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Abstract: Hybrid systems models are a powerful tool for representing systems with both
discrete and continuous dynamics. However, computationally these models are challenging to
perform most classes of inference on. In this article we focus on diagnosing hybrid systems.
Rather than work on the full hybrid model, for which diagnosis is undecidable in the general
case, we abstract the model to a propositional model-based diagnosis (MBD) model. We describe
how we can translate a reference hybrid systems model into a propositional diagnosis model,
which involves translating the model itself, as well as a sequence of observed events, or trace.
We provide an illustrative example of the process, and outline how this process guarantees that
any diagnoses in the hybrid systems model will be preserved in the MBD model.

1. INTRODUCTION

The theory of hybrid systems can model systems that
exhibit both discrete and continuous behaviours, such as
photocopy machines, automobiles, aircraft, etc. Although
much work has been done for modeling and verification,
there is little work on efficient methods for diagnosis and
safety analysis. Hybrid systems diagnosis is inherently dif-
ficult due to the continuous dynamics and mode switching
of such models. Continuous-valued diagnostics methods
can be used for a single mode (Blanke et al. [2003]), but
mode-switching can cause instability in observer-based di-
agnostics inference even with known mode changes (Boker
and Lunze [2002]). Another key impediment to performing
such analysis is the complexity of the entailed inference:
checking reachability for even very simple hybrid systems
is undecidable (Henzinger et al. [1995]). Although decid-
able classes have been identified (Alur et al. [2000]), there
are no computational tools that can efficiently reason with
real-world models.

In this work we are interested in diagnosing a hybrid
system @ g, which is undecidable in general, since it entails
a form of reachability analysis. To diagnose such systems
we abstract the system into a representationally and
computationally simpler model, a discrete propositional
logic model ®p. ®p is based on standard model-based
diagnosis (MBD) theory (Reiter [1987]), has many mature
inference tools, and has diagnosis inference complexity
ranging from poly-time to ¥5-complete, depending on the
method used for representing the fault behaviours and
formulae (Eiter and Gottlob [1995]).

We use abstraction to simplify the hybrid systems model,
while preserving key relevant behaviours. Abstraction
transforms the inherently infinite-state system of ® 5 into
a finite-state model (Alur et al. [2000]). We adopt two
abstraction methods: (1) abstract interpretation, which
approximates the values of variables; and (2) predicate ab-
straction, which approximates relationships between vari-
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ables. The resulting qualitative model will have a finite
number of states, so it becomes feasible to perform a
number of inference tasks, such as computing the reachable
states, the diagnoses, etc.

Abstracting a hybrid system ®y to a propositional diag-
nosis model ®p makes sense computationally, but a key
issue is whether such an abstraction preserves the diag-
noses of ® . One main contribution is showing that using
an abstraction operator that over-approximates the state
transitions guarantees that all the diagnoses of &y are
preserved in the abstract model, at the cost of increasing
the space of diagnosis candidates. In addition to this gen-
eral result, we show some specific conditions on ® g that
can guarantee that ®p will preserve the set of diagnoses
computable from ®y given a suitably transformed set of
observed transitions (an observable trace) input to ®p.
The proposed conditions describe a hybrid system @,
which includes both normal and failure states, in which
all reachable states will be reachable within the continuous
portion of @, including the discrete failure states. These
conditions cover a wide range of real-world applications,
subject to defining the failures in terms of the underlying
continuous dynamics, such as is done in Zhao et al. [2005].

Our contributions are as follows:

(1) We show that we can guarantee that the diagnosis
space of @y is preserved in ®p by using an ab-
straction operator that over-approximates the state
transitions;

(2) We extend a hybrid systems abstraction methodology
(Tiwari [2008]) to enable the generation of proposi-
tional MBD models;

(3) We show how we can untime the event sequence
(trace) of a hybrid system ®p to create an obser-
vation suitable for an MBD model;

(4) We describe particular conditions on the abstraction
operator that guarantee that the diagnosis space of
®dy is preserved in ®p;

(5) We illustrate our approach with a detailed example.



2. RELATED WORK

This section reviews prior work in related areas.

There has been a lot of work on abstraction in model-based
diagnosis (MBD), such as (Saitta et al. [2007], Maier and
Sachenbacher [2008]), which have focused on abstracting
either propositional models (Saitta et al. [2007]) or qualita-
tive models (Maier and Sachenbacher [2008]). In contrast,
in this article we start with hybrid systems models, in
which we aim to abstract both continuous and (possibly
infinite) discrete spaces, which is significantly more diffi-
cult than these discrete abstraction approaches.

We adopt the use of over-approximation of the transition
relation of @, which is a standard abstraction technique.
Several related over-approximation approaches have been
published, based on techniques such as hyper-rectangles,
polyhedra and their projections, or ellipsoids (Clarke et al.
[2003]). Most of these approaches attempt to obtain con-
servative but tight approximations to sets of reachable
states for hybrid systems. Abstracting transition relations
for hybrid systems is inherently complicated, because these
relations, as a general rule, do not have analytical solu-
tions, and even when analytical solutions exist, creating
tight over-approximations is challenging. We adopt the
approach of Tiwari [2008], which converts the transition
relations into polynomials and subsequently into proposi-
tional equations.

More efficient abstractions have been developed for specific
classes of hybrid systems. For example, for piecewise affine
systems, Hofbaur and Rienmuller [2008] have developed
2D grid abstractions. Such techniques have been applied
to the abstraction of gene regulatory networks (Batt et al.
[2008]), where the relative order of threshold parameters
and ratios of parameters are used for phase space partition-
ing in abstract regions. Such model-specific approaches can
complement the generic abstraction methodology studied
in this article in appropriate applications.

There is some relation to abstraction for qualitative simu-
lation (QS), but the goals of this work are very different.
QS aims to create a qualitative differential model with
properties that are qualitatively equivalent to the initial
model; such a model requires custom qualitative algebras
and inference techniques. Here, we make a more radical ab-
straction, generating a propositional diagnosis model with
standard propositional logic semantics. In other words, we
want a diagnosis model that can be solved by traditional
diagnosis algorithms, e.g., GDE, ATMS, or by modified
SAT solvers. The properties we aim to preserve from @ g
are fewer than those preserved by a qualitative model. For
example, we are only interested in preserving a subset Q
of nominal states and a set Qg of failure states, plus the
transitions from Qn to Qg; the key is just to distinguish
states in Qn from those in Q. In contrast, a QS model
aims to preserve all the qualitatively significant states of
® 7, and the transitions among those states.

The qualitative models of (Kuipers [1986]) roughly corre-
spond to the abstract transition systems that we develop.
Tiwari [2008] actually translates a hybrid system into a
qualitative model; we instead generate a diagnosis model
together with an observation necessary to diagnose po-
tential faults. Shults and Kuipers [1997] prove a range of

formal properties that are preserved by qualitative mod-
els. This work is closely related to several approaches to
abstracting hybrid systems models, such as Alur et al.
[2000], Tiwari and Khanna [2002], Tiwari [2008]. These
papers focus primarily on properties such as the semantics
of the hybrid system considered, the class of (a) formulas
preserved, (b) hybrid systems analysed, or (c) abstract
systems generated, or the type of abstraction (e.g., con-
servative, accurate, etc.).

Accurate abstractions, or bisimulations, can create de-
cidable systems, for which clear results can be obtained
(Alur et al. [2000]). Olivero et al. [1994] abstracts some
restricted classes of linear hybrid systems into simpler
class of hybrid systems, timed automata. Henzinger et al.
[1998a] abstracts a nonlinear hybrid automaton in terms
of a linear hybrid automaton. Tiwari [2008] abstracts a
hybrid system as a qualitative model; we extend this work
by defining a diagnosis model based on the qualitative
abstraction. All of the work on hybrid systems abstraction
focuses on model abstractions, whereas we also have to
define an abstraction for the trace, in order to obtain a
system observation for which a diagnosis can be computed.

3. NOTATION AND PRELIMINARIES

This section introduces our notation. We first define the
hybrid-systems language we will use. Then we introduce
our diagnosis modeling language.

3.1 Hybrid Systems

Hybrid automata (Henzinger et al. [1998a]) are mathemat-
ical models for representing hybrid systems. In contrast
to discrete transition systems, hybrid automata can make
both discrete and continuous transitions and hence, their
semantics are given in terms of the states, which are
uncountably many, reached over a continuous real time
interval. We can also define the theory of hybrid automata
in terms of infinite-state transition systems (Henzinger
et al. [1998b]) that contain uncountably many states, but
are interpreted over discrete time steps.

We adopt an extended version of a hybrid system that has
modes for normal and failure states. We also assume that
only a subset of events are observable, and in our models
we denote these events as those relating to sensors and
actuators changing state.

Definition 1. A hybrid system is defined as ® = (@, X, %,
Qo, E, f,G) where

Q is the set of discrete states or modes of the system,

X C R is the continuous state space,

Y. is a finite set of transition labels or events,

Qo C Q x X is the set of initial conditions,

E C Q x ¥ x @Q is the transition relation, which de-

fines the set of (controlled and autonomous) discrete

transitions,

o f: R xQ x X is the flow condition for every mode
defined by a differential equation,

eand G : E — 2% x 7 is a partial function that

associates a guard condition (represented as a subset

of X) with each autonomous transition, given a

probability 7.



The probability 7 introduces randomness into the transi-
tions, which is important for transitions to failure states,
which we assume occur randomly.

A state of a hybrid system is described by the pair (g, ),
where ¢ € Q and = € X. We define R(xo, qo) as the set of
reachable states from (zg, qo).

We assume that the set of modes of the hybrid system is
partitioned such that Q@ = Qn U Qp, where Qn and Qp
are the set of normal modes and faulty modes respectively.
Similarly, we partition the set of transition labeling events
as ¥ =Xy UXp. Xy is the set of endogenous (controlled)
events transitions to normal modes, and Yz is the set
of (exogenous) failure events labels transitions to faulty
modes. Note that if information about the continuous dy-
namics for the faulty modes is available, then we associate
a flow condition with these modes. In the simple model
proposed here, we assume that whenever a transition is ac-
tivated by the underlying continuous dynamics, the actual
transition to a normal mode or a faulty mode is determined
by the stochastic parameter 7, which reflects the stochastic
nature of failures occurring.

We partition our events into two subsets: ¥, C ¥ is a
subset of observable events, and ¥, C X is a subset of
unobservable events. We assume that all transitions to
fault states are unobservable.

We define a trace as a sequence of events.

Definition 2. (Trace). A trace v(Pm,(qo,z0)) is a se-
quence {(qo, o), 01, ..., Om }, Where o; € X.

The observable subset of a trace v, C -y is just the sequence
of observable events given by the projection ¢ : ¥* — X,
(Sampath et al. [1995]). In other words, { “erases” the
unobservable events in a trace. We define a system trace,
T'g, as the set of all traces of a system starting from an
arbitrary initial state (g, z).

If f = (g,x5) is a failure state, we can define I'; as
the set of all traces starting from failure state f: I'(f) =
{v(®w,(¢r, %))} We now introduce a consistency-based
notion of diagnosis for hybrid systems. Intuitively, a fault
can be isolated if a fault-free system cannot generate a
trace -y, including a failure state (called an anomalous
trace), 1.e., the fault-free system and trace y are inconsis-
tent. More generally, a measured trace 7’ is said to be
consistent with a model ®x and corresponding system
trace I'g,, if v/ € T'g,,.

Given these definitions, we can now describe what a hybrid
systems diagnosis is.

Definition 3. (Candidate HS-Diagnosis). Given a hybrid
system oy = (Q,X,X,Qo, F, f,G), initial conditions
(o, x0), and anomalous trace v, a candidate diagnosis ¢
is a failure state consistent with ~, i.e., where vy € T'(9).

More generally, given an abnormal trace 7, the set of all
candidate diagnoses is given by A = {é|y € T'(d)}.

8.2 Propositional Diagnosis Model

In this article we adopt a temporally extended version of
the diagnosis framework introduced in Reiter [1987].
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Fig. 1. Schematic for Swimming Pool Example

Definition 4. (Propositional Diagnosis Model). A discrete
diagnosis model is specified by a tuple ®p = {I,V, £, 11},
where

e | C Nis a temporal index;

e V is a set of discrete-valued variables indexed by I,
such that Vy C V is the set of failure mode variables,
and V,, C V is the set of observable variables;

e £ C Vy x L, consists of propositional equations
(where L,, is a propositional wif over (V'\ V); and

e Il is a discrete probability distribution over the equa-
tions and/or variables.

This temporal diagnosis model obeys standard logical
semantics, and differs from a classical MBD model only
in terms of temporal indexing of variables. Further, this
definition of diagnosis model is an instance of a transition
system (Stark [1989)]).

We also need to specify an observation in order to define
a diagnosis within this framework.

Definition 5. (Observation). An observation « is an in-
stantiation of V.

Definition 6. (Diagnosis). Given a diagnostic system ®p =
{I,V,&,11}, an observation « over some variables in V, a

diagnosis 4 is an assignment to all variables in V¢ such that
dpANaANd I#J_

We can define diagnosis minimality with respect to several
criteria, such as subset- or cardinality-minimality, or the
probabilistically most-likely diagnoses using II, the dis-
crete probability distribution over ®p.

Note that there are several differences between the hybrid-
systems and propositional diagnosis models. Whereas the
hybrid-systems model has both continuous and discrete
variables, the diagnosis model has only discrete. In ad-
dition, the diagnosis model requires the specification of
failure-mode and observable variables, which the hybrid-
systems model specifies implicitly in its trace. A diagnosis
model of this form has only discrete dynamics.

4. ILLUSTRATIVE EXAMPLE

We use an illustrative example taken from Sokolsky and
Hong [2001], in order to provide an intuitive notion of the
issues we address.

4.1 Hybrid Systems Model

Consider a swimming pool equipped with a pump that
controls the water level L, and a switch that indicates if



Timer= 2/,/ >
~

O-P
/’\
‘ 1mfer> 2 //

L= Iow
f

r—r
IV/

Fig. 2. Full Automaton for Pump
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Fig. 3. Automaton for Swim? indicator

the water is deep enough to swim in. The pump, when on,
fills the pool at a constant overall flowrate f, and when off,
allows water to drain out of the pool. The pool’s level
is governed by the equation 2 E = f. Changing state in
the pump actuator takes 2 time units (as measured by a
Timer), during which it is in state TurnOn or TurnOff.
The swimming level indicator switch Swim? is on when
the level L > s, where s is a swimmable level, and is off
otherwise.

Figure 1 shows the hybrid system schematic for the swim-
ming pool example. The possible values for Pump,Swim?,
L and f are shown. Note that L, f and Timer are
continuous-valued variables.

Figure 2 shows the full automaton for the Pump. In the
figure we show some transitions and guards for transitions.
For example, op denotes the event of the pump turning
on, and op denotes the event of the pump turning off.
Note that we assume that the pump can fail (state Fail),
in which case it produces no flow.

Figure 3 shows the automaton for the Swim? indicator. In
the figure we show the transitions, and the guards for the
transitions.

4.2 State Space Abstraction

To create the abstract (qualitative) model, we transform
the continuous-valued variables into discrete-valued coun-
terparts, and specify qualitative relations for all equa-
tions in the hybrid systems model. In this model, we
introduce a discrete variable L for %—f, with domain {In,
0, Out}, and define discrete domains for L and f of
{0, low, swim, hi, Ov flow} and {In,0, Out} respectively.

4.3 MBD Model

We represent our MBD model using a set of variables
corresponding to variables in ® 7. For example, we have a

1 The flow f is the difference between the inflow from the pipe and
the outflow through the valve in the pool.

variable Swim? with domain {Y, N}, and a variable Act de-
noting the actuator for the pump, with domain {On,Off}.
In this example we have one failure-mode variable, that
for the pump, with domain {OKfail}.

We use a simple form of discrete temporal indexing: we
denote a variable V' at time ¢t using V;, and a variable W
at the preceding time using W;_.

Some normal-mode equations include:

(Pump = OK) < [(Swim? = N);_ A (Act = On),_
= (Swim? =Y)4]
(Pump = OK) & [(Swim? =Y ), AN (Act = Of f)e

= (Swim? = N),]

If we have a weak fault model (which defines only normal
behaviour—see de Kleer et al. [1992]), then we need to
include only normal-mode equations. However, if we define
a strong fault model, then we must include some failure-
mode equations, such as:

(Pump = fail) < [(Swim? = N);_ A (Act = On);_
= (Swim? = N),]
(Pump = fail) & [(Swim? =Y);_ AN(Act = Of f)i

= (Swim? =Y),]

We assume that our equations have a first-order Markov
structure, i.e., any equation only includes variables cover-
ing two different time steps. 2

5. DIAGNOSIS PROPERTIES OF MODEL
ABSTRACTIONS

This section describes soundness and completeness prop-
erties of the diagnoses that can be computed from abstract
models that over-approximate the reference model. We will
present properties that hold for an arbitrary abstraction &
of a model.

The results we will show bear some resemblance to the
soundness/completeness properties that qualitative mod-
els preserve from hybrid (or dynamical) systems models. A
qualitative simulation algorithm F, given an ODE model
® and initial state that matches the input to F, is sound if
there exists a behavior that matches ®’s solution. Kuipers
[1986] proved the existence of a sound qualitative simu-
lator, QSIM. Shults and Kuipers [1997] formalized this
result using temporal logic, proving that if a CTL* wif
B is true for the behaviours produced by QSIM, then
a corresponding temporal wif, 3, holds for the solution
of any ODE consistent with the qualitative differential
equation that QSIM used to generate the behaviours.

However, Yilmaz and Say [2006] show that a sound and
complete qualitative simulator does not exist: even with
restrictions on operating regions and qualitative constraint
operators, a sound algorithm F is inherently incomplete.
If we impose a coverage guarantee, then one can specify
some input model that causes a simulator F to generate
spurious predictions in its output.

2 Higher-order Markov structure can be converted to first-order
Markov structure using well-known rewrite rules.



Our diagnosis results have some parallels to these results.
We ensure soundness and completeness of the abstract
diagnoses through using over-approximations, but at the
expense of the abstract model generating more diagnoses
than the reference model. This is analogous to the spurious
behaviours of qualitative simulation.

In the following, we call a diagnosis instance the triple
Z = (®,T,A), where ® is the model, T" is the trace, and
A is the set of candidate diagnoses. Given an abstraction
operator £, we can show that any abstraction which is
an over-approximation is guaranteed to be complete with
respect to the diagnostics of the reference model. We define
an over-approximation as follows.

Definition 7. (Over-approximation). Given a hybrid sys-
tems model &y with corresponding system trace 'y, an
abstraction ®', with corresponding system trace I, is
an over-approximation of ® g with respect to abstraction
operator £ if TV C £(Tgy).

Lemma 1. Given a hybrid systems diagnosis instance Zp,
an abstract diagnosis instance Zp which is an over-
approximation is guaranteed to be complete with respect
to Zy (under abstraction operator ¢).3

The following corollary outlines the diagnostics properties
in more detail.

Corollary 1. Given a hybrid systems triple Zg, if an
abstraction triple Z’ is a sound over-approximation for Zg,

o If a diagnosis § € Apy exists in Zy, then a corre-
sponding diagnosis ¢’ € A’ will exist in Z’.

e If no diagnosis 0’ € A’ exists in Z’, then no corre-
sponding diagnosis § € Ay will exist in Zp.

The second part of Corollary 1 notes that if a diagnosis ¢’
is excluded in the abstract model, then it will be excluded
in the reference model (and in any less-abstract model).

Lunze [2008] shows four examples of abstractions of a
hybrid systems model that are over-approximations, and
hence display a subset-inclusion property among fault
candidates. Based on the methodology in (Lunze [2008]),
we extend Lemma 1 to cover diagnoses of a series of
abstract models.

Lemma 2. Given a hybrid systems diagnosis instance Zg
and two abstraction diagnosis instances Z’ and Z” with
progressively increasing levels of abstraction, the system
diagnosis sets will obey the set-inclusion Ay € A’ C A",

Our abstraction process creates an interesting tradeoff:
inference complexity decreases with greater abstraction
levels, but the over-approximation used to create the
abstract model results in more candidate diagnoses as well.
This means that the more abstract models will generate
more candidate diagnoses, and most likely will be less
able to isolate minimal diagnoses than the more detailed
models. In general, the optimal level of abstraction is the
one that creates a model with lowest model complexity
that can isolate the key faults. It is important to note that
more abstract models can result in significant decreases
in inference complexity. Even abstracting a propositional
strong-fault model to a weak-fault model, as done by

3 We omit all proofs due to space limitations.

Feldman et al. [2009], can reduce inference complexity
from NP-hard to polynomial.

At some level of abstraction, the diagnosis model fails to
isolate key faults. In abstracting to static MBD models,
we can show the following;:

Lemma 3. Given a hybrid systems diagnosis instance Zg
and an abstraction diagnosis instance Z’, a static MBD
model is inadequate for diagnosing even simple hybrid
systems abstractions.

For example, for the swimming pool model, we cannot
diagnose any faults in the pump, since the control laws of
the pump entail comparing previous and current levels of
the swimming pool (cf. the model in Section 4.3).

In line with this need for temporal modeling, Behrens
et al. [2009] empirically show that a temporal propositional
model that encodes just the current and previous states for
every variable can diagnose our swimming pool example.

6. BISUMULATION CONDITIONS

Bisimulation is an important tool in the analysis of con-
current systems: roughly speaking, when two concurrent
systems are bisimilar, known properties are readily trans-
ferred from one system to the other. This section out-
lines conditions for bisumulation of ®; and ®p, denoted
Oy ~ &p. We adopt (loose) notions of bisumulation to
show preservation of diagnoses between &5 and ®p.

The problem that we solve is as follows:

Problem 1. Given a hybrid system ®y and a trace I
ending in a failure event f, characterise model mapping &
and trace mapping ¢ such that, for the abstracted propo-
sitional diagnosis system ®p = £(® ) and an observation
0 = ¢(I"), fault f can be isolated in (Py,T") iff fault ¢(f)
can be isolated in (®p, 6).

We can simplify the abstraction process by imposing the
following conditions. In the following sections we will
show how these conditions aid in guaranteeing diagnostics
bisumulation.

Condition 1. The abstraction preserves the trace of the
set of discrete hybrid system transitions marked as ob-
servables (Henzinger et al. [1998b]).

Condition 2. A trace is decomposable into a set of sub-
traces (which may be recurring).

Condition 3. All discrete transitions are “coherent” with
the continuous system evolution, i.e., A reachable states
which are not reachable by the continuous dynamical
portion of ® .

7. MODEL ABSTRACTION PROCESS

We now summarise how we solve Problem 1 by abstract
interpretation and predicate abstraction.* We translate
two representations, the model and the observable trace,
i.e., the set of observable transition labels outputs by the
evolution of the hybrid system. For the model mapping
¢, we extend the qualitative-model abstraction of Tiwari

4 Please refer to the full paper for technical details omitted here due
to space limitations.



[2008] to a propositional diagnosis system mapping. For
the trace mapping, we define an algorithm based on trace
sub-sequence decomposition that will generate an untimed
observation suitable for ®p.

7.1 Model Abstraction Process

Our translation algorithm uses the following main steps:

(1)

Generate qualitative states for continuous- and discrete-
valued states in ®g.

Compute abstract transitions for ®g.

Create a composite automaton @7 from the generated

abstract automata A, ..., A, through parallel compo-
sition.
(4) Transform @ into @ p.

Step 1: Compute the Abstract Set of Discrete States We
create an abstracted set of states from the continuous
and discrete states in ®p, using a finite set P C R[X]
of polynomials over the continuous variables X for the
continuous-state abstraction. Then, we abstract the initial
state Qg € . We compute the set P of polynomials in
terms of two subsets, P; and Ps:

(1) we compute the set P; of polynomials from (a) the
guards of mode transitions for exiting each mode, and
(b) key properties of interest that we want to establish
for the given continuous system;

(2) the set Py of time derivatives of polynomials in P;.

We compute P, from P; as follows: for each p € Py, add
p, the derivative (with respect to time) of p, to the set P
unless p is a constant or a constant factor multiple of some
existing polynomial in P.

Given @y and the set P C R[X] of polynomials over the
set X of variables, the set of abstract states consists of the
union of three subsets, i.e., Q4 = Qp UQ, U Qy, where

e Qp = {q, : p € P} is the set of states derived from
the polynomials P;

e (), is the set of states derived from the discrete,
normal-mode states in ®g; and

e (s is the set of states derived from the discrete,
failure-mode states in @ .

For the swimming pool example, the steps are as follows.

Identify Polynomials: If we consider the guards for the
transitions, they are all based on the level L in the pool,
and its relation to the swimmable level, s. We can thus
represent this polynomial p using L —s. The derivative of p
is L, since s is a constant. Hence our full set of polynomials
is P={L—s, L}.

Identify Abstracted Discrete States: P = {L — s, L}, so

we generate the corresponding state variables {qr_s, ¢; },
each with domains {0, +, —}.

Identify Initial Discrete State: Consider an initial state

(g0 = {Act=off,Swim?=off}, zo = {L = 0,f = 0}).
We transform z into the discrete instantiation {q;_s =
—, qj, = 0}. Hence our initial discrete state is given by:

QA = (Act=off, Swim?=off, qr_s = —, qj = 0).

On On off off
L=s
> Y Y
0 + 3 + 0
+ +
=s | o O |L<s
On On O Off off
L
N - N <S N N
- , - 0
+ 0 .

Fig. 4. Complete abstract automaton for Swimming

Pool Example. Each state denotes values for
(Act,Swim?,qr—s, qj)-
Step 2: Compute the Abstract Transitions The set T' C

Q4 x Q4 defines the set of transitions in the transition
system. The transitions in the abstract system ®, from
the state ¢ are obtained as a union of the discrete and
continuous transitions. Condition 3 ensures that these
two types of transition are “consistent”, simplifying the
abstraction process.

(1) Abstractions of the discrete transitions: If (¢,S,q’) €
Y. is a discrete transition of the hybrid automaton
®g, where q,¢ € Q are discrete states and S € X is
a set of continuous states (or the guard) represented
by the predicate formula p over the variables X, then
there is an abstract transition ((q,3),(¢',0)) € T if
R 3X : (B(X) A p(X)).

(2) Abstractions of the continuous transitions: Using
Condition 3, since the continuous-state transitions
are consistent with the discrete transitions, we can
assume that the discrete transitions cover the full set
of transitions, and consequently no abstraction of the
continuous transitions is necessary. Without this con-
dition, we need to to make appropriate abstractions,
such as those proposed in Tiwari and Khanna [2002].

Step 3: Create a simplified composite automaton &  We
create the automaton based on the abstract states and
transitions computed in steps 1 and 2. For our example,
we create an abstract automaton by parallel composition
of the automata for (abstracted) Pump and the Swim?
indicator, as shown in Figure 4. The abstract transitions
are clearly depicted in this automaton.

We delete any states in Figure 4 with a value of zero for
either ;s or g;, since they have no clear semantical im-
pact on the abstract model. Figure 6 shows the simplified
automaton for the swimming pool. The figure shows the
transitions and the guards for each transition.

Step 4: Transform ®1 into p  We generate equation set
& using different algorithms for normal-mode and failure-
mode equations. For a normal-mode equation, for every
state transition from @; to Q; denoted Q;0@Q);, we generate
an equation using the template (M = OK) A Vit< AVES =
Vjt where (); corresponds to Vit<, o corresponds to V(f<,
and Vj corresponds to Vjt. For a failure-mode equation, for
every state transition Q;0¢Q; (where fault transition o is
unobservable), we generate an equation using the template
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Fig. 6. Composite Automaton for Swimming Pool Exam-
ple. We exclude the failure state (that is accessible
from every other state) for the sake of clarity.

(M = fail) A Vit< = Vjt, where (); corresponds to Vit<,
and @, corresponds to Vjt.

7.2 Trace Abstraction Process

In order to transform a trace into an observation that
can be used for MBD purposes, we need to extract the
observable events corresponding to a particular behaviour
of the system. To accomplish this, we need to perform
trace untiming in order to transform a trace into an MBD
observation. Without loss of generality, we assume that a
system goes through a set of behaviour-sequences, where
a behaviour-sequence is a subsequence of a trace. Hence
we can break a trace I' into T' = {qo, V1, ..., Ym }, Where qg
is the initial state and ~; # v;, @ # j.

In the MBD model, the set of observable variables is
given by V,. A sub-trace must contain an event label
for every v; € V,. However, it is important to note
that an instantiation of some v; € V, may correspond
to multiple observable event labels. For example, in the
Pump automaton the variable Act takes on values On,
Off, such that Act=0On corresponds to op and Act=0ff
corresponds to op. Hence, given V, and trace mapping
S, a minimal sub-trace v* corresponds to ¢71(V,). As an
example, if we have a trace I' = {op,05,0p,05}, we will
have minimal sub-traces {v1,v2} where v7 = {op,0s},
and 2 = {op,05}.

We assume that there is a corresponding observation
sequence © = {6y, 01, ..., m} which is obtained by an
untiming function ¢ : ¥* — 29, We also assume that we
have a monitoring tool that can extract any sub-sequence.
We transform this sub-sequence into an observation © =
¢(7;). Because any equation in @ has a first-order Markov
structure, i.e., contains variables from at most two time-
steps, an observation must contain sub-traces (sets of
observable event labels) from two adjacent time steps.

Given a trace I'y with a fault event f, we generate an
observation by (1) extracting the final two sub-traces

Y = Ym, Ym—1, and (2) transforming 7 in an observation
Om = <(7)-

7.8 Trace Abstraction Example: swimming pool

The swimming pool goes through a cycle characterised by
the pump turning on, the level filling to a swimmable value
(indicated by the switch), the pump turning off, and the
level then falling to an un-swimmable value (again indi-
cated by the switch), after which the cycle repeats. The cy-
cle is defined by a transition sequence ({op,05,0p5,05}),
which corresponds to two sub-sequences (v1,72), where
7= {UP,US}a and Y2 = {015’0-5’}'

Consider a case where we have 3 cycles, starting at the
state given by (qo = {Act=off,Swim?=N}, zo = {L =
0, f = 0}), and ending with a failure event f denoting a
failed pump. The trace is given by a set of 7 sub-sequences,
Vs e Y78 7<®H7 (qO: 330)) = {<{0Pa US}a {UI_D, US‘}>7 ({UP7 US}7
{op,os}), ({op,os},{op,05}), 0P 0 fail, og})}. The
observable part of this trace omits just the failure event
Otqi in the final sub-sequence, giving the final sub-
sequence as y4 = {op,og}. If we “untime” ~g and 7,
we obtain ¢(y) = {Acti_ =off,Swim?_=N} and <(7y7)
= {Act;_=on,Swim? =N}. If we generate an observa-
tion from - and -7, we step back in reverse chrono-
logical order to generate observable variable instantia-
tions for time steps t and t. such that there is just
a single, most recent instantiation for every variable at
each of t and t.. In this case, we obtain the observation
{Swim?,_=N, Act;_=on, Swim? =N}. Note that we do not
include Act offt. in this observation, since it would cause
a contradiction with Act=on,_, Which is chronologically
more recent.

Using the observation with the MBD model fragment
described earlier, we can obtain the diagnosis that
Pump=fail.

8. PROPERTIES PRESERVED BY ABSTRACTION

This section describes the properties of the hybrid systems
model @y that are preserved by the proposed abstraction
process. Recall that we adopt a two-step process, in which
we first map @y into an automaton (discrete transition
system) @7, and then map ®7 into the diagnosis model
dp.

Tiwari [2008] proves that a particular abstraction of a
hybrid automaton @y is a discrete transition system @
that bisimulates the discrete system &(®pg).

We extend this abstraction with the conditions noted ear-
lier, such that we still maintain the bisimulation property
of ®r. If we assume that we start with a transition system
defined by the abstract composite automaton we described
in the article, we now show how our mapping to an MBD
model ®p allows us to bisimulate &7, and hence also @y,
since if ®p ~ &7 and &7 ~ Py, then ®p ~ Py

Proposition 1. The model transformation from composite
automaton ¢ to MBD model ®p is such that &p ~ &p.

The second key property is guaranteeing that any diagno-
sis in @y given trace vy exists iff the diagnosis is also valid
in the corresponding MBD model given ¢(vy). We can show
this via the following argument.



We first need to prove properties about traces in ® g given
an initial condition Qg and the corresponding observation
in®p =¢&(Py) given Oy = £(Qp).-

Proposition 2. Given a trace v of a hybrid system &gy
based on initial conditions @, and the diagnosis model
Op = &(Py) with corresponding unobservable setting

Oy = §(Q0)7 ify e L(CI)H7Q0)7 then @DU§(Q0)U£(’7) % 1.

We can use Proposition 2 to directly prove a result
about diagnosis abstraction bisimulation, which (partially)
satisfies Problem 1.

Proposition 3. (Diagnosis abstraction bisimulation). Given
a hybrid system ®y and a trace I' ending in a failure
event f, 3 a model mapping £ and trace mapping ¢ such
that, for the abstracted propositional diagnosis system
®p = £(Py) and an observation 6 = ¢(I'), fault f exists
in (®g,T) if fault £(f) exists in (Pp,0).

9. SUMMARY AND CONCLUSIONS

This paper has described a methodology for transforming
hybrid systems diagnosis models into propositional MBD
models, such that we preserve the possible diagnoses of the
hybrid systems diagnosis model. This can lead to signifi-
cant computational gains in hybrid systems diagnosis. To
guarantee diagnosis bisimulation, we have described three
conditions that must be satisfied.

We described how we can translate a reference hybrid
systems model into a propositional diagnosis model, which
involves translating the model itself, as well as a sequence
of observed events, or trace. We provided an example
of the process. The abstraction process imposes a large
number of constraints on the hybrid system that can
be adopted. We leave it to future work to identify the
practical ramifications of these restrictions, and whether
we can relax the restrictions.

We have implemented this approach and applied it to
building control systems applications (Behrens et al.
[2009]). Future work includes refining and extending this
approach, and identifying the range of systems for which
it is applicable.
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