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Abstract—Due to model uncertainty and/or limited observ- In such cases, the only thing that can be done is to actively
ability, the number of possible diagnoses or the associated control (a subset of) inputs, executing a part of the exgstin
probability mass distribution may be unacceptable as the bsis system functionality (e.g., invoking built-in test capiékgs, or

for important decision-making. In this paper we present a nev - . . .
algorithmic approach, called FRACTAL (FRamework for ACtiv e otherwise), the associated observations being used toefurt

Testing ALgorithms), which, given an initial diagnosis, canputes narrow down the diagnostic solution space.
the shortest sequence of additional test vectors that miniines Under no constraints, this would mean applying a test vector

diagnost_icl ST‘UOPY; T?:ng;)roachl complements prolr)]ing anclj on all inputs such as in sequential diagnosis (and ATPG)
sequential diagnosis , applying to systems where on . .

additional tests can be performed by using a subset of the esting where ?‘ sgquence of tests_ is applied to target a fault._ In
system inputs while observing the existing outputs (calletiactive ~Many situations, however, this would too much interferehwit

Testing”). Our algorithm generates test vectors using a mypic, the system and its environment. Usually, there is a subset of
next-best test vector strategy, using a low-cost approxim@n of inputs, called control inputs, that can be manipulated by a
gii%rr;?sgf;?goi)r?)a(t;(()/?sgrxgggctgmgtzji:?aeti(grr]\?alSc??cﬁi?é Ehe:vﬁhc;rt] diagnostic engine to execute tests. This approach is coined
diagnostic certainty can be significantly increased, even ken ‘_‘actlv_e testing”. Loosely speaking, an_a_c_tlve testing [I}mb
only a fraction of inputs are available for active testing. is: given a system model and an initial observation and
diagnosis, to compute the set of input test vectors that will
. INTRODUCTION minimize diagnostic ambiguity with the least number of test
Model-Based Diagnosis (MBD) [1] is an area of abductiveectors.
inference that uses a system model, together with obsen&ti |n this paper we present a framework, called FRACTAL
about system behavior to isolate sets of faulty componenfRamework for ACtive Testing ALgorithms), in which we
(diagnoses) that explain the observed behavior. One of figfine active testing and present algorithms to solve theeact

advantages of MBD over related approaches (e.g., simalatigesting problem. Our contributions are as follows:
based) is that MBD can cope with arbitrary degree of uncer-

tainty in the system model and in the observation. In thedatt
case MBD computeall or an approximation to all diagnoses.
The number of diagnoses can be large, exponential of the’
number of components in the worst-case.

This ambiguity (uncertainty) of the diagnostic result pose
a typical problem to MBD. Due to modeling uncertainty (e.g., °
weakness due to ignorance of abnormal behavior or need for
robustness) and limited number of observations (sensor-le .
systems, limited observation horizons), the failure plolitg - We study the performan(_:e of our algorlthm on the
mass is distributed over multiple diagnoses. This highrinfo T4XXX/ISCAS85 combinational benchmark suite.
mation entropy of the diagnostic result makes it difficuttém To the best of our knowledge, this is the first approach to
operator or a reconfiguration (planning) component to decidefining and solving the active testing problem, generaliz-
with sufficient certainty. ing over sequential diagnosis and ATPG. Furthermore our

Given a set of plausible diagnoses, in certain situatiorss omethod is based on MBD which is beneficial in that very
can devise additional tests that narrow down the ambiguiittle assumptions about the model and the observations are
(reduces the set of diagnoses). When measurements canmdogiired. Our results show that controlling a small fractio
made this is a good way to do that [1]. However, in mangf the inputs can reduce the number of remaining diagnoses
circumstances there are no provisions for sensing additiomt a small diagnostic cost whereas a reduction of entropy
variables (e.g., a satellite that cannot be physicallyhredr. would be impossible for a passive approach. Our method is

« We define the active testing problem and describe various
instances of the problem;

We define diagnostic ambiguity in terms of information
entropy and propose a low-cost estimation amenable to
active testing;

We define a stochastic, myopic strategy to solving the
active testing problem and outline an algorithm to solve
the active testing problem;



also computationally efficient as it uses a stochastic agpro « A stochastic algorithm for efficiently estimating the num-
and is relevant to practice as it can be effectively used to ber of different observations and resulting diagnoses.
disambiguate faults in complex autonomous systems.

This paper is organized as follows. The section that comes IIl. TECHNICAL BACKGROUND
next introduces some basic MBD notions. Section IV presentsour discussion starts by adopting the relevant MBD notions
the problem of sequential MBD and the important concept].
of remaining number of diagnoses. Section V introduces acentral to MBD, amodelof an artifact is represented as
framework for active testing. What follows is a section dey propositionalWff over a set of variables. We will discern

scribing algorithms for active testing. Section VIl implents  three subsets of these variablessumableobservablé and
the algorithms and cites some experimental results. Kim&# control variables. This gives us our initial definition:

summarize our work and discuss future work. o ) _ ) _ )
Definition 1 (Diagnostic System)A diagnostic systenDS is

Il. RELATED WORK defined as the tripl®S = (SD, COMPS, OBS), whereSD is
a propositional theory over a set of variabléesCOMPS C V,

The problem of sequential diagnosis has received consi{ggs C V, COMPS is the set of assumables, aB®BS is the
erable attention in the literature. Our notion of activetites get of observables.

is related to that of Pattipati et al. [2], [3], except that we )

compute diagnoses rather than caching all diagnoses inlta fiproughout this paper we assume txsS N COMPS = 0,
dictionary, we assume all tests have identical costs, and @@dSD [~L. Furthermore, to avoid handling inconsistencies,
assume all faults are equally likely, a priori. In additian tWe restrictSD to models for whichSD A o =L for any
that, whereas the test matrix in sequential diagnosis isl fixdP0Ssibly partial) assignment to the variables irOBS.

we allow part of the inputs to be supplied by the environme[&t
in every step of the diagnostic process, which makes our
framework more suitable for online fault isolation. We will use the Boolean circuit shown in Fig. 1 as a running

Note that our task is harder than that of [3], since the§xample for illustrating all notions and the algorithm simow
do diagnosis lookup using a fault dictionary, and still sho# this paper. The2-to-4 line demultiplexer consists of four
that the sequential diagnosis task is NP-hard; in our case ®@olean inverters and four and-gates.
compute a new diagnosis after every test. Hence we have an
NP-hard sequential problem interleaved with the compjexit
of diagnostic inference at each step.

The framework proposed by Pattipati et al. has been ex-
tended to amND/OR-tree technique that is optimal [4]. We
note that optimal test sequencing is infeasible for the eize
problems in which we are interested.

Rish et al. [5], [6] define a similar framework, but cast their
models in terms of Bayesian networks. Our notion of entropy
is the size of the diagnosis space, whereas Rish et al. use he
decision-theoretic notions of entropy to guide test salact

The diagnosis framework that we propose is submodular, ; 03
in the terms described in [7], i.e., the informativenessests 7
exhibits diminishing returns the more tests that we do. In
future work we plan to compare our stochastic algorithms he X
to the randomized algorithms that have been developed for
submodular functions.

In comparison to all of this work, the main contributions of Fig. 1. A demultiplexer circuit

our paper are: _ _ _
« A model-based framework for combining multiple-fault;rhe ex_prgssprh :>d 510 & i) mto_delstan an?rter,dV\;]herEh
and sequential diagnosis and the introduction of reasoﬂ-e varab'les;, o, andh represent input, output, and hea

ing with respect to modifiable/non-modifiable observablt speptwe'ly. $|m|larly, an and-gate 'S modeled s =
variables: o< i1 Nia Aig). The above propositional formulae are

« A characterization of diagnostic entropy in terms of thgopied for each gate in Fig. 1 and their variables subsafipte
size of the diagnosis space; and renamed in such a way as to ensure a proper disambigua-

. approximating the size of the diagnosis space in terms%?n and to connect the circuit. The result is the following

the number of different observations;

A Running Example
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2In the MBD literature the assumable variables are also nedeto as
“component”, “failure-mode”, or “health” variables. Obgable variables are
1In our case the complexity of diagnostic inferenceé&-hard. also called “measurable” variables.



propositional model: SD A a2 and counting these MC diagnoses is a common

roblem in MBD.
[h = (@& —p)] A [ = (p & )] P

[hs = (b Q)] A[hs = (¢ & —5)] Definition 5 (Number of Minimal-Cardinality Diagnoses)
D — hs = (01 © i ApAq) The number of MC diagnoses of a systdnt given an
) he=> (02 iATAQ) observationa over some variables ifOBS is denoted as
h7 = (03 < i ApAs) |Q=(SD, a)|, whereQ2=(SD, a) is the set of all MC diagnoses
hs = (04 & i AT AS) of SD A ..

The assumable variables af©MPS = {h1, ho,...,hs} and It is easy to compute the number of MC diagnosis for the
the observables ar®@BS = {a,b,i,01,02,03,04}. Note the Circuitin Fig. 1:]Q=(SD, a1)| = 1 and|Q=(SD, az)| = 6.
conventional selection of the sign of the “health” variable V. S b
hi,ho, ..., h,. Other authors use “ab” for abnormal. - SEQUENTIAL DIAGNOSIS
Typically, due to uncertainty in the model (e.g., ignorance

B. Diagnosis of abnormal behavior) and in the observation vectors (plarti

The traditional query in MBD computes terms of assumabfbservability), there is more than one MC diagnosis. To cedu

variables which are explanations for the system descrigtid  this uncertainty and to pinpoint thexact cause of failure,
an observation. diagnosticians often combine a sequence of diagnosticrexpe

iments, where, whenever possible, appropriate input vecto
Definition 2 (Diagnosis) Given a systenDS, an observation are supplied, generatirtgststhat optimally reducé)|. If this
o over some variables i®BS, and an assignment to all process of successive application of MBD in time includes
variables inCOMPS, w is a diagnosis iffSD Aa Aw £L. dynamic reconfiguration of the system under test, then we cal

We denote the set of all diagnoses of a mofiBl and an the procesgctive testing

observationa as (SD, a) and the number of all diagnosespefinition 6 (Diagnostic SequencelGiven a systenDS, a
as [2(SD, a)|. Continuing our running example, consider agiagnostic sequenc§ is defined as &-tuple of termsS =
observation vector; = —a A —b A i A os. There are a total (o, as,...,a;), wherea; (1 < i < k) is an instantiation of
of 256 possible assignments to all variablesG®OMPS and the variables inOBS.

|Q(SD, a1)| = 200. Example diagnoses ate, = hy A ha A ) ) i )
. Ahs A—hg andws = —hy A by A hs A =hy A hs A hg A The cost of a dlagnosth sequence, denotefiSasis defined
hw Ahs. We will write sometimes a diagnosis in a set notatiorS the number of terms ifi (respectively the number of MBD

specifying the set of negative literals only. Thus would be €XPeriments performed by a diagnostician). _
represented aBy = {~hy, ~hy}. An important assumption throughout this paper is that the

As it is typical for underconstrained models to have marfjgalth of the system under test does not change during the tes
diagnoses (exponential to the number of components in thé- intermittent faults are outside the scope of thiglg}u

worst case, as in the above, weak, example model), we Wilksumption 1 (Non-Intermittence) Given an systenDS, an
impose (partial) ordering on the diagnoses and will considgctyal health state for its components., and a diagnostic
only diagnoses which satisfy some minimality criterion.  sequences, we assume that, € Q(SD, o;) for 1 < i < |S].

Definition 3 (Cardinality of a Diagnosis)The cardinality of a ¢ js intuitive that for non-intermittent systems, the diag-
diagnosis, denoted s, is defined as the number of negativgician can combine the results from different applicatidn o
literals inw. MBD to reduce the diagnostic uncertainty.

According to Def. 3, we havgo,| = 1 and |ws| = 2. Next, | emma 1. Given a systenDS, a health state for its compo-
let us focus on the diagnoses of minimal cardinality. nentsw, and a diagnostic sequenc® it follows that

Definition 4 (Minimal-Cardinality Diagnosis) A diagnosis 15|
w< is defined as Minimal-Cardinality (MC) if no diagnosis we ﬂ Q(SD, o)
&< exists such thato<| < |w=|. =1

Other authors use different minimality criteria such assetb Proof: The above statement follows immediately from the
minimality diagnoses, probability-minimal diagnosesyried non-intermittence assumption and Def. 2. [ ]
diagnoses (in a slightly different diagnostic framewonsfc. The problem with Lemma 1 is that it holds only &l
[8]. Our selection of minimality criterion is such that it e® diagnoses of a model and an observation are considered. If
not characterize all diagnoses but is often seen in pradtiee we compute minimal-diagnoses in a weak-fault model, for
to the prohibitive cost of computing a characterizing set @xample (cf. [8]), the intersection operator has to be rede-
diagnoses. fined to handle subsumptions. The problem with intersecting
Consider an observation vectos = ~aA—-bAiA—01 Aoy. diagnostic sets worsens if we consider non-characterieitsg
There are6 MC diagnoses of cardinalitg consistent with of diagnoses (e.g., MC diagnoses or firstdiagnoses). To



solve this issue we will provide our own consistency-basdturthermore, although this is not strictly necessary, velren
intersection operator. convenient, we will be splitting the set of observab{@BS
into inputsIN and outputsOUT (OBS = IN U OUT,IN N
OUT = (). Hence, from now on, the observables from the
preceding sections will be split into “modifiable” inputsr (o
controls)CTL, “non-modifiable” inputdN and outputOUT.
For the assignments to the inputs, outputs, and controls we
will conventionally use (subscripted and superscriptecnvh
necessaryy, 3, and~, respectively.

Note the distinction between observation terms and control
The intersection operatd?™ (D, «) refines the set of prior terms. In a typical diagnostic scenario, the observatiomge

Definition 7 (Consistency-Based Intersectioiven a system
descriptionSD, an initial observationc, a (possibly non-

characterizing) set of diagnosésof SD A «, and a posteriori
observationc/, the intersection ofD with the diagnoses
of SD A o, denoted asQ)"'(D, '), is defined as the set
D’ (D' C D) such that for eachv € D’ it holds that

SDAQ ANw L.

diagnosedD, leaving only diagnoses supported by both obsefai, o, . . ., a;) are determined by “nature”, while the control
vations. It is straightforward to generalize the above dtidim terms €1, 2, ..., ) are set by the diagnostician.
to a diagnostic sequence Next, let us consider a diagnostic sequeScehose terms

- - - . lit int trol d -modifiable) input§ (=
Definition 8 (Remaining Minimal-Cardinality Diagnoses) ?;? /\Sgll o::fyjon rooi in%»(n?nnsrsghI;asez)ué?,ﬁ; ani-

Given a diagnostic systedS and a diagnostic sequence e S -
L . . , agnostician would attempt to minimize the set of the renmagjni
S, the set of remaining diagnosé€®’ is defined as?® = g P

diagnose€)® by supplying “optimal”y; (1 < i < k) terms.
noON(...0NO< :

Q- QUQ2(SD, an), ), ), ). Ideally, there would be exactly one remaining diagnasisat

It is clear that if we consider the firgtterms of a sequencg the end of the sequence. In general, however, there may be
(forming a subsequenc#’), the size of the set of remainingmore, depending on the model and observability.

diagnose$QS’| decreases monotonically when increasing Problem 1 (Optimal Control Input) Given a system\TS, and

S/ . . .
N(_)te that we usQQ_ | ms_tead of the more precise diag, SequUeNnced — (a1 A i, as,. .., ax), Wherea; (1< i < k)
nostic entropy as defined in [1] and subsequent works. (lerFeOBS assignments ang, is aCTT assignment, compute a

particular, if all diagnoses of a model and an observa\tiqﬂimmal sequence of'TL assignmentsy i, such that
are of minimal-cardinality and the failure probability ofieh CLQS| is minimized o
p

component is the same, then the gain in the diagnostic entr

can be directly computed frong°|. Problem 1 usesy; because our problem is different from
sequential ATPG in the sense that we don’t compute tests for
V. AN ACTIVE TESTING FRAMEWORK specific target diagnosis, (in which case there is no need

Note that in our MBD use of sequential diagnosis, th&® h_ave an initial cont_ro’ry _and_ ob_servatiom). In the active
observation terms are always determined by “natdrdt is  testing problem, the situation is different: we target aeglth
often the case, though, that there are inputs (in MBD inp§tate, so initial observation and control are required.
and outputs are normally not distinguished and they are both" this paper we will avoid making assumptions on the val-
considered as observables) which are not only measurable $S of the observable terms, as, . ..., ;.. For experimenting
also modifiable. We will call these inputentrolsand we will With active testing algorithms these can be computed from
see that computing values for these control variables can §&dom inputs and the propagation of the injected faultr&he

improve the optimality of the diagnostic process. is one special case, however, which is worth distinguishing
a1 = ap = --- = ay, (consider, e.g., a system under test which
A. Optimal Control supplies constant observation because it is stationanggul

Extending the diagnostic system from Def. 1 and separatiR§"ding an abort or reconfiguration, etc.).

the contrqllable frgm non-controllable observations giv&s Problem 2 (Optimal Control Input for a Persistent Input)
the following definition: Given an active testing systeiiTS, and a sequencs =

Definition 9 (Active Testing System)An active testing system (@ Am,a,....a), where|S| =k, « is anOBS assignments
ATS is defined as the-tuple ATS = (SD, COMPS, CTL, and~; is aCTL assignment, compute aSmlmmaI sequence of
OBS), where SD is a propositional theory over a set ofC 1L @ssignmentss, ..., v, such thafQ2”| is minimized.
variablesV, COMPS C vV, CTL C V, OBS C V', COMPS In practice, a diagnostician does not know what the next
is the set of assumableSTL is the set of controls, an@BS  observation will be. Fully solving an active testing prahle
is the set of observables. would necessitate the conceptual generation of a tree With a
3 . . o . possible observations and associated control assignnrents
Note, that in our presentation “sequential diagnosis” isdum the MBD d h h h it
context, which is slightly different from its original prestation, but still orderto c OC_)SG the sequence that, Qn average' constiates t
compatible. Normally, sequential diagnosis is the art ofifig optimal test shortest (optimal) path over all possible assignments.
sequences where typically all inputs are controllable, aigre “nature” The sequential diagnosis problem studies optimal trees
is only in charge of computing the outputs. In our case, byture&l we h h . iated with h 9 h
understand the environment (consider the case in whichytera description when there Is a cost associated wit eac- FeSt. [ ] When
is embedded within a copier that is paused). costs are equal, it can be shown that the optimization pnoble



reduces to a next best control problem (assuming one uses VI. AN ALGORITHM FORACTIVE TESTING

information entropy). In this paper a diagnostician who is | this section we will consider algorithms for solving the
given a diagnostic sessiofi and who tries to compute theaciive testing problem. We start with a description of aveai
next optimal control assignment would try to minimize theyact, table-based method. The memory and time requirement
expected number of remaining diagnoges|. of this exact method are prohibitive, hence the bulk of this
B. Expected Intersection Size section proposes a more efficient, randomized algorithm.

Clearly, |27 is the goal function to be minimized (apartA. Prohibitive Complexity of Exhaustive Search
frpm k). Next, we will compute the .expected number of Consider our running example with an initial observation
dlagn%sesth( a_l_s;at k(J)f obsgrvablc(ej vr?namasf(M gd_OBS). vector (and control assignmentl A vs — a A b Ad A og A
Note that the initial observatiom and the set of MC |agnosesﬁ02/\ﬁ03/\ﬁo4, where~s — i is chosen as the initial control

D = Q5(SD,a) modify the proba_bility glensity function input. The four MC diagnoses dfD A as A 43 are Dy —
(pdf) of subsequent outpdtgobservations), i.e., a subsequen{ﬁh1 ~hs}, Dy = {~ha, ~hs}, Ds = {~ha, =hs}, and Dg =
observationa’ changes its a priori likelihood. The (non—{ﬁh;ﬁhg}’ ’ e ’ '

normalized) a posteriori probability of an observatigngiven ’ '

o o An exhaustive algorithm would compute the expected num-
an MC operator and an initial observatianis:

ber of diagnoses for each of t“TLl next possible control
Prio/1SD. o) — |Q7(Q=(SD, a), )| 1 assignments. In our running example we have one control
fa’[SD, ) = @) variablei and two possible control assignments & ¢ and

[Q=(SD, o)
e . . = —4). To compute the expected number of diagnoses,
The above formula comes by quantifying how a given a pno?orsr each possible control assignmentind for each possible

set of diagnoses restricts the possible outputs (i.e., ke da . -
" . L . bservation vectory, we have to count the number of initial
probability the ratio of the number of remaining diagnoses t,. . . ;
diagnoses which are consistent with .

the number of initial diagnoses). Note that, in practicer¢h . . ) . .
g ) P e Computing the intersection sizes for our running example

are manya for which Pro/|SD,«) = 0 because a certain . .
fault heavily restricts the possible outputs of a system.,(i. gives us Table 1. Note that, in order to save space, Table |
ntains rows for those: A v only, for which P(a A ) #

the set of the remaining diagnoses in the nominator is emptg? given the initial diagnosesD De (and, as a result
3 = 6 ’ ’

The expected number of remaining MC diagnoses for(?”(QS(SD a5 As),a Ay) £ 0). It is straightforward to

variable setM, given an initial diagnosisy, is then the .
weighted average of the intersection sizes of all possib'?gmpute th_e expected num.ber of o_llag.nos.es for any control as-
instantiations over the variables i (the weight is the S|gnmentW|th the helplofth|s marglne}hzatmn_table. Inentb
probability of an output): dc_) this we have to (1_) filter out those lines which are constste
with the control assignment and (2) compute the sum and
Z |Q7(D, )| - Pr(a/|SD, «) the sum of the squares of the intersection sizes (the rigttmo

< _ oeM* column of Table I). To computd?(SD, OBS|as A —i), for
E=(SD, M|a) = (2) -
Z Pr(o/|SD, ) example, we have to find the sum and the sum of the squares
e of the intersection sizes of all rows in Table | for which

< . .. columni is F. It can be checked thd(SD, OBS|as, i) =
where D = Q=(SD,a) and M* is the set of all possible o, 15 _ 1 5 similarly, £(SD, OBS|asAi) = 34/16 = 2.125.
a_ss'g_”me”t FO the variables M ReP"'ﬁ‘C_'”g (1) in (2) and Hence an optimal diagnostician would consider a second
simplifying gives us the following definition: measurement with control setting= i

Definition 10 (Expected Minimal-Cardinality Diagnoses In- The obvious problem with the above brute-force approach
tersection Size) Given a systemATS and an initial obser- is that the size of the marginalization table is, in the worst
vation o, the expected remaining number of MC diagnosese, exponential ifnOBS|. Although many of the rows in

E<(SD, OBS|a) is defined as: the marginalization table can be skipped as the intersestio
A o are empty (there are no consistent prior diagnoses with the
Z [©(2>(SD, a), o) respective observation vector and control assignmen®, th
E<(SD, OBS|a) = 2€28% construction of this table is computationally so demanding
Z |Q7(Q=(SD, a), )| that we will consider an approximation algorithm (to constr
a’/€OBS* Table 1 for our tiny example, the exhaustive approach had to

where OBS* is the set of all possible assignment to alPerform a total of512 consistency checks).

variables inOBS. B. Approximation of the Expectation

In what follows we will compute the expected number of Our algorithm for active testing consists of (1) a randorize
remaining MC diagnoses. algorithm for approximating the expected number of remain-

4 _ _ _ ing diagnoses and (2) a greedy algorithm for searching the
In MBD there is no problem not discerning outputs from obables, £ | . Wi . di it wi
“assigning values” to outputs, etc. We leave it to the reslddiscretion to space of control assignments. We continue our discussiom wi

disambiguate these from the context. approximating the expectation.



‘ Pr ‘ Q7] ‘ Algorithm 1 Approximate expectation

S
Q
[
Q
N
Q
39

[ o (o

FIF|F|F|F|F|F ] 003125 1 1: function EXPECTATION(ATS, v, D) returns a real
F|F|F|T|F |F |F |00625 2 inputs: ATS, active testing system
F|F|F|T|F |F | T]|O003125 1 ~, term, system configuration
FIlF T F F FF|003125 ) 1 D, set of diagnoses, prior diagnoses
E]’: g $ $ g E]’: E, 8‘83%35 f local variables: «, 8, w, terms
FIlT|FIFI|F|F|F|o003125| 1 s, an integer, intersection size
F|T|F|T|F |F |F |0.0625 2 S, a set of terms, samples
F|T|F | T |F |F|T) 0032 1 E, a real, expectation
F|T|T|F |F |F |F|0.03125 1 ) S0
F|T|T|T|F |F|F |00625 | 2 2 -
F|T|T|T|F |F |T]|O0.03125 1 3 repeat
TIFIF|FI|F |F|T]| 00625 9 4: a — RANDOMINPUTS(SD, IN)
T|F|F|F |F |T|F |003125| 1 5: forall w e D do
T|F|F|F |T|F |F | 003125 1 6: B «— INFEROUTPUTSSD, OUT, o A 7, w)
T|F|T|F |T|F|F|0.03125 1 7: if « S¢S then
R P I s = 5u{ans)
T|T|F|F|F|T|F|o003125 | 1 o s — [(D, a A B A7)
T|T|F|T|F |F |F|003125 | 1 10 E—s%/s
T|T|F|T|T|F | T]|O0.0625 2 11: end if
T, T | T | T |F |F |F | 0125 4 12: end for

TABLE | 13: until TERMINATE(E)

MARGINALIZATION TABLE FOR SD AND a3 14: return E
15: end function
The key insight which allows us to build a faster method 4 oas2 s i

for computing the expected number of remaining diagnoses
2.8

is that the prior observation (and respectively a set of MC 35 ‘
diagnoses) shifts the probability of the outputs. Hence, an J\'\/\N\/\‘M w26

algorithm which samples the possible input assignments (it 3 9

is safe to assume that inputs are equally likely) and counts '

the number ofdifferent observations given the set of prior 2 T e a0 20 10 7 s a0
diagnoses would produce a good approximation. Algorithm 1 step step

uses a couple of auxiliary functionsARDOMINPUTS assigns
random values to all outputs andlHEROUTPUTS computes
all outputs from the system model, all inputs and a diagfAosis
The computation of the intersection sige”(D,a A B A7) ¢ Greedy Control Setting Algorithm
can be implemented in a straightforward manner. It is enough - T )
to count thoses € D for which SD A aw A BA Y Aw L. In add|t|oq to the approximation for the expectation of thg

It can be seen that the value of the expected number mber of diagnoses, we need a faster method for searching

diagnose$ approaches the exact valiewhen increasing the the space Of_ pos“s(gt%lﬁ control ass!gnments (the brgte-tmee
number of sampless|. In particular, E is the exact number proach considers control assignments). We will assume

of the expected number of diagnoses when all possible inrﬁn?t thedcontrol Ilaerals are mdlepen_dent, fllp_ft_h(ejm O:;Eat a
values are considered (in the latter case Alg. 1 simply buil me, and accetr:tt e;new gontrol\/?cs:sgnmentl |tTr?cre st h
the marginalization table for a given control assignment SXPEcted number of remaining lagnoses. The approac

Figure 2 shows two examples & approachingZ for two is shown in Alg. 2, which computes a control assignment for
bigger models (cf. Sec. VII) a given active testing system and a prior observation. The

The algorithm terminates when a suitable termination KGdte above algorithm computes a control assignment minimizing

. . e the expected intersection size, given an active testin S
(checked by the ERMINATE function) is satisfied. In our pect . 9 . sy
. i and an initial observation (and control assignment). Thete
implementation ERMINATE returns success when the last . .. = . : o .
: i . - initial diagnoses is computed from the initial observation
iterations (wheren is a small constant) leavE unchanged. . . e : .
line 2. In line 5, Alg. 2 “flips” the next literal in the current
control assignment. The auxiliaryLPLITERAL subroutine
This is not always possible in the general case. In our frasmiewwe simply changes the sign of a specified literal in a term. After
have a number of assumptions, i.e., a weak-fault model-faeatied circuit, h “flin” th di . . . d with
etc. The complexity of NFEROUTPUT varies on the framework and the eac Ip” the expected intersection size Is computed wit

assumptions. a call to EXPECTATION (cf. Alg. 1). If the new expected

Fig. 2. Example approximations of the expectancy



Algorithm 2 Optimal next control input Algorithm 3 Active testing algorithm

1: function CONTROL(ATS, o) returns a control term 1: function ACTIVETEST(ATS) returns a sequence
inputs: ATS, active testing system inputs: ATS, active testing system
«, term, initial observation local variables: w, term, injected diagnosis
local variables: v,~’, terms, control configurations D, set of terms, diagnoses
E, E’', reals, expectations ai, Biy i, (1 < i < k), terms
D, set of terms, diagnoses 2: w — RANDOMFAULT (ATS)
1, literal, control literal 3: o — RANDOMINPUTS(SD, IN)
22 D+ Q5(SD,q) 4. 49 < RANDOMCONTROLS(SD, CTL)
3: E — EXPECTATION(ATS, v, D) 5: Bo < INFEROUTPUTSSD, OUT, ag A 70, w)
4: for all 1 € v do 6: D «— Q=(SD,ap A Bo A o)
5: ~" < FLIPLITERAL(%,1) 7: E—1
6: E’' — EXPECTATION(ATS,+’, D) 8: repeat
7 if £/ < E then o: ap — RANDOMINPUTS(SD, IN)
8: R4 10: vk — CONTROL(SD, ajp—1 A Br—1 A Yk—1)
o: E—F 11 B — INFEROUTPUTSSD, OUT, a; A Y, w)
10: end if 12: D — Q(D,ax A Br ANk)
11 end for 13: k—k+1
12: return ~y 14: until TERMINATE(D)
13: end function 15: return (a1 A B A1,y ap A B A k)

: end function

=
o]

intersection size is smaller than the current one, then the

proposed control assignment is accepted as the currembtont Algorithm 3 maintains a set of remaining diagnoses in

assignment and the search continues from there. D which are iteratively refined in line 12. The algorithm
The advantage of the greedy approach is that the numbetexininates when a suitable termination criterion (chedkgd

computations of expected number of diagnoses is lineareof ttihe TERMINATE function) is satisfied. In our implementation

number of literals in the control assignment. This is done @ERMINATE returns success when there is only one remaining

the price of some optimality (i.e., the effect of combinago diagnosis inD or when the last: iterations (where is a small

of controls is neglected). It is straightforward to turn Ay constant) leave the size @ unchanged. Note that depending

into a full heuristic search. on the observability of the model (the contents@BS), it

may never happen thd? is reduced to a single diagnosis.
VII. EXPERIMENTAL RESULTS

Next we discuss an implementation of FRACTAL. B. Implementation Notes and Test Set Description

We have implemented FRACTAL in approximately500
lines of C code (excluding minimal-diagnosis code and con-
We have implemented a FRACTAL experimental framesistency checking) and it is a part of theA packagé.
work. The idea is to (1) inject a random fault and then to Traditionally, MBD algorithms have been tested on diag-
(2) simulate a manifestation of this fault. Given this ialti nostic models of digital circuits like the ones included in
manifestation we invoke the active testing algorithm foy (3he ISCAS85 benchmark suite [10]. As models derived from
computing an optimal next control setting. After a contrahe ISCASS5 circuits are computationally intensive (from a
setting is generated, the simulator generates (4) anoth&F Mdiagnostic perspective), we have also considered fourumedi
ifestation of the same fault. This allows FRACTAL to (Skized circuits from the4XXX family [11].
refine the set of diagnoses by intersecting them (cf. Def. 7l time measurements in this paper are performed on a host
Steps 3, 4, and 5 are repeated until some termination cniteriyith 1.86 GHz Pentium M CPU and 2 Gb of RAM.
is satisfied (e.g., the set of diagnoses remains a singleton
Algorithm 3 uses the same auxiliary function®®OMIN-  C. Performance and Optimality of Active Testing
PUTs and INFEROUTPUTS as in Sec. VI-B. The subroutine
RANDOMCONTROLS is similar to RANDOMINPUTS except
that it generates assignments to the variable€TiL instead
of the ones inOBS. Similarly, RANDOMFAULT generates a
random assignment to the assumable variableSGMPS.

A. Experimental Framework for Active Testing

In this experiment we compare the results of FRACTAL to
a setting where all inputs are non-modifiable and the initial
observation is repeated at every step of the sequence (cf.
Sec. V). Obviously, in the latter case, the initial number of
diagnoses can not be reduced any further. The result is shown
6In this case the remaining diagnosis must be the one injettethe in the second column of Table IlI.

beginning of the processu(), which verifies the design and implementation
of our algorithms. “LyDIA is downloadable fronht t p: //fdir.org/lydial.



| Name | Description [ |oBs|[|jcomps||  v| (] | Name | [Q5] [ c=025 | c=05]c=075 | c=1]
74182 4-bit CLA 14 19 47| 7 74182 4 3.26 2.36 2.25 2
74L.85| 4-bit comparato 14 33 77| 118 74L85 8 4.41 4.29 3.63 3
74283| 4-bit adder 14 36| 81| 122 74283 5 3.17 2.25 22| 22
74181 4-bit ALU 22 65| 144| 228 74181 | 10 6.09 5.28 518 | 38
c432 |27-channel int. | 43 160| 356| 514 c432 10 3.08 2.93 255 | 24
499 | 32-bit SEC 73 202| 445 714 499 4 4 4 4 4
880 | 8-bit ALU 86 383| 826|1112 c880 39 21.68 | 16.44 15.97 | 12.23
¢1355 | 32-bit SEC 73 546 | 1133|1610 c1355 5 4.06 3.4 34| 34
c1908| 16-bit SEC/DEQ 58 880 | 1793|2378 TABLE IV

TABLE Il MINIMAL EXPECTED ENTROPY FE/ FOR VARYING CONTROLLABILITY

AN OVERVIEW OF THE 74XXX/ISCAS85 CIRCUITS(V DENOTES THE (¢ = |CTL|/(|CTL]| + |IN|))

TOTAL NUMBER OF VARIABLES AND C' IS THE NUMBER OF CLAUSEY

| Name [ Q= [ " [ |s| | T[s] ] VIII. CONCLUSION
74182 4 92 4 0.6 We have described a framework and an algorithm for
74185 8 2 5 2.2 active testing, called FRACTAL. The algorithm consists of
74283 5 3 4 1.5 a sampling-based method for approximating the entropy and a
74181 10| 1] 2| 03 greedy method for searching the next optimal control sgttin
€432 10 1 2| 206 We have implemented the algorithm and experimented on a
ngg 3;1 g 241 42;-2 range of combinational benchmarks. Experiments show that
¢ ) : - :
1355 5 1 4| 1001 controlling a small fraction of the inputs can reduce the

diagnostic uncertainty while minimizing the diagnosticsto

We argue that active testing can be of broad practical signif
icance, as it can reduce diagnostic uncertainty in sitnatio
which MBD alone is not capable of determining exact cause
of failure.

As a future work we plan to bound the error of the
The third column of Table Il shows the remaining number dgndomized algorithms and to perform more experiments on
diagnoses aftefS| steps (columnt of Table Ill). Finally, the additional set of models and observation vectors. We akso pl
rightmost column of Table 11l gives the time (in seconds) folo study the problems complexity and to improve and assess

TABLE Il
COMPARISON OF NUMBER OF DIAGNOSES WITH PERSISTENT TO ACTIVE
TESTING(|CTL| = |IN])

computing the remaining number of diagnos$Es

The results show that we can achiev2ba- 90 % reduction
in the number of diagnoses in— 8 steps. For these exper-
iments we have set the termination criterion of Alg. 33to
iterations without changing the number of remaining diagpso [2]
and the precision for Alg. 1 i6.25. The number of samples
for Alg. 1 is 25.

(1]

(3]

D. Minimal Expected Intersection Size
. . . 14
In the experiment that follows we will experiment with

computing the expected number of minimal diagnoses with
an initial observation only (as opposed to a longer sequen
of observations and controls). The result (shown in Table 1V[e]
gives an indication on the effect of the control variables on
the expected number of remaining diagnoses. [
We have seeded our experiments with arbitrary double
faults (or single faults for circuits larger than c¢1355 forl8l
faster initial MC computation). The number of initial MC [9]
diagnoses is shown in the second column of Table IV. Al-
though theISCAS85/74XXX benchmark is not designed forl10]
active testing, we have “abused” it by changing a fraction
¢ = |CTL|/(JCTL| + |IN]) of the inputs to controls. 11
The above experiment shows that a small number of controls
(c = 0.25) is sufficient for reducing the diagnostic uncertainty.

the performance of our implementations.
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