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Abstract: Given a system design (SD), a key task is to optimize this design to reduce the
probability of catastrophic failures. We consider the task of redesigning an SD to minimize the
probability of particular faults by introducing components selected from a component library.
We have implemented a General Redesign Engine (GRE), which uses model-based reasoning
techniques and Boolean functional synthesis from component libraries, to automate redesign
for combinational circuits. For a significant subset of observations leading to catastrophic
(forbidden) modes we demonstrate that GRE trades off redesign cost for increased fault
tolerance, and shows a significant advantage compared to the Triple-Modular Redundancy
(TMR) method. Our algorithm has a wide application in AI, including automated software
and hardware design, error detection, reconfiguration and recovery, and modular robotics.
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1. INTRODUCTION

Technological systems are designed to trade off a variety
of characteristics; for example, a computer is designed
to trade off cost, processing speed, size, reliability, etc.
Engineering design has adopted the principles of modu-
larity, regularity and hierarchy as keys to cost-effective
and reliable design, both in theory and practice (Suh,
1990). A key part of this design process is the use of
component libraries, which enable reuse of well-designed
components/sub-systems. As the complexity of technolog-
ical systems increases, module re-use increases, based on
(a) symmetrical and regular structures and (b) developing
standards for components and dimensions, since this reg-
ularity and component-based methodology translates into
reduced design, fabrication and operation costs.

Given an SD, one key step is to verify that the SD
meets its primary objectives. For example, for a control
system one must verify that the system cannot enter a
forbidden state through control actions. Verification can
provide guarantees about controllability, observability, etc.
However, verification of this type is a computationally
intensive process, and may not cover the possibility that
forbidden states may occur due to faults.

Achieving tolerance to faults is addressed during the
design process. Fault/defect-tolerant design for hard-
ware is based on adding redundancy to tolerate known
faults or manufacturing defects, using reconfigurable
blocks/components. Standard fault-tolerance techniques,
which include methods such as dual-modular redundancy,

triple-modular redundancy (TMR), triple interwoven re-
dundant logic, and quadruple logic (Han et al., 2005),
introduce pre-defined redundant circuit topologies. For
example, a triple-modular redundancy (TMR) topology
triplicates each gate and then collates the output signals
using a voter (arbitration component), which computes the
correct value based on output majority. A TMR circuit can
be further triplicated to obtain nine copies of the original
module and two layers of majority-voter gates; this design
process can be repeated to achieve increasing levels of
fault tolerance, resulting in designs called cascaded triple
modular redundancy (CTMR) or recursive triple modular
redundancy (RTMR).

Such traditional fault/defect-tolerant design approaches
have several drawbacks. Among them are the increase in
the number of components, system cost, system complex-
ity, and potentially latency. Another drawback is that it
optimizes overall system reliability rather than reliability
to the most significant faults. In some cases redundancy for
critical components is manually introduced. However, this
approach usually covers just a subset of the single points
of failure and not multiple-fault catastrophic states.

Rather than adopt standard redundancy-based methods
for increasing fault tolerance, which employ fixed topology-
replacement (e.g., replacing a single component with a
TMR sub-system), we propose a model-based redesign
method that uses an optimization algorithm to generate
a cost-optimal design that is tolerant to a set A of
catastrophic faults. Given an observation corresponding
to a catastrophic fault αi, this approach selects potential



components to add to the circuit from a component library
and searches over all possible circuit topologies to find a
cost-minimal redesign that reduces the likelihood of αi.
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Fig. 1. Danger detection and correction

The approach we propose is conceptually shown in Fig. 1.
Given a system, we automatically construct a danger de-
tection system that, when presented with an observation
corresponding to a catastrophic failure, switches an output
selector from the original system to an (also automatically
designed) correction subsystem. To automatically design
the danger detection and correction subsystems, we com-
pose a cost-minimal Boolean function from a component
library.

Our contributions are as follows: (1) we formally define
the problem of model-based redundancy redesign; (2) we
propose an algorithm, called GRE, for automated redesign
based on synthesis from component libraries; and (3) we
empirically show that GRE creates cheaper redesigns for a
standard benchmark circuit, as compared to the standard
TMR fault-tolerance approach.

2. RELATED WORK

A wide range of different design approaches have appeared
in the literature. Our approach is closest to the area of Re-
liability-Based Design Optimization (RBDO), a technique
that attempts to optimize a design with respect to the
reliability of the system (Du et al., 2008). The standard
RBDO algorithm consists of a double-loop, in which the
outer loop performs design optimization, with calls to the
inner loop, which is a reliability oracle that computes the
system reliability function for each proposed design. There
are several variants of the double-loop RBDO approach,
such as a single-loop method (Liang et al., 2008).

Our approach can be viewed as consisting of a double-
loop algorithm, in which the outer loop performs design
optimization over an observation O corresponding to a
catastrophic fault, with calls to the inner loop, which is
a diagnosis oracle that computes the diagnosis function,
given O, for each proposed design. Our approach is dif-
ferent in that it computes diagnoses rather than a relia-
bility function, and optimizes tolerance to a specific set
of faults rather than optimizing overall system reliability
(and hence tolerance to a distribution of faults).

The closest RBDO approach to our is described in (Monga
and Zuo, 1998), where the notion of life-cycle warranty is
addressed; here, the cost function, which is minimized via
a Genetic Algorithm (GA), includes costs of manufacture,
installation/setup, and repair (both during and beyond

the warranty period). This approach is extended in (Liu
et al., 2007), who describe the objective function for
diagnostics-optimal design of a product under warranty
from a manufacturer’s point of view, focusing on the
robustness of the diagnostics-oriented design to the key
model parameters and decision variables. In comparison to
these approaches, we use a component library to add new
components, rather than assuming a fixed system model
and using GA to optimize the model structure.

The literature contains a wide variety of methods for
component design, but few methods for redesigning a
system with a given structure. Allison et al. (Allison
et al., 2007) analyze methods for design based on optimal
system partitioning (to reduce computational complexity
of the design process). There are methods for finding
the backbone or funnel variables which are critical for
every possible design (Menzies and Singh, 2003). Other
design or redesign approaches employ hierarchical (López-
Arévalo et al., 2007) or qualitative abstractions (Ollinger
and Stahovich, 2004) of the system being designed. In our
approach we could adopt any of these methods, but our
methodology is fundamentally different from all of these
techniques in that we aim to modify an existing design to
improve its tolerance to catastrophic faults, and not create
a design from scratch without any aim for improving fault
tolerance.

Several authors have proposed design methodologies based
on system partitioning, e.g., (Allison et al., 2007; Chen
et al., 2007). For example, (Chen et al., 2007) proposes a
redesign methodology based on pattern-based decomposi-
tion to rapidly locate and isolate the portions of the design
model that must be recomputed to satisfy redesign require-
ments. This approach transforms the system equations
into an incidence matrix mapping equations by variable, in
which variables participating in equation i as assigned a 1
in row i, and a 0 otherwise. The matrix is then transformed
into a block-angular matrix in which the blocks represent
the subproblems formed by decomposition, and the inter-
action part represents the coordination imposed on the
subproblems. Because our approach assumes components
from a component library, as well as the possibility of
hierarchically organizing the components, such a problem
decomposition is already incorporated in our methodology.

Design of circuits is quite different than circuit optimiza-
tion (McCluskey, 1956). Circuit optimization aims to op-
timize the design of a circuit with respect to the function
f that the circuit computes. Our design problem is much
more sophisticated, in that we aim to take an existing
(possibly optimized) circuit and redesign it to optimize
fault tolerance given a cost function. As a consequence,
the algorithms used in the two problems are very different.

This work also bears some relationship to redesign to
compensate for defects which occur during the manu-
facturing process (Tahoori, 2005), or for nano-structures
(Simsir et al., 2008). 1 In defect-based redesign, defective
components, e.g., on a manufactured chip, are isolated
using test and diagnosis methods, and the resulting data
stored on a defect map, which identifies the usability of
the (programmable) elements of the manufactured chip.

1 A thorough survey of this approach, as applied to FPGAs, is
contained in (Cheatham et al., 2006).



Defect tolerance is achieved by reconfiguring key processes
to avoid defective resources, resulting in modifications to
the logic and architecture design. In our approach, we
assume that the system is defect-free, and we aim to
increase the tolerance of the design to possible catastrophic
faults.

Our redesign approach also bears some resemblance to
diagnosis-based reconfiguration (Chen and Provan, 2001;
Stumptner and Wotawa, 1998). In contrast to this work,
which aims to restore system functionality given a diag-
nosed fault, our approach aims to increase the system’s
tolerance to anticipated catastrophic faults, and not to
faults that have already occurred.

3. PRELIMINARIES

We first give a brief overview of the process of creating
models from a component library within a Model-Based
Reasoning framework. We assume that we can create
a system-level model by composing components from a
component library (Gössler and Sifakis, 2005; Keppens
and Shen, 2001).

We call a well-defined model fragment a component. We
assume that each component can operate in a set of
behavior-modes, which we formalize using an assumable
M . Further, there are two classes of components: primitive
and composite. A primitive component is the simplest
model fragment to be defined.

Definition 1. (Primitive Component). A primitive com-
ponent C, 〈SD, M , c, p, IN, OUT〉 is specified using a
set of propositional Wff SD over a set of variables V ,
assumable M ∈ V , a cost function c : M 7→ (0;∞), a mode
probability function p : M 7→ [0; 1], and input/output
variables, IN, OUT ∈ V .

3.1 A Running Example

We illustrate the notions in this paper with a model of a
Boolean circuit. Fig 2 shows three primitive components
from a circuit component library; for example, component
g1 an inverter, has mode-variable h1, input i, output o,
and system description hi ⇒ (o⇔ ¬i). The cost function
c denotes the cost of the component (e.g., manufacturing
cost, power consumption, chip area, etc.), and the mode
probability function p denotes the probability distribution
function over the component modes.

A composite component consists of a collection of prim-
itive components which are merged according to a set
χ of composition rules (Gössler and Sifakis, 2005). In
this paper we assume the standard composition rules of
discrete circuits; specifying the semantics of composition
is beyond the scope of this paper, and we refer the reader
to (Gössler and Sifakis, 2005; Keppens and Shen, 2001) for
details.

A set of (primitive/composite) components defines a com-
ponent library.

Definition 2. (Component Library). A component library
L is defined as a set of (primitive/composite) components.

The example component library L, shown in Fig 2, con-
tains fault models for three gates (an inverter, a 3-input

AND-gate, and a NOR-gate). The assumable variable is h,
and the cost and fault probability functions are the same
for all components, c = 1, and p(h = True) = 0.95.

ha ⇒ (o⇔ i1 ∧ i2 ∧ i3)hi ⇒ (o⇔ ¬i)

i o

hn ⇒ (¬o⇔ i1 ∨ i2)
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Fig. 2. An example component library

3.2 Models and Systems

Given a library of components, we can build system
models, which we specify as follows.

Definition 3. (Model-Based System). Given a component
library L, a diagnostic system DS, 〈SD, COMPS, OBS, c,
p〉, contains SD, COMPS, c, and p, constructed from L
according to the rules χ, and a set of observable variables
OBS corresponding to IN ∪OUT, the inputs and outputs
for SD.

In order to construct a model we have to (1) choose
a multiset of components from the universe (component
library) L, (2) to create a system topology by intercon-
necting the selected components, (3) to disambiguate the
variable names in the model and (4) to compose the failure
probability and cost functions p and c. The 2-to-4 line
demultiplexer shown in Fig. 3 can be built from the Fig. 2
components.
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Fig. 3. A demultiplexer circuit

After mapping the variables in L we get the following
propositional system description:

SD =







































h1 ⇒ (a⇔ ¬p)
h2 ⇒ (p⇔ ¬r)
h3 ⇒ (b⇔ ¬q)
h4 ⇒ (q ⇔ ¬s)
h5 ⇒ (o1 ⇔ i ∧ p ∧ q)
h6 ⇒ (o2 ⇔ i ∧ r ∧ q)
h7 ⇒ (o3 ⇔ i ∧ p ∧ s)
h8 ⇒ (o4 ⇔ i ∧ r ∧ s)



The assumables are COMPS = {h1, h2, . . . , h8}, the ob-
servables are OBS = {a, b, i, o1, o2, o3, o4}.

3.3 Diagnostic Modeling

Model-based systems can be used for a variety of purposes,
such as simulation and diagnosis. If we specify a model
with modes denoting failure-states, then we call this a
diagnosis model. Further, given an observation, we can
compute a diagnosis for such a model in terms of an
assignment to the system’s mode-variables.

Definition 4. (Diagnosis). Given an DS, an observation α
over some variables in OBS, and an assignment ω to all
variables in COMPS, ω is a diagnosis iff SD ∧ α ∧ ω 6|=⊥.

Continuing our running example, consider an observation
vector α1 = i ∧ ¬a ∧ ¬b ∧ o4. Throughout this paper we
specify a diagnosis ω as the set of its negative literals.
There are a total of 256 possible assignments to all
variables in COMPS. Example diagnoses are ω1 = {¬h8}
and ω2 = {¬h1,¬h4}.

Definition 5. (Probability of a Diagnosis). The probabil-
ity of a diagnosis ω, Pr(ω), is defined as:

Pr(ω) =
∏

x 6∈ω

g(x)
∏

x∈ω

1− g(x)

Note that Pr(ω) gives a prior (non-normalized) probability
of ω, i.e., the health pdf is conditioned on the model
topology, but not on the observation. Computing a pos-
teriori probabilities require computating all diagnoses and
applying Bayes rule (de Kleer and Williams, 1987), but our
task needs a priori probabilities only. According to Def. 5,
Pr(ω1) ≈ 0.035 and Pr(ω2) ≈ 0.0018.

Definition 6. (Probability-Minimal Diagnosis). A diagno-
sis ω∗ is defined as probability-minimal if no diagnosis ω̃∗

exists such that Pr(ω̃∗) < Pr(ω∗).

Given an DS and an observation α, the probability of the
probability-minimal diagnoses is denoted as PrMin(DS, α).
Continuing our example, ω1 is probability-minimal, while
ω2 is not, as Pr(ω2) < Pr(ω1) and PrMin(DS, α1) ≈ 0.035.

Other authors use different minimality criteria such as sub-
set-minimality diagnoses, minimal-cardinality diagnoses,
kernel diagnoses (in a slightly different diagnostic frame-
work), etc. (de Kleer et al., 1992).

4. MODEL-BASED REDESIGN

This section describes the general redesign problem, and
our redesign algorithm, which makes use of the model-
based relationship between system mode assignment and
observable assignment. In a model-based system, there is a
functional relationship φ : h→ OBS, such that any h∗ ∈ h
induces a unique OBS∗ ∈ OBS. 2

Consider DS and DS′ implemented with components from
the same library L and having the same set of observable
variables OBS. Consider also the assignment ν to all
variables in COMPS such that SD is functioning correctly
(in our example ν would be h1 ∧ h2 ∧ · · · ∧ h8). In general,

2 In general, some OBS∗ ∈ OBS corresponds to multiple possible
h∗ ∈ h.

a system may have a set Hnom of nominal states. We
denote the Boolean function implemented by our system
description and conditioned on ν ∈ Hnom as SDν .

Definition 7. (Nominal Equivalence). Given DS and DS′

we will say that nominally functioning DS is equivalent
to nominally functioning DS′ (denoted as DS≡nomDS′) iff
SDν ≡ SD′

ν .

4.1 Problem Statement

We now formally define our redesign problem. Our objec-
tive is to redesign DS such that we make the system more
robust to a set of (catastrophic) faults. Given the rela-
tionship between mode assignments and observable assign-
ments, we can define our redesign objective as making a
system more robust to a set of (catastrophic) observations
which correspond to faults. We call this set of dangerous
observations A.

Problem 1. (Cost-Optimal Redundancy Redesign). Given a
component library L, DS = 〈SD, COMPS, OBS, c, p〉, and
a set of (catastrophic) observations A = {α1, α2, . . . , αn},
compute a redesign R = 〈SD+, COMPS+〉, such that for
DS′ = 〈SD ∪ SD′, COMPS∪COMPS′, OBS, c, p〉 it holds
that:

1. DS≡nomDS′,
2. ∀α : α ∈ A, PrMin(DS′, α) < PrMin(DS, α),
3.

∑

x∈COMPS+ c(x) is minimized.

4.2 Model-Based TMR

Consider SD and a set of assumable variables H =
{h1, h2, h3, h4, h8} (e.g., these are components identified as
critical). A TMR redesign adds two layers of redundancy
and a voting mechanism which chooses a consensus of its
inputs. Applying TMR to H in DS gives us the TMR
diagnostic system DS′′, the system description of which is
shown in Fig. 4 and Fig. 5 (the outputs o′4, o′′4 , and o′′′4 of
the circuit shown in Fig. 4 are connected to the identically
named inputs of the circuit shown in Fig. 5).

Let us denote the set of assumable variables in the voting
mechanism as COMPSv (for the TMR design in Fig. 4
and Fig. 5 COMPSv = {h9, h10, h11, h12}). Consider the
following fault probability function g for the TMR circuit
in Fig. 4 and Fig. 5:

g(x) =

{

ǫ1, for x ∈ COMPSv

ǫ2, for x ∈ COMPS \ COMPSv

Let A′ = {αi} be the set of all observations of DS such
that all diagnoses of SD and αi contain variables in H
only. Next, suppose that ǫ1 < ǫ2. It can be seen that
for any αi ∈ A′, PrMin(DS′′, αi) < PrMin(DS, αi) and
DS≡nomDS′′. In the experimentation section that follows,
we will see that if we consider a subset of A′, it is often
possible to reduce the number of components and the cost
of the redesigned circuit.

4.3 Danger Detection and Correction

Consider the running example from Fig. 3 and a set A
containing two (dangerous) observations A = {α1, α2},
α1 = i∧¬a∧¬b∧ o4, α2 = i∧ a∧ b∧¬o4. Figure 6 shows



redundancy layer 1

redundancy layer 2

original circuit

o′4

o′′4

o′′′4

h′′
1

h′′
3

h5

h6

h7

h2

h3 h4

h1

s

r

q

h′′
4

p

h′′
8

h8

i

b

a

h′
1 h′

2

h′
8

h′
3 h′

4

h′′
2

o3

o2

o1
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Fig. 5. Majority voting circuit

a circuit D, which produces a true output d iff any of the
observations in A is detected. Figure 7 shows a two-input
multiplexer S, which, depending on the control signal d,
routes the original signal o4, or the corrected o∗4, to the
output õ4.

d

o4

a

b

i

D

Fig. 6. Example of a danger detection circuit

To complete the running example we construct a correc-
tion circuit C which, given an input of interest i ∧ a ∧ b
or i ∧ ¬a ∧ ¬b, produces a correct output (o4 and ¬o4,
respectively). The resulting circuit is shown in Fig. 8.

Clearly the cost of this circuit (17 gates) is smaller than
the one of the TMR circuit (20 gates).
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Fig. 7. Example of an output selection circuit
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Fig. 8. A fault-tolerant demultiplexer circuit

In this paper we assume that the probability of a failure
in the danger detection and output selection subcircuits is
less than or equal to the probability of any failure in the
original system description.

5. AUTOMATED FAULT-TOLERANT REDESIGN

This section presents an algorithm that solves Problem 1
(finding a cost-optimal circuit which is logically equivalent
to the original when healthy, but which decrease the a
priori probability of some predefined set of observations).
Our algorithm consists of (1) (nearly) cost-minimal syn-
thesis of models from component libraries and (2) mapping
(catastrophic) observations into component sets (subcir-
cuits) which are used for the synthesis of detection and
correction subcircuits.

5.1 Synthesis from Component Libraries

Algorithm 1 composes a cost-minimal function from a
component library L, the resulting function evaluating



to true for a set of measurement-points A. Furthermore,
Alg. 1 is provided with a target function SD∗ which is true
in A but not necessarily cost-minimal.

Lustig et al. (Lustig and Vardi, 2009) prove that, when
formulated in terms of Linear Temporal Logic, the problem
of system synthesis from component libraries is undecid-
able. Algorithm 1 is guaranteed to terminate because it
considers problems with (non-zero) cost smaller than r,
where r is the cost of a target circuit SD∗ that implements
the function Alg. 1 attempts to synthesize.

Algorithm 1 searches the space of all possible Boolean
circuits of cost smaller than r and checks the equiva-
lence of each candidate to SD∗ by making a call to the
CheckEquivalence function in line 6. Although the gen-
eral problem of equivalence checking of two Boolean func-
tions is known to be NP-hard, our implementation solves a
simpler problem by comparing the candidate function in A
only. In particular, we make |A| queries to a Logic-Based
Truth Maintenance System (Forbus and de Kleer, 1993)
which is of polynomial time complexity at the expense of
incompleteness.

Algorithm 1 Boolean functional synthesis

1: function Synthesize(L, SD∗, COMPS, A)

inputs: L, component library
SD∗, target system description
COMPS, target component variables
A, set of terms

returns: system description
locals variables: SD∗, system description

r, real, cost bound
m, variable multiset, components
g, bigraph, connections

2: r ←
∑

x∈COMPS
c(x)

3: while m← NextMultiset(COMPS, c, r) do
4: while g ← RandConnections(SD∗, m) do
5: SD′ ←MakeCircuit(m, g)
6: if CheckEquivalence(SD′, A) then
7: return SD′

8: end if
9: end while

10: end while
11: return SD∗

12: end function

Algorithm 1 uses a double-loop to iterate over all Boolean
circuit compositions. First, in the outer loop (line 3), Alg 1
considers all possible component multisets. The inner loop
(line 4) generates all possible interconnections between the
chosen components (and between the systems’ inputs and
outputs).

It is possible to construct M =
((

n

k+1

))

multisets of cardi-
nality up to n from a library containing k components.
Although M grows exponentially, for small n, we can
consider circuits of non-trivial size. For example,

((

32

7

))

=
2 760 681, which is a modest number of iterations.

Our implementation of NextComponents is more com-
plex, as it considers components of variable cost. Although
there are less memory-intensive approaches, NextCom-

ponents constructs all multisets of components with the

sum of their costs smaller than r, sorts the result in
order of increasing cost, and returns the cheapest multiset
of components. On subsequent calls NextComponents

simply iterates over the remaining elements in the list.

A system interconnection can be represented as a bigraph
of |X | and |Y | nodes (cf. Fig. 9 for an illustration). In this
case X contains a node for each of the target system’s
inputs and all candidate components’ outputs while Y
contains a node for each of the system’s outputs and all
components’ inputs. We have a total of 2|X|+|Y | different
bigraphs, hence Alg. 1 considers a total search space
O((m + 1)n · 2|X|+|Y |), which renders the brute-forcing of
this search space infeasible even for the smallest systems.

p q i x3 x4 x8

X

x2 x7 x5 x6 o4x1

Yx4
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x7

x1
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p

q

i

x8 o4

Fig. 9. A circuit and its interconnection bigraph

It is possible to prune a significant portion of the search
space by skipping over ill-formed circuits. Such circuits
are ones connecting multiple-outputs, having unconnected
inputs or outputs or disconnected components, having
feedback, etc. Furthermore there are many symmetrical
interconnections, e.g., the ordering of the inputs of an
and-gate is irrelevant (this may not be the case if we
consider arbitrary logic functions, for example an adder
or a multiplier).

One way to sample from the space of all possible intercon-
nections is to consider a subset of all possible biadjacent
matrices of a certain size, with constraints for producing
well-formed circuit and bypassing symmetries. This is done
by the RandConnections subroutine, making use of a
specialized Constraint Satisfaction (CS) solver. Note that
the use of random sampling for generating possible inter-
connections turns Alg 1 into an incomplete algorithm, i.e.,
it may fail to find an equivalent circuit. Improving the
completeness and performance of Alg 1 is a separate topic
which we will not discuss in details in this paper.

5.2 The General Redesign Engine

Alg. 2 shows the pseudo-code for the General Design En-
gine (GRE). Given an initial set of components, COMPS,
GRE first computes a component subset COMPS∗ ⊆
COMPS such that no malfunctioning of a component in
COMPS\COMPS∗ leads to a danger α ∈ A. This is done in
lines 2 – 8 of Alg. 2. The most complex computation there
is performed by the diagnostic engine (MinDiagnosis).

Returning to our running example, we have two sets of
probability-minimal diagnoses: Ω1 = {{¬h8}} for α1,
and Ω2 = {{¬h1}, {¬h2}, {¬h3}, {¬h4}, {¬h8}} for α2.
Taking the union of all components in Ω1 and Ω2 we have
COMPS∗ = {h1, h2, h3, h4, h8}.

Once GRE has computed COMPS∗, it calls the auxiliary
subroutine Subcircuit which removes from the origi-
nal system description Wff modeling components not in



Algorithm 2 General redesign engine

1: function GRE(L, DS, S, A)

inputs: L, component library
DS, diagnostic system
S, set of Wff , output selection
A, set of terms, dangers

returns: set of Wff , redesigned model
local variables:

C, set of Wff , correction circuit
D, set of Wff , danger detection circuit
COMPS∗, set of assumable variables
SD∗, set of Wff , redesign target
B, set of terms, propagated dangers
B̄, set of terms, corrected dangers
Ω, set of diagnoses
α, term, danger
ω, variable set, diagnosis

2: COMPS∗ ← ∅
3: for all α ∈ A do
4: Ω←MinDiagnoses(DS, α)
5: for all ω ∈ Ω do
6: COMPS∗ ← COMPS∗ ∪ ω
7: end for
8: end for
9: SD∗ ← Subcircuit(SD, COMPS∗)

10: B ← PropagateValues(SD, SD∗, A)
11: B̄ ← CorrectOutputs(SD∗, COMPS∗, B)
12: C ← Synthesize(L, SD∗, COMPS∗, B)
13: D ← Synthesize(L, SD∗, COMPS∗, B̄)
14: return D ∪ S ∪C
15: end function

COMPS∗ and their interconnections. Doing this for our
running examples results in the following SD∗:

SD∗ =



















h1 ⇒ (a⇔ ¬p)
h2 ⇒ (p⇔ ¬r)
h3 ⇒ (b⇔ ¬q)
h4 ⇒ (q ⇔ ¬s)
h8 ⇒ (o4 ⇔ i ∧ r ∧ s)

It may be the case that the inputs and outputs to SD∗ are
not necessarily inputs and outputs to SD. For example, if
we consider the single dangerous observation A′ = {{i ∧
a ∧ b ∧ ¬o1 ∧ ¬o2 ∧ ¬o3 ∧ ¬o4}}, the detection/correction
target subcircuit is formed by components with assumable
variables h2, h4, and h8. In the latter case we need the dan-
gerous inputs/outputs propagated to the inputs/outputs
of the detection/correction target subcircuit SD∗. This
is done by the PropagateValues function, which uses,
for example, Boolean constraint propagation (Forbus and
de Kleer, 1993). Evaluating PropagateValues with
A′ as input gives us {{¬p,¬q,¬o4}} and evaluating
PropagateValues with the danger set A (cf. the running
example) as input results in the unmodified A (in the latter
case SD∗ and SD share the same inputs and outputs).

In order to generate the correction circuit, GRE needs to
(1) take the inputs assignment from each danger observa-
tion and (2) to compute the outputs for these inputs given
a nominal functioning of the model. This is performed by
the CorrectOutputs function in line 11 of Alg. 2.

Once we have computed the target subcircuit SD∗, the
function Synthesize generates the correction circuit C
(line 12) and the danger detection circuit D (line 13). Due
to the randomized nature of Alg 1 C and D are nearly cost
optimal with respect to the component library L.

6. EXPERIMENTAL RESULTS

In this section we experimentally study the trade off
between the redesign cost and the number of suppressed
dangers. The complexity of Alg. 1 constrains the size of
the models we can automatically redesign with GRE. As
improving the performance of Alg. 1 is outside the scope of
this paper, we have studied the GRE trade offs on Boolean
circuits having less 10 gates (cf. Table 1 for an overview).

Name Description |IN| |OUT| |COMPS|

poly Boolean polycell 5 2 5

add 2-bit adder 3 2 5
sub 2-bit subtractor 3 2 7
demux 2-4 demultiplexer 3 4 8

Table 1. GRE models.

The component library we have used for testing GRE
is standard, consisting of an inverter, and 2-input XOR,
AND, NAND, OR, and NOR gates. We have assumed that
all components have the same cost (c = 1).

An advantage of GRE is that it allows the suppression
of, for example, all observations leading to single-faults.
Such redesign strategies are very applicable in practice,
as decreasing the likelihood of double-faults and faults
of higher cardinality necessitates the use of a voting
mechanism with lower failure probability than a multiple-
cardinality fault.

Name TMR Cost GRE Cost Savings

poly 23 17 26%

add 23 16 30%
sub 29 20 30%
demux 40 29 28%

Table 2. GRE cost savings for single-faults.

Table 2 shows the cost of TMR and the cost of a GRE
redesign suppressing all observations leading to single-
faults. We gain an almost constant cost decrease between
26% and 28%. Note that the cost saving can be arbitrarily
larger with non-uniform component costs.

The trade off between the redesign cost and the number
of suppressed symptoms for the four benchmark circuits
is shown in Fig. 10. For each benchmark circuit we have
computed the set of all observations A leading to faults of
cardinality k. For each cardinality k, we have repeatedly
sampled (20 times) A and computed the redesign cost of
suppressing all dangers in A.

Figure 10 shows that for many sets of dangers, GRE
computes a correction circuit of a cost smaller than the
one of the original circuit (the latter is shown with black
dashed line in Fig. 10). Interestingly, it is cheaper to
suppress smaller sets of higher-cardinality faults (e.g.,
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Fig. 10. GRE costs vs. number of suppressed symptoms
(correction subcircuits).

double-faults), than, for example all single-faults. This can
be useful in circumstances, where faults with smaller a
priori probability have higher impact (this necessitates the
introduction of a loss function which is a subject of future
work).

From the experiments of redesigning small circuits, it is
clear that GRE can be used to trade off reliability for
cost and after the performance of the circuit synthesis
algorithm is improved to handle larger models, GRE will
be useful for a range of model-based redesign problems.

7. CONCLUSION

This paper presents a novel model-based algorithm, GRE,
for redesigning systems to display fault-tolerance to spec-
ified faults. GRE uses a cost-optimal Boolean functional
synthesis algorithm to generate a cost-minimal detection
and correction mechanism. We have empirically shown
that GRE creates cheaper redesigns compared to the stan-
dard TMR fault-tolerance approach.

GRE can be applied to several tasks beyond fault-tolerant
design, since it is based on model-based redesign. For
example, it can redesign systems to avoid “forbidden”
modes, as is done in safety-verification.
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