extraction [Darwiche [1998]]. The cost-function
approach aims to compute the most-preferred diagnosis
given a complete DNNF and an observation; in our case we
are incrementally compiling all diagnoses which are more
preferred than a given threshold p. Hence, whereas using
probabilistic cost-functions can prune a complete DNNF
such that valid diagnoses may be lost [Darwiche [1998]],
the threshold-based incremental compilation guarantees
that no diagnoses ¢ € A, will fail to be included in the
approximate compilation, as shown in Theorem 2.

3. NOTATION AND PRELIMINARIES

This section introduces our notation. We first define the
propositional language we will use, and use this language
to specify the two main compilation languages we examine,
prime implicants and DNNF. Then we introduce our
preferred diagnosis notions.

3.1 Propositional Logic

We assume a standard propositional logic in this paper.
We use a finite alphabet of propositional symbols, ¥ =
{z1, 22, ..., 2n }, using the usual boolean connectives A, V, -,
and = for constructing well-formed formulae from ¥. A
literal is a propositional symbol or its negation. A clause
z21Vzo V- VzpVozpyer VeV oz, is a disjunction of
literals. A clause is Horn (definite Horn) if £ < 1 (k = 1).
A function (or formula) ® is a conjunction of clauses; in
this article we assume that a formula is defined over n
symbols, unless stated otherwise. The size of a formula f

is |,

A (partial) interpretation 7y for ¥, a mapping from (a
subset of) U to {true, false}, can be extended to boolean
formulae in the usual recursive way. I' is the set of all
interpretations. A partial solution is a partial interpre-
tation consistent with f. A model of a formula ® is an
interpretation v that maps ® to true. B is the set of all
boolean formulae over W. The function atoms : B — 2%
maps a formula ® to the set of propositional symbols
occurring in ®.

Prime implicants An implicant I of a formula ® is a
conjunction of literals such that I = ®. An implicant
is a prime implicant (PI) if, for every conjunct J obtained
by removing one or more literals from I, J % ®&. In other
words, a prime implicant is a minimal implicant of ®. The
disjunction II of all prime implicants of a formula ® is
equivalent to ®, i.e. IT preserves the models of ®. The size
of II is the sum of the size of all prime implicants.

1 It turns out that many real-world problems, e.g., the ISCAS
benchmark circuits [Brglez et al. [1989]], do not have treewidths
bounded by some relatively small integer, in order to ensure compact
DNNF compilations.

Decomposable Negation Normal Form A formula & is
in Negation Normal Form (NNF) if its literals are joined
using only the operators V and A. The Decomposable
Negation Normal Form (DNNF) is a subclass of NNF
satisfying the decomposability property, i.e., for every
conjunction @ = a1 A ag A ... A oy in a DNNF, it holds
that atoms(a;) N atoms(a;) = 0 for i # j. A DNNF can
be represented by a rooted directed acyclic graph, where
each leaf node is associated with a literal or truth value,
and each intermediate node corresponds to either V or A.

3.2 Most-Preferred Diagnosis

Central to MBD, a model of an artifact is represented as a
propositional WFF over some set of variables. Discerning
two subsets of these variables as assumable and observ-
able? variables gives us a diagnostic system.

Definition 1. (Diagnostic System). A diagnostic system D
is defined as the triple D = (®,(,a), where ® is a
propositional theory over a set of variables V, C C V|
a C V, C is the set of assumables, and « is the set of
observables.

The traditional query in MBD computes terms of as-
sumable variables which are explanations for the system
description and an observation.

Definition 2. (Health Assignment). Given a diagnostic sys-
tem D = (®,C, «), an assignment H to all variables in C
is defined as a health assignment.

A health assignment H is a conjunction of propositional
literals. In some cases it is convenient to use the set
of negative or positive literals in H. These two sets are
denoted as £~ (H) and LT (H), respectively. H is the set
of all health assignments.

We now formally define consistency-based diagnosis.
Definition 3. (Diagnosis). Given a diagnostic system D =
(®,C,a), an observation « over some variables in «, and
a health assignment 0, § is a diagnosis iff D A a A EL.

In the MBD literature, a range of types of “preferred”
diagnosis has been proposed. This turns the MBD problem
into an optimization problem. We now consider the case
where we use a preference function ¢ to guide the choice
of most-preferred diagnoses.

Definition 4. (Preference Function). A preference function
¢ defined over the diagnoses A of ® defines a partial or-
dering > over A. We say that diagnosis §; € A is preferred
to diagnosis d € A, written §; = do, if ¢(d1) > ¢(d2) for
comparison function >.

In the following definition we consider the standard no-
tions of minimal, minimal-cardinality (MC) and most-
probable (MP) diagnoses. Table 1 shows the symbols we
use to define these preferred diagnoses, using the notions
of Definition 1.

Given the ordering induced by ¢, we must convert this
ordering into a weighting function f such that we can

2 In the MBD literature the assumable variables are also referred to
as “component”, “failure-mode”, or “health” variables. Observable
variables are also called “measurable”, or “control” variables.

l H Symbol [¢(6) [Comparison
Minimal S £~(59) <
MO 5= [l <
MP 57 Pr(oP) >

Table 1. Preferred diagnosis summary

apply appropriate computational machinery to find most-
preferred sets of diagnoses. Using f, we can express our
MPD problem as follows:

Problem 1. (Most-Preferred Diagnosis Problem). Given a
weight function f induced by preference-ordering ¢, and
observation «, compute a most-preferred subset of diag-
noses, which is given by A*(«) = arg maxsea f(9).

We are also interested in computing a threshold-bounded
set of diagnoses, i.e., the subset of diagnoses whose prefer-
ence exceeds a bound p. We can define this set as follows:

Problem 2. (o-Preferred Diagnosis Problem). Given a pref-
erence function ¢ over the set of all diagnoses, and an ob-
servation «, compute a g-preferred diagnosis set A,(a) =

{0(0)|¢(6(a)) > o}-
4. SUBMODULARITY OF MPD

We now show how the submodularity of our MPD problem
means that our greedy approach is as accurate as any poly-
time approximation algorithm. Submodular functions are
a key concept in combinatorial optimization Nemhauser
et al. [1978]. Intuitively, sub-modularity highlights the no-
tion that, as we select more diagnoses based on preference-
ranking, we have diminishing returns for the cumulative
preference weight.

In performing inference on a submodular function, we
assume that we have a diagnosis evaluation oracle ©, such
that, when given as input a set H C H, © outputs f(H).
As a consequence, our submodular function can be solved
using polynomially many queries to the oracle ©.

Definition 5. (Submodularity). A function f(S) defined
on subsets S C U of a universal set U is said to be
submodular if for any two sets A C B C U and an element
x ¢ B, we have

f(AU{z}) = f(A) = f(BU{z}) - f(B). (1)

In the following, we show that diagnostic operations
based on the preference orderings of subset-inclusion, set-
cardinality and probability-ordering are submodular. We
first define an appropriate weighting function f for each
preference ordering, and then show that f is submodular.

Subset-Inclusion: The first lemma that we must prove
is that diagnostic operations based on subset-inclusion are
submodular. To show this, we must define an appropriate
submodular function f(A). Note that subset-inclusion
induces a poset over U. We can associate with the ordering
on this poset a set of integers, such that for the ordering
from L = {0}, up to T, we have the corresponding
integers 1 up to n; we define this corresponding set of
integers as A. As a consequence, we can define a function
f(A) : A — A, which has the property that for any
ACBCU, f(A) < f(B).

Lemma 1. The function fc (H) induced by subset-inclusion
C is submodular.

Proof. We must prove that fc(AU{z})—fc(A) > fc(BU
{z}) — fc(B). Taking the left-hand-side, we have fc(AU
{z}) = fc(A) = (fc(A)+1)— fc(A) = 1. Taking the

right-hand-side, we have fc (BU{z})—fc(B) = (fc(B)+
1)— fc(B) = 1. Hence we obtain the required Equation 1.

Set Cardinality: We must define an appropriate submod-
ular weight function f<(A). If there are m health variables,
we can define the weight of a health assignment as m —
|£~(H)|. Then the cumulative weight of a set of health
assignments is given by f<(H) = >y c(m —[L7(H;)]).

Lemma 2. The function f<(H) induced by a max-cardinality
ordering is submodular.

Proof. By the definition of submodularity, we must show
that f<(AU{z})— f<(4) = f<(BU{z}) — f<(B). Taking
the left-hand-side, we have f<(A U {z}) — f<(4) =
f<(A) + f<({z}) = f<(A) = f<({z}). Taking the right-
hand-side, we have f<(BU {z}) — f<(B) = [f<(B)+
f<({z}) — f<(B) = f<({z}). Hence we obtain the
required equation 1.

Set Probability-Ordering: For this preference function,
we define f,(H) in terms of the cumulative distribution
function (cdf) for a set H of health assignments. The
probability of a health assignment is given by Pr(H) =
[Iv, e Pr(Vi); the cdf for a set H of health assignments
is given by f,(H) = > ey Pr(H).

Lemma 3. The function f,(H) induced by a max-probability
ordering is submodular.

Proof. Assume that we have health assignments A € 27
and B € 2. Let Pr(A) = ma, and Pr(B) = mp. By
the definition of submodularity, we must show that f(AU
{z})—f(A4) > f(BU{x})—f(B). Taking the left-hand-side,
we have f,(AU{z})—fp(A) = ma+m,—m4 = 7a. Taking
the right-hand-side, we have f,(B U {z}) — f,(B) =
mg + 7, — T = wp. Hence we obtain the required
equation 1.

Next, we employ some well-studied results about the
optimality of greedy algorithms on submodular functions.
First, it has been shown that a greedy algorithm provides a
constant-factor approximation for submodular problems.

Lemma 4. (Nemhauser et al. [1978]). For any normalized,
monotonic submodular function f, the set ¥X* obtained by
a greedy algorithm achieves at least a constant fraction 1—
é of the objective value obtained by the optimal solution:

7 = (1 - 1) max f(5),

e) |S|<k
where k is a bound on the number of diagnoses we can
address.

Proof. Cf. Nemhauser et al. [1978].

Moreover, Feige [1998] has shown that the (1 — 1)-
approximation obtained for such problems using a greedy
algorithm is optimal unless P = NP. Together, these
results indicate the following:

Theorem 1. A greedy algorithm provides a constant-factor
approximation to the MPD problem (Problem 1), such
that no poly-time algorithm can provide a better approx-
imation unless P = NP.

Proof. Follows from Lemmas 1 through 4, and the [Feige
[1998]] result.

5. ITERATIVE MPD COMPUTATION

This section describes how we compute the MPD set using
multiple iterations of a single-diagnosis algorithm ©.

If we assume that we can rank-order all potential diag-
noses in terms of their weight, f(J), then we can adopt
a greedy approach that selects the maximum-weight di-
agnosis at each step, and checks its consistency using O.
By Theorem 1, we know that such a greedy algorithm will
provide a constant-factor approximation of the weighted
diagnosis set generated by an optimal algorithm. The set
of approximate diagnoses will be sound if the diagnostic
oracle is sound.

Since we will only need a polynomial number of calls
to © [Feige [1998]], the complexity of this approach is
bounded by the complexity of each oracle call. With our
propositional language, this diagnostic-oracle task is NP-
hard, so we employ an incomplete stochastic diagnosis
oracle, SAFARI [Feldman et al. [2008]].

We have also developed a second algorithm that al-
lows a user to tune the MPD inference according to a
weight threshold p, i.e., we solve Problem 2. In this case,
we assume that we compute an ordering of the health-
assignment subsets using ¢. Then we check the most-likely
health assignments using the diagnostic oracle ©, as shown
in Algorithm 1.

Algorithm 1 Pseudocode for iterative o-MPD.
1: function MPD,(D, a, 9, H) returns a set A,
inputs: D, MPD system; «, observation;
o, weight threshold; H, health set
local variables: A, set of terms, initially 0

H — argmax{f(H)|H € H}
repeat
If®UaUH W L then Ay — A,UH
H—H\H
until f(H) < o
return A,
end function

There are several optimizations that can be employed to
reduce the computational overhead of this iterative ap-
proach. The most important concerns bounding the space
of possible diagnoses, which can be O(2") for binary-
valued health variables, and larger for multi-valued vari-
ables. In real-world domains, the failure probabilities of
components are typically very small—on the order of
10~2 or smaller—so health assignments with many faulty
components have a very low probability of occurring, and
hence contribute marginally to the cdf f(H). With analo-
gous arguments possible for the other preference orderings,
one can strictly bound the space of possible diagnoses
to H, through an appropriate threshold p, with minimal

effect on the ratio j;(z;(_f)). This limits the potential num-

ber of calls to the diagnosis oracle, which is the primary
computational bottleneck.

Second, using a fast but incomplete oracle creates signifi-
cant speedups over a complete oracle. Using an incomplete
oracle like SAFARI weakens the (1 — é)—optimality guaran-
tees, while a complete algorithm or a SAT solver maintains
the guarantees with computational penalties.

6. COMPILED MPD COMPUTATION

The second method for computing MPD, compilation,
generates a compiled representation ((®) from which all
possible diagnoses can be extracted. We introduce a new
method of thinking about compilation, one in which,
rather than completely compiling a boolean function ®,
we are compiling only those solutions to ® (represent-
ing sets of diagnoses) induced by a preference relation
¢ and threshold p. We show that this preference-based
compilation function, fpgg, is submodular, and hence a
greedy approximation algorithm for fpgp will approxi-
mate the complete set of diagnoses to within (1 — 1)
of optimal, and will be sound. We define a compilation
function that captures the compilation approaches defined
using PIs [de Kleer [1986]], DNNF [Darwiche [2001]], and
OBDDs [Bryant [1992]], as follows.

Definition 6. (Compilation). Given a problem P, an in-
stance (®,a) of P and a query function Qp, we define
a compilation function of ®, ((P), such that there ex-
ists a query function Q% : ((B) x ¥* — {yes,no} and
V(®,a) € B x ¥* it holds that Q’»({(®),0) = Qp(®,a).?

It is clear from Definition 6 that a compilation ¢(®) pre-
serves the models of ®. We now describe several properties
of a compilation given preference function ¢. It is impor-
tant that the compilation preserves the preference order
over the models of ®.

Definition 7. (Preference Preservation). A compilation {(®)
preserves a preference function ¢ if, given (®, o), for any
pair of diagnoses 41, d2 such that d1,d2 € Ag and 61,02 €
A¢ (@), 01 = 02 is valid in ((®) iff §; > &2 is valid in @.

Since we are interested in compiling only the most-
preferred diagnoses, we define preferred approximate com-
pilations as compilations including only a subset of most-
preferred diagnoses:

Definition 8. (Preferred Approximate Compilation). Given
a compilation ((®) with space of diagnoses Ac(g), ¢(P)
denotes a preferred approximate compilation of ® if: (1)
AC(‘I’) C Ag; and (2) Vo, € A((¢)7V52 € Ag \ AC@’)’ it
holds that &, > ds.

We aim to compile all diagnoses with valuations at least as
preferred as o, which we denote as a p-sound compilation.

Definition 9. (o-sound compilation). Given a preference
function ¢ over ® and a threshold p, the preferred approx-
imate compilation ((®) denotes a g-sound compilation of
® if: (1) ¢(P) preserves the preference function ¢; and (2)
¢(®) contains every diagnosis § € Ay, i.e. Aca) 2 A,

We have designed our algorithms [Venturini and Provan
[2008]] to incrementally generate partial diagnoses of in-
creasing size only if the partial diagnosis at each step has

3 Note that this definition differs from the original definition of
[Cadoli et al. [2002]], where a compilation is assumed to be of size
polynomial in |®| and answering the query Q}, is assumed to require
a time polynomial in |a| + [{(®)].

preference weight greater than p. We call this approach
partial-solution extension (PSE), which we can prove holds
for the set ¢* of preference functions for C, < and
probability.

Theorem 2. Given a preference function ¢ € ¢* over ®
and a threshold p, partial-solution extension (PSE) is
guaranteed to generate a o-sound compilation of .

Proof: First, it is trivial to show that, given two partial
solutions §; and &2 which agree on truth-assignments A;
and Ay (except that dy makes one more assignment than
01), A1 > Ao 4 Using this, we can now show that we never
exclude a solution § € A,. Assume that partial solution
A1 is less preferred than g; by pruning A1, there can be no
more-preferred extension A’ to \q, since for any extension
A’ of A1, A1 = N'. Hence, we never exclude any solutions
which are extensions of ;. Using an inductive argument,
for any partial solution we never omit any solution € A,
through PSE. O

We now show that the PSE function, fpsg, is submodular
for the probabilistic preference order; analogous arguments
can be made for the subset and set-cardinality orders. Our
PSE function operates over partial-diagnosis set functions,
i.e., subsets of health variables. Hence, for the probabilistic
preference order, fpsg : 2" — [0,1]. fpsr extends a
partial diagnosis § to create a more complete health assign-
ment H, and uses an oracle to check if H is consistent and
has Pr(H) > p. As before, we assume that components fail
independently, so the probability of a health assignment H
is Pr(H) = [I,,eq Pr(h:).

Lemma 5. The function fpgg(H) induced by a max-
probability ordering is submodular.

Proof. Assume that we have health assignments A and
B, with A C B, Pr(A) = 74, and Pr(B) = 7p.
By the definition of submodularity, we must show that
fAU{z}) — f(A) > f(BU{z}) — f(B). Taking the left-
hand-side, we have f,(AU {z}) — fp(4A) = 74 *xmy —
ma = wa(m, — 1). Taking the right-hand-side, we have
fp(BU{z}) = fp(B) = mp*my—mp = 7p(my—1).
Since A C B and 1 > Pr(-) > 0, mg4 < 7p. In addition,
since 1 > Pr(m;) > 0, m, — 1 < 0. Hence we must have
wa(my — 1) > 7wp(m, — 1), and we obtain the required
equation 1.

This submodularity means that a greedy algorithm based
on PSE is guaranteed to compile an approximate represen-
tation for which the cumulative preference weight is within
a constant factor of that of the complete compilation, using
an argument analogous to that of Section 4.

We extend this greedy approach to allow a user to specify a
preference threshold p to control the space of diagnoses in
the approximate compilation. We now briefly describe the
PI and DNNF p-compilation approaches [Venturini and
Provan [2008]].

Prime Implicants The compilation algorithm for Pls
was implemented using the PRIME algorithm [Shiny and
Pujari [2002]]. The original procedure generates full compi-
lations in a divide-et-impera fashion, by (1) dividing a for-
mula ® into two sub-formulae, (2) recursively calculating

4 We call A2 an extension of \i.

the PIs of each sub-formula, and (3) merging the results
in order to obtain the PIs of ® that are more preferred
than the threshold p. In other words, we discard partial
diagnoses that are less preferred than g, in accordance with
the PSE approach.

DNNF The compilation algorithm for DNNF is based on
the algorithm proposed in [Darwiche [2001]]. The original
procedure calculates full DNNF compilations of a formula
® by executing the following steps: (1) a specific subset
B of variables of ® is created; (2) for each instantiation
of B-variables, ® is divided into two sub-formulae; (3)
the DNNF compilation of each sub-formula is calculated
recursively; (4) the DNNF compilation of ® is calculated
by merging the DNNF representations of the sub-formulae.
To calculate approximate compilations, we modified the
second step of the original algorithm so that instantiations
less preferred than the threshold ¢ are not considered.
Thus, we compile only those DNNF representations that
encode partial diagnoses more preferred than o.

7. EMPIRICAL RESULTS

This section summarises results which empirically vali-
date this approach for two important compilation targets,
prime implicants and DNNF. We have developed PSE
algorithms for PI and DNNF compilations [Venturini and
Provan [2008]]. We provide empirical evidence that incre-
mental p-compilation achieves space reductions of several
orders-of-magnitude over the full compilation, while los-
ing relatively little query completeness. The experiments
were run with formulae representing a suite of digital
circuits which were generated randomly by a circuit gen-
erator program [Provan and Wang [2007]], such that the
circuits have properties similar to those of the ISCAS
circuit benchmarks [Brglez et al. [1989]]. Each circuit is
represented by a formula ® defined over a set of boolean
variables V' = H UK, where a variable h; € H denotes the
health of gate i, and variables in K denote input/output
signals. To each variable h; € H,7 = 1,...,m we assign a
probability valuation by randomly sampling the value for
Pr(h; = 1) = p from a uniform distribution over ranges
R = [i, 1], with 0 < ¢ < 1. We studied a probability range
R =[0.99, 1]; however, our experimental data indicate that
we obtain similar results using different ranges.

For our approach to work, two key properties are required
to achieve computational feasibility: (1) the subspace of
preferred health assignments H, over which we search
must be much smaller that 27 i.e., H, < 2% .; and (2) we
must have an efficient oracle for the iterative algorithm.
The determination of whether H, < 2H is dependent
on the preference ordering. We have empirically examined
the effect of the probabilistic ordering on H, and on the
number of PIs. For both cases, we compared the full set
of health assignments/PIs with subsets for orderings with
tighter ranges on allowable probabilities. Figure 1 shows
that the number of Pls decreases as the probability range
gets tighter. The number of preferred Pls decreases as
i — 1 for all threshold values ¢ > 0. Since real-world
diagnostic problems typically have very small ranges for
fault likelihoods, this indicates that we will have H, < 2
and A, < A.

60000

50000 |- L o
40000 - % B
2 R
2 .
£ 30000 | * 1
[} *;
£ a
i =}
20000 | 1
=}
10000 | = E
1o}
©-
Bopg E e

0 | | | |
1e-20 1e-18 1e-16 1e-14 1e-12 1e-10 1e-08 1e-06 0.0001 0.01 1
Threshold

Fig. 1. Number of prime implicants of a formula ® encod-
ing a 16-gate circuit; each graph refers to a different
probability range.

10 gates —+—
11 gates --—-x---
12 gates ---*--- -
13 gates &

14 gates —-=-—
0.98 | 15 gates --o--
16 gates -~ -e- -
17 gates —-=-

18 gates -

0.97

0.96

Coverage ratio

i i/ /
0.95 - i g x 1

i S
0.94 T 1

£

0.91
1e-06 1e-05

| | | |
0.0001 0.001 0.01 0.1 1
Memory ratio

Fig. 2. Plots of f(A,), or CDF, of diagnosis distributions
for PI compilations. Given a full compilation (y and
an approximate compilation (,, Memory Ratio is
defined as mr = |(4|/|¢f| and Coverage Ratio is
defined as cr = (32, Pr(&:))/(32; Pr(d;)), with 6; €
(o and 95 € (5.

Further, note that we can control the number of diagnoses
(and thus the size and coverage of the approximate com-
pilation) by selecting appropriate (i, 0) combinations.

Figure 2 plots f(A,), the Cumulative Distribution Func-
tions (CDF), of diagnosis distributions for circuits with 10
to 18 gates, encoded in formulae with 58 to 108 clauses.
These graphs refer to PI compilations; we obtain similar
results using DNNF. This plot has the typical shape of a
submodular function. Here we see that, using approximate
compilations, we obtain significant diagnosis coverage yet
require just a fraction of the memory of the full compila-
tion. In particular, we obtain up to 5 orders-of-magnitude
space savings, while maintaining > 90% query-coverage;
moreover, for all circuits very high coverage ratio (> 99%)
is possible with 3-4 orders-of-magnitude space savings.
The space savings increase with circuit (or formula) size,
meaning that this approach scales well with the size of ®.

8. SUMMARY AND CONCLUSIONS

We have proposed an approach for approximately comput-
ing all diagnoses, using either iterative or compiled diag-
nosis algorithms. This approach avoids the time-/space-
complexity drawbacks of existing algorithms, at the ex-
pense of solution incompleteness. However, by showing
that preference-based diagnoses are computed by a sub-
modular function, we show that a simple greedy algorithm
can obtain a set of diagnoses within (1 — 1) of optimal.

We summarised some empirical results for the compilation
approach for PI and DNNF target languages. All the
algorithms are p-sound, i.e. they compute approximate
compilations that include all diagnoses more preferred
than the valuation threshold p. These results demonstrate
the space efficiency of approximate compilations, showing
that we can achieve orders-of-magnitude space savings
while covering the majority of diagnoses.

REFERENCES

B. Bollig and I. Wegener. Improving the variable ordering
of OBDDs is NP-complete. IEEFE Transactions on
Computers, 45(9):993-1002, 1996.

F. Brglez, D. Bryan, and K. Kozminski. Combinational
profiles of sequential benchmark circuits. In IEEE Inter-
national Symposium on Circuits and Systems, volume 3,
pages 1929-1934, May 1989.

R.E. Bryant. Symbolic boolean manipulation with ordered
binary-decision diagrams. ACM Computing Surveys
volume 24, pages 293-318. 1992.

M. Cadoli, F.M. Donini, P. Liberatore, and M. Schaerf.
Preprocessing of Intractable Problems. Information and
Computation, 176(2):89-120, 2002.

A. Darwiche. Model-Based Diagnosis using Structured
System Descriptions. Journal of Artificial Intelligence
Research, 8:165-222, 1998.

A. Darwiche. Decomposable negation normal form. Jour-
nal of the ACM (JACM), 48(4):608-647, 2001.

Johan de Kleer. An assumption-based TMS. Artif. Intell.,
28(2):127-162, 1986.

U. Feige. A threshold of In n for approximating set cover.
Journal of the ACM (JACM), 45(4):634-652, 1998.

Alexander Feldman, Gregory Provan, and Arjan van
Gemund. Computing minimal diagnoses by greedy
stochastic search. In Proc. AAAIL July 2008.

A. Ferrara, P. Liberatore, and M. Schaerf. Model Checking
and Preprocessing. In Proc. AI*IA 2007: Artif. Intelli-
gence and Human-Oriented Computing. Springer, 2007.

GL Nemhauser, LA Wolsey, and ML Fisher. An analysis
of approximations for maximizing submodular set func-
tions (I). Math. Programming, 14(1):265-294, 1978.

G. Provan and J. Wang. Evaluating the adequacy of au-
tomated benchmark model generators for model-based
diagnostic inference. In Proceedings of IJCAI-07, Hy-
derabad, India, 2007.

A K. Shiny and A.K. Pujari. Computation of Prime
Implicants using Matrix and Paths. Journal of Logic
and Computation, 8(2):135-145, 2002.

Detlef Sieling. The nonapproximability of OBDD mini-
mization. Inf. Comput., 172(2):103-138, 2002.

A. Venturini and G. Provan. Incremental algorithms for
approximate compilation. In Proc. AAAIL 2008.

