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Abstract

Model-Based Diagnosis (MBD) approaches often
yield a large number of diagnoses, severely lim-
iting their practical utility. This paper presents a
novel active testing approach based on MBD tech-
niques, called FRACTAL (FRamework for ACtive
Testing ALgorithms), which, given a system de-
scription, computes a sequence of control settings
for reducing the number of diagnoses. The ap-
proach complements probing, sequential diagnosis,
and ATPG, and applies to systems where additional
tests are restricted to setting a subset of the existing
system inputs while observing the existing outputs.
This paper evaluates the optimality of FRACTAL,
both theoretically and empirically. FRACTAL gen-
erates test vectors using a greedy, next-best strategy
and a low-cost approximation of diagnostic infor-
mation entropy. Further, the approximate sequence
computed by FRACTAL’s greedy approach is opti-
mal over all poly-time approximation algorithms,
a fact which we confirm empirically. Extensive
experimentation with ISCAS85 combinational cir-
cuits shows that FRACTAL reduces the number of
remaining diagnoses according to a steep geometric
decay function, even when only a fraction of inputs
are available for active testing.

1 Introduction

The number of diagnoses generated by a Model-Based Diag-
nosis (MBD) engine (e.g., the General Diagnostic Engine [de
Kleer and Williams, 1987]) can be large, and in the worst-
case is exponential in the number of components. This ambi-
guity (uncertainty) of the diagnostic result arises due to to
modeling uncertainty (e.g., modeling weakness due to ig-
norance of abnormal behavior or the need for robustness)
and the limited number of observations (sensor-lean systems,
limited observation horizons) of typical systems, especially
when false positives cannot be tolerated.

Given a set of plausible diagnoses, in certain situations one
can devise additional tests (probes), that reduce the diagnostic
ambiguity [de Kleer and Williams, 1987]. Because most sys-
tems are sensor-lean, there is a limited set of test points that
can be used to further narrow down the diagnostic solution
space. Many systems have built-in testing capabilities with
pre-defined test vectors; the drawback with such pre-specified

test strategies is that they must cover all possible faults and
observations, and so are typically highly sub-optimal.

Rather than rely on predefined test-vectors, either com-
puted to expose particular faults (ATPG, e.g., [Stephan et al.,
1996]), or selected from a limited test matrix (sequential di-
agnosis, e.g., [Pattipati and Alexandridis, 1990]), we propose
a novel, active testing strategy, which dynamically determines
test vectors from the entire test vector space using an MBD
approach. An active testing problem takes as input a system
model, an initial observation and a diagnosis, and computes
the set of input test vectors that will minimize diagnostic am-
biguity with the least number of test vectors. The test vectors
are computed by setting a subset of input settings which, to-
gether with the resulting output values, optimally reduce the
size of the set of diagnoses. To the best of our knowledge,
our definition of and solution for active testing are novel. Fur-
thermore, our method is based on MBD, which requires few
assumptions about the model and the observations.

Our contributions are as follows. (1) We define the ac-
tive testing problem and outline a strategy, FRACTAL, which
generates test vectors using a greedy, next-best policy and a
low-cost approximation of diagnostic information entropy to
guide the search. (2) We empirically demonstrate that FRAC-
TAL computes an expected number of diagnoses which shows
near 87% correlation with the exact number of remaining di-
agnoses. (3) We prove that FRACTAL’s greedy approach com-
putes an approximate solution which is optimal over all ap-
proximation algorithms, a fact which we confirm empirically.
(4) We present extensive empirical data on ISCAS85 circuits,
which shows that FRACTAL reduces the number of remaining
diagnoses according to a geometric decay function (e.g., re-
ducing 46 003 double faults in c7552 to 4 in 6 steps only),
even when only a fraction of the inputs are modifiable.

2 Related Work

Early work aimed at diagnostic convergence is the approach
by de Kleer and Williams [1987] which computes the probe
sequence that reduces diagnostic entropy using a myopic
search strategy. Unlike their work, in active testing we as-
sume that probes are not available, other than indirectly ex-
posed through diagnosis based on test vectors, which offers
an automated solution.

Generating test vectors to deduce faults has received con-
siderable attention. Automatic test pattern generation (ATPG)
aims at verifying particular, single-faults [Stephan et al.,
1996]. ATPG differs from active testing in that the vectors
are specific for particular single-faults, whereas active testing



generates a sequence of vectors to isolate unknown, multiple-
faults, a much harder problem.

Active testing bears some resemblance with sequential di-
agnosis, which also generates a sequence of test vectors
[Pattipati and Alexandridis, 1990; Raghavan et al., 1999;
Tu and Pattipati, 2003; Kundakcioglu and Ünlüyurt, 2007].
The principle difference is that in sequential diagnosis a fault
dictionary is used (“fault matrix”). This pre-compiled dictio-
nary has the following drawback: in order to limit the (expo-
nential) size of the dictionary, the number of stored test vec-
tors is extremely small compared to the test vector space. This
severely constrains the optimality of the vector sequence that
can be generated, compared to active testing, where test vec-
tors are computed on the fly using a model-based approach.
Furthermore, the matrix specifies tests that only have a binary
(pass/fail) outcome, whereas active testing exploits all the
system’s outputs, leading to faster diagnostic convergence. In
addition, we allow the inputs to be dynamic, which makes our
framework suitable for online fault isolation.

Model-Based Testing (MBT) [Struss, 1994] is a general-
ization of sequential diagnosis. The purpose of MBT is to
compute inputs manifesting a certain (faulty) behavior. The
main differences from our active testing approach are that
MBT (1) assumes that all inputs are controllable and (2) MBT
aims at confirming single faulty behavior as opposed to max-
imally decreasing the diagnostic uncertainty.

Our task is harder than that of Raghavan et al. [1999], since
despite the diagnosis lookup using a fault dictionary, the di-
agnosis task is NP-hard; in our case we compute a new diag-
nosis after every test. Hence we have an NP-hard sequential
problem interleaved with the complexity of diagnostic infer-
ence at each step (in our case the complexity of diagnosis is
Σp

2-hard). Apart from the above-mentioned differences, we
note that optimal test sequencing is infeasible for the size of
problems in which we are interested.

A recent approach to active diagnosis is described by Kuhn
et al. [2008], where additional test vectors are computed
to optimize the diagnosis while the system (a copier) re-
mains operational. Their work differs from ours in that plans
(roughly analogous to test sequences) with a probability of
failure T are computed statically, and a plan remains unmod-
ified even if it fails to achieve its desired goal (a manifes-
tation of a failure with probability close to T ). Conversely,
FRACTAL dynamically computes next-best control settings in
a game-like manner.

Rish et al. [2003] cast their models in terms of Bayesian
networks. Our notion of entropy is the size of the diagnosis
space, whereas Rish et al. use decision-theoretic notions of
entropy to guide test selection.

Our use of greedy algorithms over a submodular function
is analogous to the observation-selection problem of [Krause
and Guestrin, 2007; Andreas Krause et al., 2008] used for
design of sensor-networks and experiments. Whereas Krause
et al. use the submodularity of variance-minimization or
information-gain of sensor readings, we use the submodular-
ity of diagnosis-updating given new tests.

We solve a different problem than that of Heinz and
Sachenbacher [2008] or Alur et al. [1995]. Our framework
assumes a static system (plant model) for which we must

compute a temporal sequence of tests to best isolate the diag-
nosis. In contrast, Heinz and Sachenbacher [2008] and Alur
et al. [1995] assume a non-deterministic system defined as an
automaton. Esser and Struss [2007] also adopt an automa-
ton framework for test generation, except that, unlike Heinz
and Sachenbacher [2008] or Alur et al. [1995], they trans-
form this automation to a relational specification, and apply
their framework to software diagnosis. This automaton-based
framework accommodates more general situations than does
ours, such as the possibility that the system’s state after a
transition may not be uniquely determined by the state before
the transition and the input, and/or the system’s state may be
associated with several possible observations. In our MBD
framework, a test consists of an instantiation of several vari-
ables, which corresponds to the notion of test sequence within
the automaton framework of Heinz and Sachenbacher [2008].

3 Active Testing

Our discussion starts by adopting relevant MBD notions.

3.1 Concepts and Definitions

A model of a system is a propositional Wff .

Definition 1 (Active Testing System). An active testing sys-
tem ATS is defined as ATS = 〈SD, COMPS, CTL, OBS〉,
where SD is a propositional Wff over a variables set V ,
COMPS∪OBS∪CTL ⊆ V , and COMPS, OBS, and CTL
are sets containing assumable, observable, and control vari-
ables, respectively.

Throughout this paper we assume that OBS, COMPS, and
CTL are disjoint, and SD 6|=⊥. Sometimes it is convenient
(but not necessary) to split OBS into non-controllable inputs
IN and outputs OUT (OBS = IN ∪OUT, IN ∩OUT = ∅).

Definition 2 (Diagnosis). Given a system ATS, an observa-
tion α over some variables in OBS, and an assignment ω to
all variables in COMPS, ω is a diagnosis iff SD∧α∧ω 6|=⊥.

The set of all diagnoses of SD and an observation α is denoted
as Ω(SD, α). The cardinality of a diagnosis, denoted as |ω|,
is defined as the number of negative literals in ω.

Definition 3 (Minimal-Cardinality Diagnosis). A diagnosis
ω≤ is defined as Minimal-Cardinality (MC) if no diagnosis
ω̃≤ exists such that |ω̃≤| < |ω≤|.

Our selection of minimality criterion is such that it is impossi-
ble to compute all diagnoses from the set of all MC diagnoses
without further inference. MC diagnoses, however, are often
used in practice due to the prohibitive cost of computing a
representation of all diagnoses of a system and an observa-
tion (e.g., all subset-minimal diagnoses).

The number of MC diagnoses of a system ATS and an ob-
servation α is denoted as |Ω≤(SD, α)|, where Ω≤(SD, α) is
the set of all MC diagnoses of SD ∧ α. Given a system ATS,
an observation sequence S is defined as a k-tuple of terms
S = 〈α1, α2, . . . , αk〉, where αi (1 ≤ i ≤ k) is an instantia-
tion of variables in OBS.

Throughout this paper, we assume that the health of the
system under test does not change during the test (i.e., the
same inputs and a fault produce the same outputs) and call
this assumption stationary health.



Lemma 1. Given a system ATS, a health state for its com-
ponents ω, and an observation sequence S, it follows that
ω ∈ Ω(SD, α1) ∩ Ω(SD, α2) ∩ . . . ∩Ω(SD, αk).

Proof. The above statement follows immediately from the
stationary health assumption and Def. 2.

Lemma 1 can be applied only in the cases in which all di-
agnoses are considered. If we compute subset-minimal di-
agnoses in a weak-fault model, for example, the intersection
operator has to be redefined to handle subsumptions. To han-
dle non-characterizing sets of diagnoses (e.g., MC or first m
diagnoses), we provide the following definition.

Definition 4 (Consistency-Based Intersection). Given a set
of diagnoses D of SD ∧ α, and a posteriori observation α′,
the intersection of D with the diagnoses of SD ∧ α′, denoted
as Ω∩(D, α′), is defined as the set D′ (D′ ⊆ D) such that for
each ω ∈ D′ it holds that SD ∧ α′ ∧ ω 6|=⊥.

It is straightforward to generalize the above definition to an
observation sequence S.

Definition 5 (Remaining Minimal-Cardinality Diagnoses).
Given a diagnostic system ATS and an observation sequence
S, the set of remaining diagnoses Ω(S) is defined as Ω(S) =
Ω∩(Ω∩(· · ·Ω∩(Ω≤(SD, α1), α2), · · · ), αk).

We use |Ω(S)| instead of the more precise diagnostic entropy
as defined by de Kleer et al. [de Kleer and Williams, 1987]

and subsequent works, as this allows low-complexity estima-
tions (discussed in Sec. 3.3). In particular, if all diagnoses
are of minimal-cardinality and the failure probability of each
component is the same, then the gain in the diagnostic entropy
can be directly computed from |Ω(S)|.

3.2 Control Strategy

We assume that we have an underlying set S = 〈S1, . . . , Sq〉
of possible observations, where each observation Si ∈ S
consists of Si = αi ∧ γi, for whiche we are given as
(non-modifiable) inputs the sequence of OBS assignments
〈α1, α2, . . . , αk〉, and we must choose a sequence Γ =
〈γ1, γ2, . . . , γl〉, l ≤ k − 1 of controls to minimize the set
of remaining diagnoses. We set f(γ) = |Ω(S)| for some
S ⊆ S. Our AT problem is defined as follows:

Problem 1 (Optimal Control Input). Given a system ATS,
and a sequence S = 〈α1 ∧ γ1, α2, . . . , αk〉, where αi (1 ≤
i ≤ k) are OBS assignments and γ1 is a CTL assignment,
compute a sequence of CTL assignments γ∗ = γ2, . . . , γk,
such that γ∗ = minγ⊆Γ f(γ).

Although our framework also allows us to skip the require-
ments of an initial observation,1 in practice, active testing is
triggered by a failure, hence the initial observation. While
similar to classic, sequential diagnosis, this is different from
ATPG as we don’t compute tests for a specific target diagno-
sis ω∗ (in which case there is no need to have an initial control
γ and observation α). In the active testing problem, the sit-
uation is different: we target any health state, so an initial

1In our presentation “sequential diagnosis” is used in the MBD
context, which is slightly different from its original presentation, but
still compatible.

observation and control are required. The computational ar-
chitecture in which we use FRACTAL is illustrated by Fig. 1.
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Figure 1: Active testing dataflow for FRACTAL

In practice, a diagnostician does not know what the next ob-
servation will be. Fully solving an active testing problem
would necessitate the conceptual generation of a tree with all
possible observations and associated control assignments in
order to choose the sequence that, on average, constitutes the
shortest (optimal) path over all possible assignments.

The sequential diagnosis problem studies optimal trees
when there is a cost associated with each test [Tu and Pat-
tipati, 2003]. When costs are equal, it can be shown that the
optimization problem reduces to a next best control problem
(assuming one uses information entropy). In this paper a di-
agnostician who is given a sequence S and who tries to com-
pute the next optimal control assignment would try to mini-
mize the expected number of remaining diagnoses |Ω(S)|.

3.3 Expected Intersection Size

We will compute the expected number of diagnoses for a set
of observable variables M (M ⊆ OBS). The initial observa-
tion α and the set of MC diagnoses D = Ω≤(SD, α) modify
the probability density function (pdf) of subsequent outputs
(observations), i.e., a subsequent observation α′ changes its
likelihood. The (non-normalized) a posteriori probability of
an observation α′, given an MC operator and an initial obser-
vation α is:

Pr(α′|SD, α) =
|Ω∩(Ω≤(SD, α), α′)|

|Ω≤(SD, α)|
(1)

The above formula comes by quantifying how a given a priori
set of diagnoses restricts the possible outputs (i.e., we take as
probability the ratio of the number of remaining diagnoses to
the number of initial diagnoses). In practice, there are many
α for which Pr(α′|SD, α) = 0, because a certain fault heavily
restricts the possible outputs of a system (i.e., the set of the
remaining diagnoses in the nominator is empty).

The expected number of remaining MC diagnoses for a
variable set M , given an initial observation α, is then the
weighted average of the intersection sizes of all possible in-
stantiations over the variables in M (the weight is the proba-
bility of an output):

E≤(SD, M |α) =

∑

α′∈M∗

|Ω∩(D, α′)| · Pr(α′|SD, α)

∑

α′∈M∗

Pr(α′|SD, α)
(2)

where D = Ω≤(SD, α) and M∗ is the set of all possible
assignment to the variables in M . Replacing (1) in (2) and
simplifying gives us the following definition:



Definition 6 (Expected Minimal-Cardinality Diagnoses In-
tersection Size). Given a system ATS and an initial obser-
vation α, the expected remaining number of MC diagnoses
E≤(SD, OBS|α) is defined as:

E≤(SD, OBS|α) =

∑

α′∈OBS∗

|Ω∩(Ω≤(SD, α), α′)|2

∑

α′∈OBS∗

|Ω∩(Ω≤(SD, α), α′)|

where OBS∗ is the set of all possible assignments to all vari-
ables in OBS.

4 An Algorithm for Active Testing

As the active testing problem is extremely complex (count-
ing the number of MC diagnoses, computing the expectation
for the number of MC diagnoses and finding the optimal con-
trol setting are all NP-hard or worse problems), we propose a
stochastic approach.

4.1 Approximation of the Expectation

Our algorithm for active testing consists of (1) a randomized
algorithm for approximating the expected number of remain-
ing diagnoses and (2) a greedy algorithm for searching the
space of control assignments. We continue our discussion
with approximating the expectation.

The key insight which allows us to build a faster method
for computing the expected number of remaining diagnoses
is that the prior observation (and respectively the set of MC
diagnoses) shifts the probability of the outputs. Hence, an
algorithm which samples the possible input assignments (it
is safe to assume that inputs are equally likely) and counts
the number of different observations, given the set of prior
diagnoses, would produce a good approximation.

Algorithm 1 uses a couple of auxiliary functions: RAN-
DOMINPUTS assigns random values to all inputs and INFER-
OUTPUTS computes all outputs from the system model, all
inputs and a diagnosis.2 The computation of the intersection
size |Ω∩(D, α∧β∧γ)| can be implemented by counting those
ω ∈ D for which SD ∧ α ∧ β ∧ γ ∧ ω 6|=⊥.

The algorithm terminates when a termination criterion
(checked by TERMINATE) is satisfied. In our implementa-
tion TERMINATE returns success when the last n iterations
(where n is a small constant) leave the expected number of

diagnoses, Ê, unchanged. Our experiments show that for all
problems considered, n < 100 yields a negligible error.

4.2 Greedy Control Algorithm

Algorithm 2 computes a control assignment for a given active
testing system and a prior observation by assuming that the
control literals are independent, flipping them one at a time,

and accepting a new control assignment if it decreases Ê.
The set of initial diagnoses is computed from the initial obser-
vation in line 2. In line 5, Alg. 2 “flips” the next literal in the

2This is not always possible in the general case. In our frame-
work, we have a number of assumptions, i.e., a weak-fault model,
well-formed circuit, etc. The complexity of INFEROUTPUTS varies
on the framework and the assumptions.

Algorithm 1 Approximate expectation

1: function EXPECTATION(ATS, γ, D) returns a real

inputs: ATS, active testing system
γ, term, system configuration
D, set of diagnoses, prior diagnoses

local variables: α, β, ω, terms
s, q, integers, initially 0
Z , set of terms, samples, initially ∅
Ê, real, expectation

2: repeat
3: α← RANDOMINPUTS(SD, IN)
4: for all ω ∈ D do
5: β ← INFEROUTPUTS(SD, OUT, α ∧ γ, ω)
6: if α ∧ β 6∈ Z then
7: Z ← Z ∪ {α ∧ β}
8: s← s + |Ω∩(D, α ∧ β ∧ γ)|
9: q ← q + |Ω∩(D, α ∧ β ∧ γ)|2

10: Ê ← q/s
11: end if
12: end for
13: until TERMINATE(Ê)

14: return Ê
15: end function

current control assignment. The auxiliary FLIPLITERAL sub-
routine simply changes the sign of a specified literal in a term.
After each “flip” the expected intersection size is computed
with a call to EXPECTATION (cf. Alg. 1). If the new expected
intersection size is smaller than the current one, then the pro-
posed control assignment is accepted as the current control
assignment, and the search continues from there.

While the active-testing problem is worst-case NP-hard (it
can be reduced to computing a diagnosis), as we will see
in the experimentation section, it is possible to achieve very
good average-case performance by choosing an appropriate
MBD oracle. The advantage of the greedy approach, in par-
ticular, is that the number of computations of the expected
number of diagnoses is linear in the number of literals in the
control assignment. This is done at the price of some optimal-
ity (i.e., the effect of combinations of controls is neglected).

4.3 Optimality

We now show how the submodularity of our AT problem
(Problem 1) means that our greedy approach is as accu-
rate as any poly-time approximation algorithm. Submodu-
lar functions are a key concept in combinatorial optimization
[Nemhauser et al., 1978; McCormick, 2005]. Intuitively, sub-
modularity highlights the notion that, as we select more ob-
servations during active testing, the value of the remaining
unselected observations decreases, i.e., we have diminishing
returns for successive tests.

In performing inference on a submodular function, we as-
sume that we have a diagnosis evaluation oracle ζ, such that,
when given as input a set S ⊆ S, ζ outputs f(S). As a con-
sequence, our submodular function can be solved using poly-
nomially many queries to the oracle ζ.

We define submodularity as follows [Nemhauser et al.,
1978]: Given a set function f(S) defined on subsets S ⊆ S of



Algorithm 2 Best next control input

1: function CONTROL(ATS, α) returns a control term

inputs: ATS, active testing system
α, term, initial observation

local variables: γ, γ′, terms, control configurations
E, E′, reals, expectations
D, set of terms, diagnoses
l, literal, control literal

2: D ← Ω≤(SD, α)
3: E ← EXPECTATION(ATS, γ, D)
4: for all l ∈ γ do
5: γ′ ← FLIPLITERAL(γ, l)
6: E′ ← EXPECTATION(ATS, γ′, D)
7: if E′ < E then
8: γ ← γ′

9: E ← E′

10: end if
11: end for
12: return γ
13: end function

a universal set, S is said to be submodular if for any two sets
A, B ⊆ S, we have f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

For our AT application, we define our set function as
f(γ) = |Ω(S)| for some S ⊆ S.

Lemma 2. The function f(γ) = |Ω(S)| is submodular.

Proof. By the definition of submodularity, for any two CTL
observation vectors γ1 and γ2 from Γ, we must show that
f(γ1) + f(γ2) ≥ f(γ1 ∪ γ2) + f(γ1 ∩ γ2). We define ζi =
γi ∧ αi, so that f(α) = |Ω(α ∧ γ)|.

By the law of set-intersection, and using the definition that
Ω(S) =

⋂

ζi∈S Ω(ζi), we have |Ω(ζ1)|+ |Ω(ζ2)| = |Ω(ζ1)∪

Ω(ζ2)| + |Ω(ζ1) ∩ Ω(ζ2)|. This gives us f(γ1) + f(γ2) ≤
f(γ1 ∪ γ2) + f(γ1 ∩ γ2), which is our desired submodularity
condition.

Next, we employ some well-studied results about the opti-
mality of greedy algorithms on submodular functions. First,
it has been shown that a greedy algorithm provides a constant-
factor approximation for submodular problems.

Lemma 3 (Nemhauser et al., [1978]). For any normalized,
monotonic submodular function f , the set S∗ obtained by a
greedy algorithm achieves at least a constant fraction 1−e−1

of the objective value obtained by the optimal solution, i.e.,

f(S∗) ≥
(

1− e−1
)

max
|S|≤k

f(S),

where k is a bound on the number of observation vectors we
can address.

Proof. Cf. [Nemhauser et al., 1978].

Moreover, Feige [1998] has shown that the (1 − 1/e)-
approximation obtained for such problems using a greedy al-
gorithm is optimal unless P = NP. Together, these results
indicate the following:

Theorem 1. Algorithm 2, which is a greedy algorithm, pro-
vides a constant-factor approximation to the optimal test se-
quence, such that no poly-time algorithm can provide a better
approximation unless P = NP.

Proof. Follows from Lemmas 2 and 3, and the result in the
paper of Feige [1998].

5 Experimental Results

We have experimented on the well-known benchmark mod-
els of ISCAS85 circuits [Brglez and Fujiwara, 1985]. In or-
der to use the same model for both MC diagnosis counting
and simulation, the fault mode of each logic gate is “stuck-
at-opposite”, i.e., when faulty, the output of a gate assumes
the opposite value from the nominal. In addition to the origi-
nal ISCAS85 models, we have performed cone reductions as
described by Siddiqi et al. [Siddiqi and Huang, 2007].

5.1 Experimental Setup

To illustrate the significant diagnostic convergence that is
possible, we need initial observations leading to high num-
bers of initial MC diagnoses. For each circuit, from 1 000 ran-
dom, non-masking, double-fault observations, we have taken
the 100 with the greatest number of MC diagnoses. The mean
number of MC diagnoses varies between 166 (in c432) and
23641 (in c7552).

Given inputs, outputs and controls, FRACTAL approxi-
mates the optimal control settings. The default control policy
of FRACTAL is to apply Alg. 2, a greedy policy. We compare
it to (1) a random policy where at each time step we assign an
equally-probable random value to each control and (2) to an
optimal control policy, where at each time step an exhaustive
brute-force search is applied to all control variables.

We define two policies for generating next inputs: random
and persistent. The persistent input policy (when the input
values do not change in time) is a typical diagnostic worst-
case for system environments which are, for example, paused
pending diagnostic investigation, and it provides us with use-
ful bounds for analyzing FRACTAL’s performance. Combin-
ing control and input policies gives us six different experi-
mental setups for our framework.

5.2 Diagnostic Convergence

The error of Alg. 1 is not sensitive to the number or the
composition of the input variables (extensive experimenta-

tion with all circuits showed that for n < 100 we have Ê
within 95% of the true value of E). The value of the expected

number of diagnoses Ê approaches the exact value E when
increasing the number of samples. Figure 2 shows an exam-

ple of Ê approaching E for c1908.
ISCAS85 has no concept of control variables, hence we

“abuse” the benchmark by assigning a fraction of the input
variables as controls. It is important to note that turning even
a small number of input variables into controls allows for a
geometric decay of the diagnostic ambiguity. Figure 3 shows
the reduction of the expected number of MC diagnoses as a
function of (1) the number of control variables and (2) se-
quence number. One can observe that a global optimum is
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Figure 2: Convergence of Ê with increasing sample size

reached quickly on both independent axes. Note that Fig. 3
shows an average over 10 pseudo-random experiments for re-
ducing the noise due to the stochastic nature of the algorithm.
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Our results show that Ê correlates well with |Ω(S)|. The
minimum, maximum, and mean Pearson’s linear correlation
coefficient for each number of control variables in this exam-
ple is ρmin = 0.897, ρmax = 0.995, and ρavg = 0.974.

We have repeated the latter experiment with the reduced
c880. The results are similar to the non-reduced c880, and
the pairwise correlation coefficients are ρmin = 0.68, ρmax =
0.995, and ρavg = 0.94. Hence, identification of cones helps
the performance of the diagnostic oracle, but does not degrade
convergence behavior.

To summarize the effect of the number of controls on
the diagnostic convergence, we fit a geometric decay curve
N(k) = N0 · pk + N∞ to Ω(S) for each initial observation
and various |CTL|. N0 is the initial number of diagnoses,
N∞ is the value to which |Ω(S)| converges, and p is the de-
cay constant. For p = 0.5, N(k) halves every step, like in
binary search, hence p corresponds to one bit. For p = 0.25,
p corresponds to two bits, etc.

Table 1 shows the average p for various numbers of control
bits b = lg |CTL|. The goodness-of-fit criterion R2 for all
our experiments is in the range 0.75− 0.9, except for a small
number of cases in which R2 = 1 due to one-step minimiza-

original reduced

id |IN| 3 bits 4 bits 5 bits 3 bits 4 bits 5 bits

c432 36 0.61 0.69 0.42 0.7 0.71 0.57
c499 41 0.79 0.83 0.77 0.58 0.62 0.52
c880 60 0.5 0.55 0.62 0.49 0.47 0.44
c1355 41 0.71 0.72 0.59 0.8 0.82 0.75
c1908 33 0.68 0.7 0.41 0.54 0.52 0.3
c2670 233 0.45 0.49 0.39 0.39 0.44 0.42
c3540 50 0.39 0.38 0.43 0.79 0.8 0.61
c5315 178 0.52 0.62 0.67 0.81 0.72 0.79
c6288 32 0.31 0.41 0.23 0.64 0.7 0.59
c7552 207 0.62 0.77 0.3 0.59 0.34 0.38

Table 1: Mean p (over all initial observations) for various
numbers of control bits and persistent input policies

tion of Ω(S). The table demonstrates that the diagnostic con-
vergence generally improves with |CTL|, but that even with
small |CTL| better convergence is achieved than in sequential
diagnosis (p = 0.5 on average).

Similar to our previous experiments we characterize the
convergence of the greedy fractal policy by computing the
average p over all observations. This time we have computed
p for a fixed CTL, where a quarter of the initial inputs are
used as controls. The resulting p, as well as the goodness-of-
fit criterion R2, for the random and persistent input policies
are shown in Table 2.

original reduced

persistent random persistent random

id p R2 p R2 p R2 p R2

c432 0.7 0.85 0.62 0.93 0.64 0.88 0.76 0.9
c499 0.81 0.89 0.78 0.89 0.86 0.87 0.78 0.9
c880 0.69 0.9 0.51 0.9 0.83 0.79 0.57 0.94
c1355 0.68 0.81 0.48 0.92 0.81 0.9 0.81 0.89
c1908 0.5 0.89 0.68 0.88 0.69 0.75 0.79 0.81
c2670 0.81 0.91 0.73 0.85 0.64 0.77 0.91 0.88
c3540 0.65 0.8 0.75 0.87 0.72 0.86 0.7 0.9
c5315 0.45 0.82 0.81 0.92 0.84 0.92 0.72 0.84
c6288 0.87 0.83 0.8 0.79 0.7 0.81 0.85 0.91
c7552 0.51 0.88 0.49 0.84 0.79 0.87 0.76 0.82

Table 2: Average (over all observations) p and goodness-of-fit
measure for exponential decay best-fit to Ω(S)

Figure 4 shows the effect of the different control policies. The
greedy policy performs only slightly worse than the optimal
policy, while the random policy needs more steps to reduce
Ω(S). Note that we have chosen a smaller circuit so we can
test the optimal control policy (|CTL| = 14, |IN| = 0).

In preparing the data for Fig. 4, the run-time of FRACTAL

was negligible for the random and control policies (less than
3 s), while it took 43 min to compute the optimal control set-
ting. Throughout our experiments we have established that
the average run-time complexity of FRACTAL (including the
time spent for diagnosis and consistency checking) is polyno-
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Figure 4: Comparison of control policies

mial in |COMPS| and |CTL|, which makes FRACTAL appli-
cable to large real-world systems.

6 Conclusions

We have described a novel approach, FRACTAL (FRamework
for ACtive Testing ALgorithms), which, given an initial set
of diagnoses computes an optimal sequence of additional test
vectors for reducing the number of remaining diagnoses. At
each step of testing, FRACTAL computes the test that maxi-
mally reduces the size of the existing diagnostic set. FRAC-
TAL generates such test vectors using a greedy, next-best
strategy, using a low-cost approximation of diagnostic infor-
mation entropy to guide the search.

Extensive experimentation with ISCAS85 combinational
circuits shows that FRACTAL reduces the number of remain-
ing diagnoses according to a steep geometric decay func-
tion, even when only a fraction of inputs are available for
active testing. Our experimental results indicate that FRAC-
TAL’s diagnostic convergence rate is close to optimal. This
agrees with our theoretical claim that the approximate so-
lution computed by FRACTAL’s greedy approach is optimal
over all poly-time approximation algorithms.
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