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Abstract—Due to model uncertainty and/or limited observ-
ability, the number of possible diagnoses or the associated
probability mass distribution may be unacceptable as the basis
for important decision-making. In this paper we present a new
algorithmic approach, called FRACTAL (FRamework for ACtiv e
Testing ALgorithms), which, given an initial diagnosis, computes
the shortest sequence of additional test vectors that minimizes
diagnostic entropy. The approach complements probing and
sequential diagnosis (ATPG), applying to systems where only
additional tests can be performed by using a subset of the existing
system inputs while observing the existing outputs (called“Active
Testing”). Our algorithm generates test vectors using a myopic,
next-best test vector strategy, using a low-cost approximation of
diagnostic information entropy to guide the search. Results on
a number of 74XXX/ISCAS85 combinational circuits show that
diagnostic certainty can be significantly increased, even when
only a fraction of inputs are available for active testing.

I. I NTRODUCTION

Model-Based Diagnosis (MBD) [1] is an area of abductive
inference that uses a system model, together with observations
about system behavior to isolate sets of faulty components
(diagnoses) that explain the observed behavior. One of the
advantages of MBD over related approaches (e.g., simulation-
based) is that MBD can cope with arbitrary degree of uncer-
tainty in the system model and in the observation. In the latter
case MBD computesall or an approximation to all diagnoses.
The number of diagnoses can be large, exponential of the
number of components in the worst-case.

This ambiguity (uncertainty) of the diagnostic result poses
a typical problem to MBD. Due to modeling uncertainty (e.g.,
weakness due to ignorance of abnormal behavior or need for
robustness) and limited number of observations (sensor-lean
systems, limited observation horizons), the failure probability
mass is distributed over multiple diagnoses. This high infor-
mation entropy of the diagnostic result makes it difficult for an
operator or a reconfiguration (planning) component to decide
with sufficient certainty.

Given a set of plausible diagnoses, in certain situations one
can devise additional tests that narrow down the ambiguity
(reduces the set of diagnoses). When measurements can be
made this is a good way to do that [1]. However, in many
circumstances there are no provisions for sensing additional
variables (e.g., a satellite that cannot be physically reached).

In such cases, the only thing that can be done is to actively
control (a subset of) inputs, executing a part of the existing
system functionality (e.g., invoking built-in test capabilities, or
otherwise), the associated observations being used to further
narrow down the diagnostic solution space.

Under no constraints, this would mean applying a test vector
on all inputs such as in sequential diagnosis (and ATPG)
where a sequence of tests is applied to target a fault. In
many situations, however, this would too much interfere with
the system and its environment. Usually, there is a subset of
inputs, called control inputs, that can be manipulated by a
diagnostic engine to execute tests. This approach is coined
“active testing”. Loosely speaking, an active testing problem
is: given a system model and an initial observation and
diagnosis, to compute the set of input test vectors that will
minimize diagnostic ambiguity with the least number of test
vectors.

In this paper we present a framework, called FRACTAL
(FRamework for ACtive Testing ALgorithms), in which we
define active testing and present algorithms to solve the active
testing problem. Our contributions are as follows:

• We define the active testing problem and describe various
instances of the problem;

• We define diagnostic ambiguity in terms of information
entropy and propose a low-cost estimation amenable to
active testing;

• We define a stochastic, myopic strategy to solving the
active testing problem and outline an algorithm to solve
the active testing problem;

• We study the performance of our algorithm on the
74XXX/ISCAS85 combinational benchmark suite.

To the best of our knowledge, this is the first approach to
defining and solving the active testing problem, generaliz-
ing over sequential diagnosis and ATPG. Furthermore our
method is based on MBD which is beneficial in that very
little assumptions about the model and the observations are
required. Our results show that controlling a small fraction
of the inputs can reduce the number of remaining diagnoses
at a small diagnostic cost whereas a reduction of entropy
would be impossible for a passive approach. Our method is



also computationally efficient as it uses a stochastic approach
and is relevant to practice as it can be effectively used to
disambiguate faults in complex autonomous systems.

This paper is organized as follows. The section that comes
next introduces some basic MBD notions. Section IV presents
the problem of sequential MBD and the important concept
of remaining number of diagnoses. Section V introduces a
framework for active testing. What follows is a section de-
scribing algorithms for active testing. Section VII implements
the algorithms and cites some experimental results. Finally we
summarize our work and discuss future work.

II. RELATED WORK

The problem of sequential diagnosis has received consid-
erable attention in the literature. Our notion of active testing
is related to that of Pattipati et al. [2], [3], except that we
compute diagnoses rather than caching all diagnoses in a fault
dictionary, we assume all tests have identical costs, and we
assume all faults are equally likely, a priori. In addition to
that, whereas the test matrix in sequential diagnosis is fixed,
we allow part of the inputs to be supplied by the environment
in every step of the diagnostic process, which makes our
framework more suitable for online fault isolation.

Note that our task is harder than that of [3], since they
do diagnosis lookup using a fault dictionary, and still show
that the sequential diagnosis task is NP-hard; in our case we
compute a new diagnosis after every test. Hence we have an
NP-hard sequential problem interleaved with the complexity
of diagnostic inference at each step.1

The framework proposed by Pattipati et al. has been ex-
tended to anAND /OR-tree technique that is optimal [4]. We
note that optimal test sequencing is infeasible for the sizeof
problems in which we are interested.

Rish et al. [5], [6] define a similar framework, but cast their
models in terms of Bayesian networks. Our notion of entropy
is the size of the diagnosis space, whereas Rish et al. use
decision-theoretic notions of entropy to guide test selection.

The diagnosis framework that we propose is submodular,
in the terms described in [7], i.e., the informativeness of tests
exhibits diminishing returns the more tests that we do. In
future work we plan to compare our stochastic algorithms
to the randomized algorithms that have been developed for
submodular functions.

In comparison to all of this work, the main contributions of
our paper are:

• A model-based framework for combining multiple-fault
and sequential diagnosis and the introduction of reason-
ing with respect to modifiable/non-modifiable observable
variables;

• A characterization of diagnostic entropy in terms of the
size of the diagnosis space;

• approximating the size of the diagnosis space in terms of
the number of different observations;

1In our case the complexity of diagnostic inference isΣp

2
-hard.

• A stochastic algorithm for efficiently estimating the num-
ber of different observations and resulting diagnoses.

III. T ECHNICAL BACKGROUND

Our discussion starts by adopting the relevant MBD notions
[1].

Central to MBD, amodel of an artifact is represented as
a propositionalWff over a set of variables. We will discern
three subsets of these variables:assumable, observable2 and
control variables. This gives us our initial definition:

Definition 1 (Diagnostic System). A diagnostic systemDS is
defined as the tripleDS = 〈SD, COMPS, OBS〉, whereSD is
a propositional theory over a set of variablesV , COMPS ⊆ V ,
OBS ⊆ V , COMPS is the set of assumables, andOBS is the
set of observables.

Throughout this paper we assume thatOBS ∩ COMPS = ∅,
andSD 6|=⊥. Furthermore, to avoid handling inconsistencies,
we restrict SD to models for whichSD ∧ α 6|=⊥ for any
(possibly partial) assignmentα to the variables inOBS.

A. A Running Example

We will use the Boolean circuit shown in Fig. 1 as a running
example for illustrating all notions and the algorithm shown
in this paper. The2-to-4 line demultiplexer consists of four
Boolean inverters and four and-gates.
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Fig. 1. A demultiplexer circuit

The expressionh ⇒ (o⇔ ¬i) models an inverter, where
the variablesi, o, and h represent input, output, and health
respectively. Similarly, an and-gate is modeled ash ⇒
(o⇔ i1 ∧ i2 ∧ i3). The above propositional formulae are
copied for each gate in Fig. 1 and their variables subscripted
and renamed in such a way as to ensure a proper disambigua-
tion and to connect the circuit. The result is the following

2In the MBD literature the assumable variables are also referred to as
“component”, “failure-mode”, or “health” variables. Observable variables are
also called “measurable” variables.



propositional model:

SD =































[h1 ⇒ (a⇔ ¬p)] ∧ [h2 ⇒ (p⇔ ¬r)]
[h3 ⇒ (b⇔ ¬q)] ∧ [h4 ⇒ (q ⇔ ¬s)]
h5 ⇒ (o1 ⇔ i ∧ p ∧ q)
h6 ⇒ (o2 ⇔ i ∧ r ∧ q)
h7 ⇒ (o3 ⇔ i ∧ p ∧ s)
h8 ⇒ (o4 ⇔ i ∧ r ∧ s)

The assumable variables areCOMPS = {h1, h2, . . . , h8} and
the observables areOBS = {a, b, i, o1, o2, o3, o4}. Note the
conventional selection of the sign of the “health” variables
h1, h2, . . . , hn. Other authors use “ab” for abnormal.

B. Diagnosis

The traditional query in MBD computes terms of assumable
variables which are explanations for the system description and
an observation.

Definition 2 (Diagnosis). Given a systemDS, an observation
α over some variables inOBS, and an assignmentω to all
variables inCOMPS, ω is a diagnosis iffSD ∧ α ∧ ω 6|=⊥.

We denote the set of all diagnoses of a modelSD and an
observationα as Ω(SD, α) and the number of all diagnoses
as |Ω(SD, α)|. Continuing our running example, consider an
observation vectorα1 = ¬a ∧ ¬b ∧ i ∧ o4. There are a total
of 256 possible assignments to all variables inCOMPS and
|Ω(SD, α1)| = 200. Example diagnoses areω1 = h1 ∧ h2 ∧
. . . ∧ h7 ∧ ¬h8 and ω2 = ¬h1 ∧ h2 ∧ h3 ∧ ¬h4 ∧ h5 ∧ h6 ∧
h7∧h8. We will write sometimes a diagnosis in a set notation,
specifying the set of negative literals only. Thusω2 would be
represented asD2 = {¬h1,¬h4}.

As it is typical for underconstrained models to have many
diagnoses (exponential to the number of components in the
worst case, as in the above, weak, example model), we will
impose (partial) ordering on the diagnoses and will consider
only diagnoses which satisfy some minimality criterion.

Definition 3 (Cardinality of a Diagnosis). The cardinality of a
diagnosis, denoted as|ω|, is defined as the number of negative
literals in ω.

According to Def. 3, we have|ω1| = 1 and |ω2| = 2. Next,
let us focus on the diagnoses of minimal cardinality.

Definition 4 (Minimal-Cardinality Diagnosis). A diagnosis
ω≤ is defined as Minimal-Cardinality (MC) if no diagnosis
ω̃≤ exists such that|ω̃≤| < |ω≤|.

Other authors use different minimality criteria such as subset-
minimality diagnoses, probability-minimal diagnoses, kernel
diagnoses (in a slightly different diagnostic framework),etc.
[8]. Our selection of minimality criterion is such that it does
not characterize all diagnoses but is often seen in practicedue
to the prohibitive cost of computing a characterizing set of
diagnoses.

Consider an observation vectorα2 = ¬a∧¬b∧ i∧¬o1∧o4.
There are6 MC diagnoses of cardinality2 consistent with

SD ∧ α2 and counting these MC diagnoses is a common
problem in MBD.

Definition 5 (Number of Minimal-Cardinality Diagnoses).
The number of MC diagnoses of a systemDS given an
observationα over some variables inOBS is denoted as
|Ω≤(SD, α)|, whereΩ≤(SD, α) is the set of all MC diagnoses
of SD ∧ α.

It is easy to compute the number of MC diagnosis for the
circuit in Fig. 1: |Ω≤(SD, α1)| = 1 and |Ω≤(SD, α2)| = 6.

IV. SEQUENTIAL DIAGNOSIS

Typically, due to uncertainty in the model (e.g., ignorance
of abnormal behavior) and in the observation vectors (partial
observability), there is more than one MC diagnosis. To reduce
this uncertainty and to pinpoint theexact cause of failure,
diagnosticians often combine a sequence of diagnostic exper-
iments, where, whenever possible, appropriate input vectors
are supplied, generatingteststhat optimally reduce|Ω|. If this
process of successive application of MBD in time includes
dynamic reconfiguration of the system under test, then we call
the processactive testing.

Definition 6 (Diagnostic Sequence). Given a systemDS, a
diagnostic sequenceS is defined as ak-tuple of termsS =
〈α1, α2, . . . , αk〉, whereαi (1 ≤ i ≤ k) is an instantiation of
the variables inOBS.

The cost of a diagnostic sequence, denoted as|S|, is defined
as the number of terms inS (respectively the number of MBD
experiments performed by a diagnostician).

An important assumption throughout this paper is that the
health of the system under test does not change during the test
(i.e., intermittent faults are outside the scope of this study).

Assumption 1 (Non-Intermittence). Given an systemDS, an
actual health state for its componentsω∗, and a diagnostic
sequenceS, we assume thatω∗ ∈ Ω(SD, αi) for 1 ≤ i ≤ |S|.

It is intuitive that for non-intermittent systems, the diagnos-
tician can combine the results from different application of
MBD to reduce the diagnostic uncertainty.

Lemma 1. Given a systemDS, a health state for its compo-
nentsω, and a diagnostic sequenceS, it follows that

ω ∈

|S|
⋂

i=1

Ω(SD, αi)

Proof: The above statement follows immediately from the
non-intermittence assumption and Def. 2.
The problem with Lemma 1 is that it holds only ifall
diagnoses of a model and an observation are considered. If
we compute minimal-diagnoses in a weak-fault model, for
example (cf. [8]), the intersection operator has to be rede-
fined to handle subsumptions. The problem with intersecting
diagnostic sets worsens if we consider non-characterizingsets
of diagnoses (e.g., MC diagnoses or firstn diagnoses). To



solve this issue we will provide our own consistency-based
intersection operator.

Definition 7 (Consistency-Based Intersection). Given a system
descriptionSD, an initial observationα, a (possibly non-
characterizing) set of diagnosesD of SD∧α, and a posteriori
observationα′, the intersection ofD with the diagnoses
of SD ∧ α′, denoted asΩ∩(D, α′), is defined as the set
D′ (D′ ⊆ D) such that for eachω ∈ D′ it holds that
SD ∧ α′ ∧ ω 6|=⊥.

The intersection operatorΩ∩(D, α) refines the set of prior
diagnosesD, leaving only diagnoses supported by both obser-
vations. It is straightforward to generalize the above definition
to a diagnostic sequenceS.

Definition 8 (Remaining Minimal-Cardinality Diagnoses).
Given a diagnostic systemDS and a diagnostic sequence
S, the set of remaining diagnosesΩS is defined asΩS =
Ω∩(Ω∩(· · ·Ω∩(Ω≤(SD, α1), α2), · · · ), αk).

It is clear that if we consider the firstk terms of a sequenceS
(forming a subsequenceS′), the size of the set of remaining
diagnoses|ΩS

′

| decreases monotonically when increasingk.
Note that we use|ΩS

′

| instead of the more precise diag-
nostic entropy as defined in [1] and subsequent works. In
particular, if all diagnoses of a model and an observation
are of minimal-cardinality and the failure probability of each
component is the same, then the gain in the diagnostic entropy
can be directly computed from|ΩS |.

V. A N ACTIVE TESTING FRAMEWORK

Note that in our MBD use of sequential diagnosis, the
observation terms are always determined by “nature”3. It is
often the case, though, that there are inputs (in MBD input
and outputs are normally not distinguished and they are both
considered as observables) which are not only measurable but
also modifiable. We will call these inputscontrolsand we will
see that computing values for these control variables can be
improve the optimality of the diagnostic process.

A. Optimal Control

Extending the diagnostic system from Def. 1 and separating
the controllable from non-controllable observations gives us
the following definition:

Definition 9 (Active Testing System). An active testing system
ATS is defined as the4-tuple ATS = 〈SD, COMPS, CTL,
OBS〉, where SD is a propositional theory over a set of
variablesV , COMPS ⊆ V , CTL ⊆ V , OBS ⊆ V , COMPS
is the set of assumables,CTL is the set of controls, andOBS
is the set of observables.

3Note, that in our presentation “sequential diagnosis” is used in the MBD
context, which is slightly different from its original presentation, but still
compatible. Normally, sequential diagnosis is the art of finding optimal test
sequences where typically all inputs are controllable, andwhere “nature”
is only in charge of computing the outputs. In our case, by “nature” we
understand the environment (consider the case in which the system description
is embedded within a copier that is paused).

Furthermore, although this is not strictly necessary, whenever
convenient, we will be splitting the set of observablesOBS
into inputs IN and outputsOUT (OBS = IN ∪ OUT, IN ∩
OUT = ∅). Hence, from now on, the observables from the
preceding sections will be split into “modifiable” inputs (or
controls)CTL, “non-modifiable” inputsIN and outputsOUT.
For the assignments to the inputs, outputs, and controls we
will conventionally use (subscripted and superscripted when
necessary)α, β, andγ, respectively.

Note the distinction between observation terms and control
terms. In a typical diagnostic scenario, the observation terms
(α1, α2, . . . , αk) are determined by “nature”, while the control
terms (γ1, γ2, . . . , γk) are set by the diagnostician.

Next, let us consider a diagnostic sequenceS whose terms
are split into controls and (non-modifiable) inputs (S =
〈α1 ∧ γ1, α2 ∧ γ2, . . . , αk ∧ γk〉). In such a sequenceS, a di-
agnostician would attempt to minimize the set of the remaining
diagnosesΩS by supplying “optimal”γi (1 ≤ i ≤ k) terms.
Ideally, there would be exactly one remaining diagnosisω∗ at
the end of the sequence. In general, however, there may be
more, depending on the model and observability.

Problem 1 (Optimal Control Input). Given a systemATS, and
a sequenceS = 〈α1 ∧ γ1, α2, . . . , αk〉, whereαi (1 ≤ i ≤ k)
areOBS assignments andγ1 is aCTL assignment, compute a
minimal sequence ofCTL assignmentsγ2, . . . , γk, such that
|ΩS | is minimized.

Problem 1 usesγ1 because our problem is different from
sequential ATPG in the sense that we don’t compute tests for
specific target diagnosisω∗ (in which case there is no need
to have an initial controlγ and observationα). In the active
testing problem, the situation is different: we target any health
state, so initial observation and control are required.

In this paper we will avoid making assumptions on the val-
ues of the observable termsα1, α2, . . . , αk. For experimenting
with active testing algorithms these can be computed from
random inputs and the propagation of the injected fault. There
is one special case, however, which is worth distinguishing:
α1 = α2 = · · · = αk (consider, e.g., a system under test which
supplies constant observation because it is stationary, paused,
pending an abort or reconfiguration, etc.).

Problem 2 (Optimal Control Input for a Persistent Input).
Given an active testing systemATS, and a sequenceS =
〈α ∧ γ1, α, . . . , α〉, where|S| = k, α is anOBS assignments
andγ1 is aCTL assignment, compute a minimal sequence of
CTL assignmentsγ2, . . . , γk, such that|ΩS | is minimized.

In practice, a diagnostician does not know what the next
observation will be. Fully solving an active testing problem
would necessitate the conceptual generation of a tree with all
possible observations and associated control assignmentsin
order to choose the sequence that, on average, constitutes the
shortest (optimal) path over all possible assignments.

The sequential diagnosis problem studies optimal trees
when there is a cost associated with each test [9]. When
costs are equal, it can be shown that the optimization problem



reduces to a next best control problem (assuming one uses
information entropy). In this paper a diagnostician who is
given a diagnostic sessionS and who tries to compute the
next optimal control assignment would try to minimize the
expected number of remaining diagnoses|ΩS |.

B. Expected Intersection Size

Clearly, |Ω∩| is the goal function to be minimized (apart
from k). Next, we will compute the expected number of
diagnoses for a set of observable variablesM (M ⊆ OBS).
Note that the initial observationα and the set of MC diagnoses
D = Ω≤(SD, α) modify the probability density function
(pdf) of subsequent outputs4 (observations), i.e., a subsequent
observationα′ changes its a priori likelihood. The (non-
normalized) a posteriori probability of an observationα′, given
an MC operator and an initial observationα is:

Pr(α′|SD, α) =
|Ω∩(Ω≤(SD, α), α′)|

|Ω≤(SD, α)|
(1)

The above formula comes by quantifying how a given a priori
set of diagnoses restricts the possible outputs (i.e., we take as
probability the ratio of the number of remaining diagnoses to
the number of initial diagnoses). Note that, in practice, there
are manyα for which Pr(α′|SD, α) = 0 because a certain
fault heavily restricts the possible outputs of a system (i.e.,
the set of the remaining diagnoses in the nominator is empty).

The expected number of remaining MC diagnoses for a
variable setM , given an initial diagnosisα, is then the
weighted average of the intersection sizes of all possible
instantiations over the variables inM (the weight is the
probability of an output):

E≤(SD, M |α) =

∑

α′∈M∗

|Ω∩(D, α′)| · Pr(α′|SD, α)

∑

α′∈M∗

Pr(α′|SD, α)
(2)

where D = Ω≤(SD, α) and M∗ is the set of all possible
assignment to the variables inM . Replacing (1) in (2) and
simplifying gives us the following definition:

Definition 10 (Expected Minimal-Cardinality Diagnoses In-
tersection Size). Given a systemATS and an initial obser-
vation α, the expected remaining number of MC diagnoses
E≤(SD, OBS|α) is defined as:

E≤(SD, OBS|α) =

∑

α′∈OBS∗

|Ω∩(Ω≤(SD, α), α′)|2

∑

α′∈OBS∗

|Ω∩(Ω≤(SD, α), α′)|

where OBS∗ is the set of all possible assignment to all
variables inOBS.

In what follows we will compute the expected number of
remaining MC diagnoses.

4In MBD there is no problem not discerning outputs from observables,
“assigning values” to outputs, etc. We leave it to the readers’ discretion to
disambiguate these from the context.

VI. A N ALGORITHM FOR ACTIVE TESTING

In this section we will consider algorithms for solving the
active testing problem. We start with a description of a naı̈ve,
exact, table-based method. The memory and time requirements
of this exact method are prohibitive, hence the bulk of this
section proposes a more efficient, randomized algorithm.

A. Prohibitive Complexity of Exhaustive Search

Consider our running example with an initial observation
vector (and control assignment)α3 ∧ γ3 = a ∧ b ∧ i ∧ o1 ∧
¬o2 ∧¬o3 ∧¬o4, whereγ3 = i is chosen as the initial control
input. The four MC diagnoses ofSD ∧ α3 ∧ γ3 are D3 =
{¬h1,¬h3}, D4 = {¬h2,¬h5}, D5 = {¬h4,¬h5}, andD6 =
{¬h5,¬h8}.

An exhaustive algorithm would compute the expected num-
ber of diagnoses for each of the2|CTL| next possible control
assignments. In our running example we have one control
variablei and two possible control assignments (γ5 = i and
γ6 = ¬i). To compute the expected number of diagnoses,
for each possible control assignmentγ and for each possible
observation vectorα, we have to count the number of initial
diagnoses which are consistent withα ∧ γ.

Computing the intersection sizes for our running example
gives us Table I. Note that, in order to save space, Table I
contains rows for thoseα ∧ γ only, for which Pr(α ∧ γ) 6=
0, given the initial diagnosesD3 − D6 (and, as a result,
Ω∩(Ω≤(SD, α3 ∧ γ3), α ∧ γ) 6= 0). It is straightforward to
compute the expected number of diagnoses for any control as-
signment with the help of this marginalization table. In order to
do this we have to (1) filter out those lines which are consistent
with the control assignmentγ and (2) compute the sum and
the sum of the squares of the intersection sizes (the rightmost
column of Table I). To computeE(SD, OBS|α3 ∧ ¬i), for
example, we have to find the sum and the sum of the squares
of the intersection sizes of all rows in Table I for which
column i is F. It can be checked thatE(SD, OBS|α3,¬i) =
24/16 = 1.5. Similarly,E(SD, OBS|α3∧i) = 34/16 = 2.125.
Hence an optimal diagnostician would consider a second
measurement with control settingγ = i.

The obvious problem with the above brute-force approach
is that the size of the marginalization table is, in the worst-
case, exponential in|OBS|. Although many of the rows in
the marginalization table can be skipped as the intersections
are empty (there are no consistent prior diagnoses with the
respective observation vector and control assignment), the
construction of this table is computationally so demanding
that we will consider an approximation algorithm (to construct
Table 1 for our tiny example, the exhaustive approach had to
perform a total of512 consistency checks).

B. Approximation of the Expectation

Our algorithm for active testing consists of (1) a randomized
algorithm for approximating the expected number of remain-
ing diagnoses and (2) a greedy algorithm for searching the
space of control assignments. We continue our discussion with
approximating the expectation.



i a b o1 o2 o3 o4 Pr |Ω∩|

F F F F F F F 0.03125 1

F F F T F F F 0.0625 2

F F F T F F T 0.03125 1

F F T F F F F 0.03125 1

F F T T F F F 0.0625 2

F F T T F F T 0.03125 1

F T F F F F F 0.03125 1

F T F T F F F 0.0625 2

F T F T F F T 0.03125 1

F T T F F F F 0.03125 1

F T T T F F F 0.0625 2

F T T T F F T 0.03125 1

T F F F F F T 0.0625 2

T F F F F T F 0.03125 1

T F F F T F F 0.03125 1

T F T F T F F 0.03125 1

T F T T F F F 0.03125 1

T F T T F T T 0.0625 2

T T F F F T F 0.03125 1

T T F T F F F 0.03125 1

T T F T T F T 0.0625 2

T T T T F F F 0.125 4

TABLE I
MARGINALIZATION TABLE FOR SD AND α3

The key insight which allows us to build a faster method
for computing the expected number of remaining diagnoses
is that the prior observation (and respectively a set of MC
diagnoses) shifts the probability of the outputs. Hence, an
algorithm which samples the possible input assignments (it
is safe to assume that inputs are equally likely) and counts
the number ofdifferent observations given the set of prior
diagnoses would produce a good approximation. Algorithm 1
uses a couple of auxiliary functions: RANDOM INPUTSassigns
random values to all outputs and INFEROUTPUTS computes
all outputs from the system model, all inputs and a diagnosis5.
The computation of the intersection size|Ω∩(D, α ∧ β ∧ γ)|
can be implemented in a straightforward manner. It is enough
to count thoseω ∈ D for which SD ∧ α ∧ β ∧ γ ∧ ω 6|=⊥.

It can be seen that the value of the expected number of
diagnoseŝE approaches the exact valueE when increasing the
number of samples|S|. In particular,Ê is the exact number
of the expected number of diagnoses when all possible input
values are considered (in the latter case Alg. 1 simply builds
the marginalization table for a given control assignmentγ).
Figure 2 shows two examples of̂E approachingE for two
bigger models (cf. Sec. VII).
The algorithm terminates when a suitable termination criterion
(checked by the TERMINATE function) is satisfied. In our
implementation TERMINATE returns success when the lastn
iterations (wheren is a small constant) leavêE unchanged.

5This is not always possible in the general case. In our framework, we
have a number of assumptions, i.e., a weak-fault model, well-formed circuit,
etc. The complexity of INFEROUTPUT varies on the framework and the
assumptions.

Algorithm 1 Approximate expectation
1: function EXPECTATION(ATS, γ, D) returns a real

inputs: ATS, active testing system
γ, term, system configuration
D, set of diagnoses, prior diagnoses

local variables: α, β, ω, terms
s, an integer, intersection size
S, a set of terms, samples
Ê, a real, expectation

2: S ← ∅
3: repeat
4: α← RANDOM INPUTS(SD, IN)
5: for all ω ∈ D do
6: β ← INFEROUTPUTS(SD, OUT, α ∧ γ, ω)
7: if α ∧ β 6∈ S then
8: S ← S ∪ {α ∧ β}
9: s← |Ω∩(D, α ∧ β ∧ γ)|

10: Ê ← s2/s
11: end if
12: end for
13: until TERMINATE(Ê)
14: return Ê
15: end function
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Fig. 2. Example approximations of the expectancy

C. Greedy Control Setting Algorithm

In addition to the approximation for the expectation of the
number of diagnoses, we need a faster method for searching
the space of possible control assignments (the brute-forceap-
proach considers2|CTL| control assignments). We will assume
that the control literals are independent, flip them one at a
time, and accept the new control assignment if it decreases the
expected number of remaining MC diagnoses. The approach
is shown in Alg. 2, which computes a control assignment for
a given active testing system and a prior observation. The
above algorithm computes a control assignment minimizing
the expected intersection size, given an active testing system
and an initial observation (and control assignment). The set of
initial diagnoses is computed from the initial observationin
line 2. In line 5, Alg. 2 “flips” the next literal in the current
control assignment. The auxiliary FLIPL ITERAL subroutine
simply changes the sign of a specified literal in a term. After
each “flip” the expected intersection size is computed with
a call to EXPECTATION (cf. Alg. 1). If the new expected



Algorithm 2 Optimal next control input
1: function CONTROL(ATS, α) returns a control term

inputs: ATS, active testing system
α, term, initial observation

local variables: γ, γ′, terms, control configurations
E, E′, reals, expectations
D, set of terms, diagnoses
l, literal, control literal

2: D ← Ω≤(SD, α)
3: E ← EXPECTATION(ATS, γ, D)
4: for all l ∈ γ do
5: γ′ ← FLIPL ITERAL(γ, l)
6: E′ ← EXPECTATION(ATS, γ′, D)
7: if E′ < E then
8: γ ← γ′

9: E ← E′

10: end if
11: end for
12: return γ
13: end function

intersection size is smaller than the current one, then the
proposed control assignment is accepted as the current control
assignment and the search continues from there.

The advantage of the greedy approach is that the number of
computations of expected number of diagnoses is linear of the
number of literals in the control assignment. This is done at
the price of some optimality (i.e., the effect of combinations
of controls is neglected). It is straightforward to turn Alg. 2
into a full heuristic search.

VII. E XPERIMENTAL RESULTS

Next we discuss an implementation of FRACTAL.

A. Experimental Framework for Active Testing

We have implemented a FRACTAL experimental frame-
work. The idea is to (1) inject a random fault and then to
(2) simulate a manifestation of this fault. Given this initial
manifestation we invoke the active testing algorithm for (3)
computing an optimal next control setting. After a control
setting is generated, the simulator generates (4) another man-
ifestation of the same fault. This allows FRACTAL to (5)
refine the set of diagnoses by intersecting them (cf. Def. 7).
Steps 3, 4, and 5 are repeated until some termination criterion
is satisfied (e.g., the set of diagnoses remains a singleton6).
Algorithm 3 uses the same auxiliary functions RANDOM IN-
PUTS and INFEROUTPUTS as in Sec. VI-B. The subroutine
RANDOMCONTROLS is similar to RANDOM INPUTS except
that it generates assignments to the variables inCTL instead
of the ones inOBS. Similarly, RANDOMFAULT generates a
random assignment to the assumable variables inCOMPS.

6In this case the remaining diagnosis must be the one injectedin the
beginning of the process (ω∗), which verifies the design and implementation
of our algorithms.

Algorithm 3 Active testing algorithm
1: function ACTIVETEST(ATS) returns a sequence

inputs: ATS, active testing system
local variables: ω, term, injected diagnosis

D, set of terms, diagnoses
αi, βi, γi, (1 ≤ i ≤ k), terms

2: ω ← RANDOMFAULT (ATS)
3: α0 ← RANDOM INPUTS(SD, IN)
4: γ0 ← RANDOMCONTROLS(SD, CTL)
5: β0 ← INFEROUTPUTS(SD, OUT, α0 ∧ γ0, ω)
6: D ← Ω≤(SD, α0 ∧ β0 ∧ γ0)
7: k ← 1
8: repeat
9: αk ← RANDOM INPUTS(SD, IN)

10: γk ← CONTROL(SD, αk−1 ∧ βk−1 ∧ γk−1)
11: βk ← INFEROUTPUTS(SD, OUT, αk ∧ γk, ω)
12: D ← Ω∩(D, αk ∧ βk ∧ γk)
13: k ← k + 1
14: until TERMINATE(D)
15: return 〈α1 ∧ β1 ∧ γ1, . . . , αk ∧ βk ∧ γk〉
16: end function

Algorithm 3 maintains a set of remaining diagnoses in
D which are iteratively refined in line 12. The algorithm
terminates when a suitable termination criterion (checkedby
the TERMINATE function) is satisfied. In our implementation
TERMINATE returns success when there is only one remaining
diagnosis inD or when the lastn iterations (wheren is a small
constant) leave the size ofD unchanged. Note that depending
on the observability of the model (the contents ofOBS), it
may never happen thatD is reduced to a single diagnosis.

B. Implementation Notes and Test Set Description

We have implemented FRACTAL in approximately1 500
lines of C code (excluding minimal-diagnosis code and con-
sistency checking) and it is a part of the LYDIA package.7

Traditionally, MBD algorithms have been tested on diag-
nostic models of digital circuits like the ones included in
the ISCAS85 benchmark suite [10]. As models derived from
the ISCAS85 circuits are computationally intensive (from a
diagnostic perspective), we have also considered four medium-
sized circuits from the74XXX family [11].
All time measurements in this paper are performed on a host
with 1.86 GHz Pentium M CPU and 2 Gb of RAM.

C. Performance and Optimality of Active Testing

In this experiment we compare the results of FRACTAL to
a setting where all inputs are non-modifiable and the initial
observation is repeated at every step of the sequence (cf.
Sec. V). Obviously, in the latter case, the initial number of
diagnoses can not be reduced any further. The result is shown
in the second column of Table III.

7LYDIA is downloadable fromhttp://fdir.org/lydia/.



Name Description |OBS| |COMPS| V C

74182 4-bit CLA 14 19 47 75

74L85 4-bit comparator 14 33 77 118

74283 4-bit adder 14 36 81 122

74181 4-bit ALU 22 65 144 228

c432 27-channel int. 43 160 356 514

c499 32-bit SEC 73 202 445 714

c880 8-bit ALU 86 383 826 1 112

c1355 32-bit SEC 73 546 1 133 1 610

c1908 16-bit SEC/DEC 58 880 1 793 2 378

TABLE II
AN OVERVIEW OF THE74XXX/ISCAS85 CIRCUITS (V DENOTES THE

TOTAL NUMBER OF VARIABLES AND C IS THE NUMBER OF CLAUSES)

Name Ω
≤

Ω
∩ |S| T [s]

74182 4 2 4 0.6

74L85 8 2 5 2.2

74283 5 3 4 1.5

74181 10 1 2 0.3

c432 10 1 2 20.6

c499 4 4 4 27.6

c880 39 8 4 443.6

c1355 5 4 4 104.1

TABLE III
COMPARISON OF NUMBER OF DIAGNOSES WITH PERSISTENTα TO ACTIVE

TESTING (|CTL| = |IN|)

The third column of Table III shows the remaining number of
diagnoses after|S| steps (column4 of Table III). Finally, the
rightmost column of Table III gives the time (in seconds) for
computing the remaining number of diagnosesΩ∩.

The results show that we can achieve a25−90 % reduction
in the number of diagnoses in1 − 8 steps. For these exper-
iments we have set the termination criterion of Alg. 3 to3
iterations without changing the number of remaining diagnoses
and the precision for Alg. 1 is0.25. The number of samples
for Alg. 1 is 25.

D. Minimal Expected Intersection Size

In the experiment that follows we will experiment with
computing the expected number of minimal diagnoses with
an initial observation only (as opposed to a longer sequence
of observations and controls). The result (shown in Table IV)
gives an indication on the effect of the control variables on
the expected number of remaining diagnoses.

We have seeded our experiments with arbitrary double
faults (or single faults for circuits larger than c1355 for
faster initial MC computation). The number of initial MC
diagnoses is shown in the second column of Table IV. Al-
though theISCAS85/74XXX benchmark is not designed for
active testing, we have “abused” it by changing a fraction
c = |CTL|/(|CTL|+ |IN|) of the inputs to controls.
The above experiment shows that a small number of controls
(c = 0.25) is sufficient for reducing the diagnostic uncertainty.

Name |Ω≤| c = 0.25 c = 0.5 c = 0.75 c = 1

74182 4 3.26 2.36 2.25 2

74L85 8 4.41 4.29 3.63 3

74283 5 3.17 2.25 2.2 2.2

74181 10 6.09 5.28 5.18 3.8

c432 10 3.08 2.93 2.55 2.4

c499 4 4 4 4 4

c880 39 21.68 16.44 15.97 12.23

c1355 5 4.06 3.4 3.4 3.4

TABLE IV
M INIMAL EXPECTED ENTROPYÊ FOR VARYING CONTROLLABILITY

(c = |CTL|/(|CTL| + |IN|))

VIII. C ONCLUSION

We have described a framework and an algorithm for
active testing, called FRACTAL. The algorithm consists of
a sampling-based method for approximating the entropy and a
greedy method for searching the next optimal control setting.

We have implemented the algorithm and experimented on a
range of combinational benchmarks. Experiments show that
controlling a small fraction of the inputs can reduce the
diagnostic uncertainty while minimizing the diagnostic cost.

We argue that active testing can be of broad practical signif-
icance, as it can reduce diagnostic uncertainty in situations in
which MBD alone is not capable of determining exact cause
of failure.

As a future work we plan to bound the error of the
randomized algorithms and to perform more experiments on
additional set of models and observation vectors. We also plan
to study the problems complexity and to improve and assess
the performance of our implementations.
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