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Abstract

We propose a StochAstic Fault diagnosis AlgoRIthm, called Safari, which trades off
guarantees of computing minimal diagnoses for computational efficiency. We empirically
demonstrate, using the 74XXX and ISCAS85 suites of benchmark combinatorial circuits,
that Safari achieves several orders-of-magnitude speedup over two well-known determinis-
tic algorithms, CDA∗ and HA∗, for multiple-fault diagnoses; further, Safari can compute
a range of multiple-fault diagnoses that CDA∗ and HA∗ cannot. We also prove that Sa-
fari is optimal for a range of propositional fault models, such as the widely-used weak-fault
models (models with ignorance of abnormal behavior), and strong-fault circuit models with
stuck-at failure modes. We formally characterize this important subclass of strong-fault
models with its set of subset-minimality diagnoses. By modeling the algorithm itself as a
Markov chain, we provide exact bounds on the minimality of the diagnosis computed. Sa-
fari also displays strong anytime behavior, and will return a diagnosis after any non-trivial
inference time.

1. Introduction

Model-Based Diagnosis (MBD) is an area of abductive or model-based inference in which
a system model is used, together with observations about system behavior, to isolate sets
of faulty components (diagnoses) that explain the observed behavior. The standard MBD
formalization (Reiter, 1987) frames a diagnostic problem in terms of a set of logical clauses
that include mode-variables describing the nominal and fault status of system components;
from this the diagnostic status of the system can be computed given an observation (OBS)
of the system’s sensors. MBD provides a sound and complete approach to enumerating
multiple-fault diagnoses, and exact algorithms can guarantee finding a diagnosis optimal
with respect to the number of faulty components, probabilistic likelihood, etc.

However, the biggest challenge (and impediment to industrial deployment) is the com-
putational complexity of the MBD problem. The MBD problem of isolating multiple-fault
diagnoses is known to be ΣP

1 -complete (Bylander, Allemang, Tanner, & Josephson, 1991).
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Since almost all proposed MBD algorithms have been complete and exact (with some au-
thors proposing possible trade-offs between completeness and faster consistency checking
by employing methods such as BCP (Williams & Ragno, 2007)), the complexity problem
remains a major challenge to MBD.

To overcome this complexity problem, we propose a novel approximation approach for
multiple-fault diagnosis, based on stochastic algorithms. Safari (StochAstic Fault diag-
nosis AlgoRIthm) sacrifices guarantees of optimality, but for diagnostic systems in which
faults are described in terms of an arbitrary deviation from nominal behavior Safari can
compute diagnoses several orders of magnitude faster than competing algorithms.

2. Related Work

We first compare Safari to “standard” MBD algorithms, and then to related algorithms.

On a gross level, one can classify the types of algorithms that have been applied to solve
MBD as being based on search or compilation. The search algorithms take as input the di-
agnostic model and an observation, and then search for a diagnosis, which may be minimal
with respect to some minimality criterion. Examples of search algorithms include A∗-based
algorithms, such as CDA∗ (Williams & Ragno, 2007) and hitting set algorithms (Reiter,
1987). Compilation algorithms pre-process the diagnostic model into a form that is more
efficient for on-line diagnostic inference. Examples of such algorithms include the ATMS
(de Kleer, 1986) and other prime-implicant methods (Kean & Tsiknis, 1993), DNNF (Dar-
wiche, 1998), and OBDD (Bryant, 1992). To our knowledge, all of these approaches adopt
exact methods to compute diagnoses; in contrast, Safari adopts a stochastic approach to
computing diagnoses.

On the surface, Safari bears some resemblance to SAT local search algorithms; how-
ever, it is actually closer to optimization and abduction algorithms, since Safari solves an
optimization problem, and its result depends on an input (OBS), whereas SAT (and its
variants like #-SAT and MAXSAT) has no such dependence on an input.

Stochastic algorithms have been discussed in the framework of constraint satisfaction
(Freuder, Dechter, Ginsberg, Selman, & Tsang, 1995) and Bayesian network inference (Kask
& Dechter, 1999). The latter two approaches can be used for solving suitably translated
MBD problems. It is often the case, though, that these encodings are more difficult for
search than specialized ones.

MBD is an instance of constraint optimization, with particular constraints over failure
variables, as we will describe. MBD has developed algorithms to exploit these domain prop-
erties, and our proposed approach differs significantly with almost all MBD algorithms that
appear in the literature. While most advanced MBD algorithms make use of preferences,
e.g., fault-mode probabilities, to improve search efficiency, the algorithms themselves are
deterministic, and use the preferences to identify the most-preferred solutions. This con-
trasts with stochastic SAT algorithms, which rather than backtracking may randomly flip
variable assignments to determine a satisfying assignment.

The most closely-related diagnostic approach is that of Vatan et al. (Vatan, Barrett,
James, Williams, & Mackey, 2003), who map the diagnosis problem into the monotone
SAT problem, and then propose to use efficient SAT algorithms for computing diagnoses.
The approach of Vatan et al. has shown speedups in comparison with other diagnosis
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algorithms; the main drawback is the number of extra variables and clauses that must be
added in the SAT encoding, which is even more significant for strong fault models and
multi-valued variables. In contrast, our approach works directly on the given diagnosis
model and requires no conversion to another representation.

Our work bears the closest resemblance to preference-based or Cost-Based Abduction
(CBA) (Charniak & Shimony, 1994; Santos Jr., 1994). Of the algorithmic work in this
area, the primary paper that adopts stochastic local search is (Abdelbar, Gheita, & Amer,
2006). In this paper, Abdelbar et al. present a hybrid two-stage method that is based on
Iterated Local Search (ILS) and Repetitive Simulated Annealing (RSA). The ILS stage of
the algorithm uses a simple hill-climbing method (randomly flipping assumables) for the
local search phase, and tabu search for the perturbation phase. RSA repeatedly applies
Simulated Annealing (SA), starting each time from a random initial state. The hybrid
method initially starts from an arbitrary state, or a greedily-chosen state. It then applies
the ILS algorithm; if this algorithm fails to find the optimal solution after a fixed number
τ of hill-climbing steps1 or after a fixed number R of repetitions of the perturbation-local
search cycle,2 ILS-based search is terminated and the RSA algorithm is run until the optimal
solution is found.

Our work differs from that of (Abdelbar et al., 2006) in several ways. First, our initial
state is generated using a random SAT solution. The hill-climbing phase that we use next is
similar to that of (Abdelbar et al., 2006); however, we randomly restart should hill-climbing
not identify a “better” diagnosis, rather than applying tabu-search or simulated annealing.
Our approach is simpler than that of (Abdelbar et al., 2006), and for the case of weak fault
models is guaranteed to be optimal; in future work we plan to compare our approach to
that of (Abdelbar et al., 2006) for strong fault models.

3. Technical Background

Our discussion continues by formalizing some MBD notions. This paper uses the traditional
diagnostic definitions (de Kleer & Williams, 1987), except that we use propositional logic
terms (conjunctions of literals) instead of sets of failing components.

Central to MBD, a model of an artifact is represented as a propositional Wff over some
set of variables. Discerning two subsets of these variables as assumable and observable3

variables gives us a diagnostic system.

Definition 1 (Diagnostic System). A diagnostic system DS is defined as the triple DS =
〈SD,COMPS,OBS〉, where SD is a propositional theory over a set of variables V , COMPS ⊆
V , OBS ⊆ V , COMPS is the set of assumables, and OBS is the set of observables.

1. Hill-climbing proceeds as follows: given a current state s with a cost of f(s), a neighbouring state s′

is generated by flipping a randomly chosen assumable hypothesis. If f(s′) is better than f(s), then s′

becomes the current state; otherwise, it is discarded. If τ iterations elapse without a change in the
current state, the local search exits.

2. Perturbation-local search, starting from a current state s with a cost of f(s), randomly chooses an
assumable variable h, and applies tabu-search to identify a better state by flipping h based on its tabu
status.

3. In the MBD literature the assumable variables are also referred to as “component”, “failure-mode”, or
“health” variables. Observable variables are also called “measurable”, or “control” variables.
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Throughout this paper we will assume that OBS ∩ COMPS = ∅, SD 6|=⊥, and for any
instantiation α of the variables in OBS, α 6|=⊥. Not all propositional theories used as system
descriptions are of interest to MBD. Diagnostic systems can be characterized by a restricted
set of models, the restriction making the problem of computing diagnosis amenable to
algorithms like the one presented in this paper. We consider two main classes of models.

Definition 2 (Weak-Fault Model). A diagnostic system DS = 〈SD,COMPS,OBS〉 belongs
to the class WFM iff SD is in the form (h1 ⇒ F1)∧ . . .∧ (hn ⇒ Fn) such that 1 ≤ i, j ≤ n,
{hi} ⊆ COMPS, Fj ∈Wff , and none of hi appears in Fj .

Note the conventional selection of the sign of the “health” variables h1, h2, . . . hn. Alter-
natively, negative literals, e.g., f1, f2, . . . fn can be used to express faults, in which case a
weak-fault model is in the form (¬f1 ⇒ F1)∧ . . .∧ (¬fn ⇒ Fn). Other authors use “ab” for
abnormal or “ok” for healthy.

Weak-fault models are sometimes referred to as models with ignorance of abnormal
behavior (de Kleer, Mackworth, & Reiter, 1992), or implicit fault systems. Alternatively,
a model may specify faulty behavior for its components. In the following definition, with
the aim of simplifying the formalism throughout this paper, we adopt a slightly restrictive
representation of faults, allowing only a single fault-mode per assumable variable. This can
be easily generalized by introducing multi-valued logic or suitable encodings (Hoos, 1999).

Definition 3 (Strong-Fault Model). A diagnostic system DS = 〈SD,COMPS,OBS〉 be-
longs to the class SFM iff SD is in the form (h1 ⇒ F1,1) ∧ (¬h1 ⇒ F1,2) ∧ . . . ∧ (hn ⇒
Fn,1) ∧ (¬hn ⇒ Fn,2) such that 1 ≤ i, j ≤ n, k ∈ {1, 2}, {hi} ⊆ COMPS, F{j,k} ∈Wff , and
none of hi appears in Fj,k.

3.1 A Running Example

We will use the Boolean circuit shown in Fig. 1 as a running example for illustrating all
the notions and algorithms in this paper. The subtractor, shown there, consists of seven
components: an inverter, two or-gates, two xor-gates, and two and-gates. The expression
h⇒ (o⇔ ¬i) models the normative (healthy) behavior of an inverter, where the variables i,
o, and h represent input, output and health respectively. Similarly, an and-gate is modeled
as h ⇒ (o⇔ i1 ∧ i2) and an or-gate by h ⇒ (o⇔ i1 ∨ i2). Finally, an xor-gate is specified
as h⇒ [o⇔ ¬ (i1 ⇔ i2)].

The above propositional formulae are copied for each gate in Fig. 1 and their variables
renamed in such a way as to properly connect the circuit and disambiguate the assumables,
thus obtaining a propositional formula for the Boolean subtractor, given by:

SDw = {h1 ⇒ [i⇔ ¬ (y ⇔ p)]} ∧ {h2 ⇒ [d⇔ ¬ (x⇔ i)]} ∧ [h3 ⇒ (j ⇔ y ∨ p)]∧
∧ [h4 ⇒ (m⇔ l ∧ j)] ∧ [h5 ⇒ (b⇔ m ∨ k)] ∧ [h6 ⇒ (x⇔ ¬l)]∧
∧ [h7 ⇒ (k ⇔ y ∧ p)]

(1)

A strong-fault model for the Boolean circuit shown in Fig. 1 is constructed by assigning
fault-modes to the different gate types. We will assume that, when malfunctioning, the
output of an xor-gate has the value of one of its inputs, an or-gate can be stuck-at-one,
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Figure 1: A subtractor circuit

an and-gate can be stuck-at-zero, and an inverter behaves like a buffer. This gives us the
following strong-fault model formula for the Boolean subtractor circuit:

SDs = SDw ∧ [¬h1 ⇒ (i⇔ y)] ∧ [¬h2 ⇒ (d⇔ x)] ∧ (¬h3 ⇒ j)∧
∧ (¬h4 ⇒ ¬m) ∧ (¬h5 ⇒ b) ∧ [¬h6 ⇒ (x⇔ l)] ∧ (¬h7 ⇒ ¬k)

(2)

For both models (SDs and SDw), the set of assumable variables is COMPS = {h1, h2, . . . , h7}
and the set of observable variables is OBS = {x, y, p, d, b}.

3.2 Diagnosis and Minimal Diagnosis

The traditional query in MBD computes terms of assumable variables which are explana-
tions for the system description and an observation.

Definition 4 (Health Assignment). Given a diagnostic system DS = 〈SD,COMPS,OBS〉,
an assignment HA to all variables in COMPS is defined as a health assignment.

A health assignment HA is a conjunction of propositional literals. In some cases it is
convenient to use the set of negative or positive literals in HA. These two sets are denoted
as Lit−(HA) and Lit+(HA), respectively.

In our example, the “all nominal” assignment is HA1 = h1 ∧ h2 ∧ . . . ∧ h7. The health
assignment HA2 = h1∧h2∧h3∧¬h4∧h5∧h6∧¬h7 means that the two and-gates from Fig. 1
are malfunctioning. What follows is a formal definition of consistency-based diagnosis.

Definition 5 (Diagnosis). Given a diagnostic system DS = 〈SD,COMPS,OBS〉, an ob-
servation α over some variables in OBS, and a health assignment ω, ω is a diagnosis iff
SD ∧ α ∧ ω 6|=⊥.

Traditionally, other authors (de Kleer & Williams, 1987) arrive at minimal diagnosis by
computing a minimal hitting set of the minimal conflicts (broadly, minimal health assign-
ments incompatible with the system description and the observation), while this paper
makes no use of conflicts, hence the equivalent direct definition above.

There is a total of 96 possible diagnoses given SDw and an observation α1 = x∧ y ∧ p∧
b ∧ ¬d. Example diagnoses are ω1 = ¬h1 ∧ h2 ∧ . . . ∧ h7 and ω2 = h1 ∧ ¬h2 ∧ h3 ∧ . . . ∧ h7.
Trivially, given a weak-fault model, the “all faulty” health assignment (in our example
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HA3 = {¬h1 ∧ . . . ∧¬h7}) is a diagnosis for any instantiation of the observable variables in
OBS (cf. Def. 2).

In the analysis of our algorithm we need the opposite notion of diagnosis, i.e., health
assignments inconsistent with a model and an observation. In the MBD literature these
assignments are usually called conflicts. Conflicts, however, do not necessarily instantiate
all variables in COMPS. As in this paper we always use full health instantiations, the use
of the term conflict is avoided to prevent confusion.

Definition 6 (Inconsistent Health Assignment). Given a system DS = 〈SD,COMPS,OBS〉,
an observation α over some variables in OBS, and a health assignment ω̄, ω̄ is an Inconsistent
Health Assignment (IHA) iff SD ∧ α ∧ ω̄ |=⊥.

In the MBD literature, a range of types of “preferred” diagnosis has been proposed. This
turns the MBD problem into an optimization problem. In the following definition we
consider the common subset-ordering.

Definition 7 (Minimal Diagnosis). A diagnosis ω⊆ is defined as minimal, if no diagnosis
ω̃⊆ exists such that Lit−(ω̃⊆) ⊂ Lit−(ω⊆).

For the weak-fault model SDw of the circuit shown in Fig. 1 and an observation α2 =
¬x ∧ y ∧ p ∧ ¬b ∧ d there are 8 minimal and 61 non-minimal diagnoses. In this example,
two of the minimal diagnoses are ω⊆

3 = ¬h1 ∧ h2 ∧ h3 ∧ h4 ∧ ¬h5 ∧ h6 ∧ h7 and ω⊆
4 =

¬h1 ∧ h2 ∧ . . . ∧ h5 ∧ ¬h6 ∧ ¬h7. The diagnosis ω5 = ¬h1 ∧ ¬h2 ∧ h3 ∧ h4 ∧ ¬h5 ∧ h6 ∧ h7 is
non-minimal as the negative literals in ω⊆

3 form a subset of the negative literals in ω5.
Note that the set of all minimal diagnoses characterizes all diagnoses for a weak-fault

model, but that does not hold in general for strong-fault models (de Kleer et al., 1992).
In the latter case, faulty components may “exonerate” each other, resulting in a health
assignment containing a proper superset of the negative literals of another diagnosis not to
be a diagnosis. In our example, given SDs and α3 = ¬x ∧ ¬y ∧ ¬p ∧ b ∧ ¬d, it follows that
ω⊆

6 = h1 ∧ h2 ∧ ¬h3 ∧ h4 ∧ . . . ∧ h7 is a diagnosis, but HA7 = h1 ∧ h2 ∧ ¬h3 ∧ ¬h4 ∧ . . . ∧ h7

is not a diagnosis, despite the fact that the negative literals in HA7 form a superset of the
negative literals in ω6.

Definition 8 (Cardinality of a Diagnosis). The cardinality of a diagnosis, denoted as |ω|,
is defined as the number of negative literals in ω.

Diagnosis cardinality gives us another partial ordering: a diagnosis is defined as minimal
cardinality iff it minimizes the number of negative literals.

Definition 9 (Minimal-Cardinality Diagnosis). A diagnosis ω≤ is defined as minimal-
cardinality if no diagnosis ω̃≤ exists such that |ω̃≤| < ω≤.

The cardinality of a minimal cardinality diagnosis computed from a system description
SD and an observation α is denoted as MinCard(SD∧α). For our example model SDw and
an observation α4 = x∧ y∧ p∧¬b ∧¬d , it follows that MinCard(SDw ∧α4) = 2. Note that
in this case all minimal diagnoses are also cardinality-minimal diagnoses.

A minimal cardinality diagnosis is a minimal diagnosis, but the opposite does not hold.
There are minimal diagnoses which are not minimal cardinality diagnoses. Consider the
example SDw and α2 given earlier in this section, and the two resulting minimal diagnoses
ω≤

3 and ω≤
4 . From these two, only ω≤

3 is a minimal cardinality diagnosis.
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4. Stochastic MBD Algorithm

In this section we discuss an algorithm for computing multiple-fault diagnoses using stochas-
tic search.

4.1 A Simple Example (Continued)

Consider the Boolean subtractor shown in Fig. 1, its weak-fault model SDw given by (1), and
the observation α4 from the preceding section. The four minimal diagnoses characterizing
SDw and α4 are: ω1 = ¬h1∧h2∧h3∧h4∧¬h5∧h6∧h7, ω2 = h1∧¬h2∧h3∧h4∧¬h5∧h6∧h7,
ω3 = ¬h1 ∧ h2 ∧ . . . ∧ h6 ∧ ¬h7, and ω4 = h1 ∧ ¬h2 ∧ h3 ∧ . . . ∧ h6 ∧ ¬h7.

A näıve deterministic algorithm would check the consistency of all the 2|COMPS| possi-
ble health assignments for a diagnostic problem, 128 in the case of our running example.
Furthermore, most deterministic algorithms first enumerate health assignments of small
cardinality but with high a priori probability, which renders these algorithms impractical in
situations when the minimal diagnosis is of a higher cardinality. Such performance is not
surprising even when using state-of-the art MBD algorithms which utilize, for example con-
flict learning, or partial compilation, considering the bad worst-case complexity of finding
all minimal diagnoses (cf. Sec. 5).

In what follows, we will show a two-step diagnostic process that requires fewer consis-
tency checks. The first step involves finding a random non-minimal diagnosis as a starting
point. The second step attempts to minimize the fault cardinality of this diagnosis by
repeated modification of the diagnosis.

The first step is to find one random, possibly non-minimal diagnosis of SDw ∧α4. Such
a diagnosis we can obtain from a classical DPLL solver after modifying it in two ways: (1)
not only determine if the instance is satisfiable but also extract the satisfying solution and
(2) find a random satisfiable solution every time the solver is invoked. Both modifications
are trivial, as DPLL solvers typically store their current variable assignments and it is easy
to choose a random variable and value when branching instead of deterministic ones. The
latter modification may possibly harm a DPLL variable or value selection heuristics, but
later in this paper we will see that this is of no concern for the type of problems we are
considering as diagnostic systems are typically underconstrained.

In the subtractor example we call the DPLL solver with SDw ∧ α4 as an input and we
consider the random solution (and obviously a diagnosis) ω5 = ¬h1 ∧ h2 ∧ ¬h3 ∧ h4 ∧ h5 ∧
¬h6∧¬h7 (|ω5| = 4). In the second step of our stochastic algorithm, we will try to minimize
ω5 by repetitively choosing a random negative literal, “flipping” its value to positive (thus
obtaining a candidate with a smaller number of faults), and calling the DPLL solver. If the
new candidate is a diagnosis, we will try to improve further this newly discovered diagnosis,
otherwise we will mark the attempt a “failure” and choose another negative literal. After
some constant number of “failures” (two in this example), we will terminate the search and
will store the best diagnosis discovered so far in the process.

After changing the sign of ¬h7 in ω5 we discover that the new health assignment is
not consistent with SDw ∧ α4, hence it is not a diagnosis and we discard it. Instead,
the algorithm attempts changing ¬h6 to h6 in ω5, this time successfully obtaining a new
diagnosis ω6 = ¬h1∧h2∧¬h3∧h4∧h5∧h6∧¬h7 of cardinality 3. Next the algorithm tries
to find a diagnosis of even smaller cardinality by randomly choosing ¬h1 and ¬h7 in ω6,
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respectively, and trying to change their sign, but both attempts return an inconsistency.
Hence the “climb” is aborted and ω6 is stored as the current best diagnosis.

Repeating the process from another random initial DPLL solution, gives us a new di-
agnosis ω7 = ¬h1 ∧ ¬h2 ∧ h3 ∧ ¬h4 ∧ h5 ∧ h6 ∧ ¬h7. Changing the sign of ¬h7, again, leads
to inconsistency, but the next two “flips” (of ¬h4 and ¬h2) lead to a double-fault diagnosis
ω8 = ¬h1 ∧ h2 ∧ . . . ∧ h6 ∧ ¬h7. The diagnosis ω8 can not be improved any further as it is
minimal. Hence the next two attempts to improve ω8 fail and ω8 is stored in the result.

This process is illustrated in Fig. 2, the search for ω6 is on the left and for ω8 on the right.
Gates which are shown in solid black are “suspected” as faulty when the health assignment
they participate in is tested for consistency, and inconsistent candidates are crossed-out.

Figure 2: An example of a stochastic diagnostic process

Let us consider the result. We have found two diagnoses: ω6 and ω8, where ω6 is not
a minimal diagnosis. This we have done at the price of 11 calls to a DPLL subroutine.
The suboptimal diagnosis ω6 is of value as its cardinality is near the one of a minimal
diagnosis. Hence we have demonstrated a way to find an approximation of all minimal
diagnoses, while drastically reducing the number of consistency checks in comparison to a
deterministic algorithm, sacrificing optimality. Next we will formalize our experience into
an algorithm, the behavior of which we will analyze extensively in the section that follows.

Diagnosing a strong-fault model is known to be strictly more difficult than a weak-fault
model (Friedrich, Gottlob, & Nejdl, 1990). In many diagnostic instances this problem is
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alleviated by the fact that there exist, although without a guarantee, continuities in the
diagnostic search space similar to the one in the weak-fault models. Let us discuss the
process of finding a minimal diagnosis of the subtractor’s strong-fault model SDs and the
observation α2 (both from Sec. 3.1).
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Figure 3: Diagnoses of a strong-fault model

The six distinct diagnoses ω9, . . . , ω14 of SDs and α2 are shown in Fig. 3. Of these only ω9

and ω10 are minimal such that |ω9| = |ω10| = 3. It is visible in Fig. 3 that in all diagnoses
component variables h2 and h5 are false, while h1 and h7 are true (healthy). Hence, any
satisfying assignment of SDs ∧ α2 would contain h1 ∧ ¬h2 ∧ ¬h5 ∧ h7. Starting from the
maximal-cardinality diagnosis ω14, we must “flip” the variables h3, h4, and h6 in order to
reach the two minimal diagnoses. The key insight is that, as shown in Fig. 3, this is always
possible by “flipping” a single literal at a time from health to faulty and receiving another
consistent assignment (diagnosis).

In what follows we will formalize our experience so far in a stochastic algorithm for
finding minimal diagnoses.

4.2 A Greedy Stochastic Algorithm

A number of utility functions are used in the pseudocode listed in this paper. The FlipNeg-
ativeLiteral subroutine takes a term as an argument and changes the sign of a random
negative literal. If there are no negative literals, the function returns the original argument.
Similarly, FlipPositiveLiteral changes the sign of a random positive literal. The imple-
mentation of RandomDiagnosis uses a modified DPLL solver returning a random SAT
solution of SD ∧ α.

Similar to deterministic methods for MBD, Safari uses a SAT-based procedure for
checking the consistency of SD∧α∧ω. Because SD∧α does not change during the search, the
incremental nature of the LTMS assumption checking (McAllester, 1990) greatly improves
the search efficiency. The implementation of Safari combines a BCP-based LTMS to check
for inconsistencies. If a candidate is consistent, a subsequent DPLL-based check is invoked
for completeness.

The randomized search process performed by Safari has two parameters, M and N .
There are N independent searches that start from randomly generated starting points. The
algorithm tries to improve the cardinality of the initial diagnoses (while preserving their
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consistency) by randomly “flipping” fault literals. The change of a sign of literal is done in
one direction only: from faulty to healthy.

Algorithm 1 Safari: A greedy stochastic hill climbing algorithm for approximating the
set of minimal diagnoses.

1: function HillClimb(DS, α,M,N) returns a trie

inputs: DS = 〈SD,COMPS,OBS〉, diagnostic system
α, term, observation
M , integer, climb restart limit
N , integer, number of tries

local variables: ρ, real, model weakness, 0 ≤ τ ≤ 1

2: n← 0
3: while n < N do
4: ω ← RandomDiagnosis(SD, α) ⊲ Get a random SAT solution.
5: m← 0
6: while m < M do
7: ω′ ← ImproveDiagnosis(ω, ρ) ⊲ Flip an “unflipped” health variable.
8: if SD ∧ α ∧ ω′ 6|=⊥ then ⊲ Consistency check.
9: ω ← ω′

10: m← 0
11: else
12: m← m + 1
13: end if
14: end while
15: unless IsSubsumed(R,ω) then
16: AddToTrie(R,ω)
17: RemoveSubsumed(R,ω)
18: end unless
19: n← n + 1
20: end while
21: return R
22: end function

Each attempt to find a minimal diagnosis terminates after M unsuccessful attempts to
“improve” the current diagnosis stored in ω. Thus, increasing M will lead to a better
exploitation of the search space and, possibly, to diagnoses of lower cardinality, while de-
creasing it will improve the overall speed of the algorithm.

There is no guarantee that two diagnostic searches, starting from random diagnoses,
would not lead to the same minimal diagnosis. To prevent this, we store the generated
diagnoses in a trie R (Forbus & de Kleer, 1993), from which it is straightforward to extract
the resulting diagnoses by recursively visiting its nodes. A diagnosis ω is added to the trie R
by the function AddToTrie, iff no subsuming diagnosis is contained in R (the IsSubsumed
subroutine checks on that condition). After adding a diagnosis ω to the resulting trie R, all
diagnoses contained in R and subsumed by ω are removed by a call to RemoveSubsumed.

10
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5. Computational Complexity

This section first examines the complexity of the tasks that we are addressing, namely
computing a single or all diagnoses with respect to a preference criterion. We then examine
the complexity of the Safari algorithm itself.

5.1 Complexity of Diagnostic Inference

This section discusses the complexity of the problems in which we are interested, namely
the problem of computing a single or the set of all minimal diagnoses, using two minimality
criteria, subset minimality (⊆) and cardinality (≤). We assume as input a CNF formula
defined over a variable set V , of which f = |COMPS| are assumable (or fault) variables.

By examining results for propositional abduction problems (PAPs) (Eiter & Gottlob,
1995), of which MBD is an instance, we will show that the worst-case complexity of com-
puting diagnoses in propositional models is intractable. Further, the worst-case complexity
of approximating diagnoses to within a fixed factor of optimal (e.g., to within a fixed factor
of the minimal-cardinality diagnosis) is also intractable.

Table 1 introduces the notation that we use to define these 4 types of diagnosis.

Table 1: Summary of definitions of types of diagnosis of interest

Symbol Diagnoses Preference Criterion

ω⊆ 1 ⊆ (subset-minimality)
ω≤ 1 ≤ (cardinality-minimality)
Ω⊆ all ⊆ (subset-minimality)
Ω≤ all ≤ (cardinality-minimality)

The diagnosis problems of interest have worst-case complexity at the second level of the
polynomial hierarchy. This can be shown by recognizing that MBD is an instance of a
PAP, the complexity of which has been studied by Eiter and Gottlob (Eiter & Gottlob,
1995). Eiter and Gottlob show that for a propositional PAP, the problem of determining
if a solution exists is ΣP

2 -complete. Computing a minimal diagnosis is a search problem,
and hence it is more difficult to pose a decision question for proving complexity results.
Consequently, one can just note that computing a diagnosis minimal with respect to ⊆ / ≤
requires O(|COMPS|) calls to an NP/ΣP

2 oracle respectively (Eiter & Gottlob, 1995).

The complexity of computing the set of all diagnoses is not easier than computing a single
diagnosis. This problem is bounded from below by the problem of counting the number
of diagnoses. This problem has been shown to be #co-NP-Complete (Hermann & Pichler,
2007). These results indicate that the MBD problems we are interested in, i.e., computing
the set of minimal-cardinality diagnoses over propositional models, are intractable.

If we restrict our clauses to be Horn or definite Horn, then we can reduce the complexity
of the problems that we are solving, at the expense of decreased model expressiveness. Recall
that restricting the clauses to be Horn means that we exclude any components with multiple
inputs or outputs. Hence for circuits we allow only inverters or buffers, for example.
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Under a Horn-clause restriction, for SD ∈WFM,SFM (weak or strong fault models),
computing a minimal (or cardinality-minimal) diagnosis is NP-complete (Bylander et al.,
1991; Friedrich et al., 1990). In the case of computing all solutions, the problems drop down
one level of the complexity hierarchy under the assumption of Horn clauses.

Safari approximates the intractable problems denoted in Table 1. We will show that for
WFM with a single diagnosis Safari can compute this optimal diagnosis. For SD ∈ SFM,
Safari generates a sound but possibly sub-optimal diagnosis (or set of diagnoses).

Results on abduction problems indicate that the task of approximate diagnosis is in-
tractable. Roth (Roth, 1996) has addressed the problems of abductive inference, and of ap-
proximating such inference. Roth focuses on counting the number of satisfying assignments
for a range of AI problems, including some instances of propositional abduction problems.
In addition, Roth shows that approximating the number of satisfying assignments for these
problems is intractable.

Abdelbar (Abdelbar, 2004) has studied the complexity of approximating Horn abduction
problems, showing that even for a particular Horn restriction of the propositional problem of
interest, the approximation problem is intractable. In particular, for an abduction problem
with costs assigned to the assumables (which can be used to model both the preference-
orderings ⊆,≤), he has examined the complexity of finding the Least Cost Proof (LCP) for
the evidence (OBS), where the cost of a proof is taken to be the sum of the costs of all
hypotheses that must be assumed in order to complete the proof. For this problem he has
shown that it is NP-hard to approximate an LCP within a fixed ratio r of the cost of an
optimal solution, for any r < 0.

These results indicate that it is intractable to approximate, within a fixed ratio, a
minimal diagnosis. In the following, we adopt a stochastic approach, and show that this
approach cannot provide fixed-ratio guarantees. However, Safari trades off optimality for
efficiency and can compute most diagnoses with high likelihood.

5.2 Complexity of Inference using Greedy Stochastic Search

This section defines the complexity of Safari, and its stochastic approach to computing
sound but incomplete diagnoses. We will show that the primary determinant of the inference
complexity is the consistency checking. Safari randomly computes a partial assignment
π, and then checks if π can be extended to create a satisfying assignment during each con-
sistency check, i.e., it checks the consistency of π with SD. This is solving the satisfiability
problem (SAT), which is NP-complete (Garey & Johnson, 1990). We will show how we can
use incomplete satisfiability checking to reduce this complexity, at the cost of completeness
guarantees.

5.2.1 WFM With No Observable Variable Restrictions

This section examines the general problem solved by Safari, where we place no restrictions
on observable values. In the following, we call Θ the complexity of a consistency check, and
assume that there are f components that can fail, i.e., f = |COMPS|.

Lemma 1. Given a diagnostic system DS = 〈SD,COMPS,OBS〉 with SD ∈ WFM, the
worst-case complexity of finding any minimal diagnosis is O(f2Θ), where Θ is the cost of a
consistency check.
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Proof. From Proposition 1 it follows that there is a an upper bound of f2 consistency checks
for finding a single minimal diagnosis, since at each step of the algorithm we must flip at
most f literals. The total complexity is hence O(f2Θ), since we perform a consistency check
after each flip.

In the case of BCP, we have the complexity as O(f2cn).

Lemma 2. Given a diagnostic system DS = 〈SD,COMPS,OBS〉 with SD ∈ WFM, the
worst-case complexity under WFM of finding any minimal diagnosis is O(f2cn) when using
BCP for consistency checks.

In most practical cases, however, we are interested in finding an approximation to all min-
imal diagnoses. As a result the complexity of the optimally configured Safari algorithm
becomes O(f2ξ), where ξ is the number of minimal diagnoses for the given observation.

5.2.2 Impact of Input/Output Restrictions

Consider the case where we have SD ∈ WFM. The complexity of inference of Safari
for computing all minimal diagnoses is O(f2ξ), where ξ is the total number of minimal
diagnoses. If we place no restriction on the number of diagnoses using observables, then
there is an exponential number of minimal diagnoses under ⊆.

Lemma 3. The number of diagnoses under WFM is O(2f ).

Proof. When SD ∈WFM, the worst-case number of diagnoses occurs when each diagnosis
is of size ⌈f2 ⌉. In this case, there are

( f

⌈ f

2
⌉

)

diagnoses, and hence we have O(2f ) possible

diagnoses.

However, if we assume that we partition the observables into two classes of observable
variable, input OBSI , which is assumed to be always “correct”, and output OBSO, which
is allowed to take on anomalous values, then we can significantly restrict the number of
allowable diagnoses. For q anomalous outputs there are at most nq minimal diagnoses.
Hence the complexity of finding all minimal diagnoses is polynomial in n, as is stated
formally below.

Theorem 1. Given a diagnostic system DS = 〈SD,COMPS,OBS〉 with SD ∈WFM and
a partition of OBS into input and output observables, the worst-case complexity of finding
all minimal diagnoses is O(f2nqΘ), where Θ is the cost of a consistency check.

This input/output distinction hence can make a big impact on the inference complexity
of MBD. The question is whether this is a reasonable assumption to make. For a wide range
of systems, such as circuits, process-control systems, and other mechanical systems, it is a
reasonable assumption, since we can make two assumptions: (a) causality (input to output
flows) can clearly be distinguished, and (b) one can assume that inputs are correct. If we
cannot assume that inputs are correct, then we can model the system in such a way that we
maintain the input/output distinction and can also diagnose anomalous input values. The
systems for which this distinction truly does not hold are those for which as assumption of
causality does not hold, which we might call non-causal systems.
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The number of assumable variables in a system of practical significance may exceed
thousands, rendering an optimally configured Safari computationally too expensive. In
the next section we will see that while it is more computationally efficient to configure
M < f , it is still possible to find a minimal diagnosis with high probability.

6. Optimality Analysis of Greedy Stochastic Search

One of the key factors in the success of the proposed algorithm is the exploitation of the
continuity of the search-space of diagnosis models, where by continuity we mean that we
can monotonically reduce the cardinality of a non-minimal diagnosis. This section shows
that our algorithm can be configured to guarantee finding a minimal diagnosis in weak
fault models in polynomial time (given a SAT oracle such as BCP). We also show that
Safari trades off optimality for speed or for more general diagnostic framework, such as
strong-fault models.

6.1 Optimality Guarantee for Minimal Diagnosis in Weak-Fault Models

The hypothesis which comes next is well studied in prior work (de Kleer et al., 1992) as
it determines the conditions in which minimal diagnoses represent all diagnoses of a model
and an observation. This paper is interested in the hypothesis from the computational
viewpoint: it defines a class of models for which it is possible to establish a theoretical
bound on the optimality and performance of Safari.

Hypothesis 1 (Minimal Diagnosis Hypothesis). Let DS = 〈SD,COMPS,OBS〉 be a diag-
nostic system and ω′ a diagnosis for an arbitrary observation α. The Minimal Diagnosis Hy-
pothesis (MDH) holds in DS iff for any health assignment ω such that Lit−(ω) ⊃ Lit−(ω′),
it holds that ω is also a diagnosis.

It is easy to show that MDH holds for all weak-fault models. There are other theories
SD 6∈WFM for which MDH holds (e.g., one can directly construct a theory as a conjunction
of terms for which MDH to hold). Unfortunately, no necessary condition is known for MDH
to hold in an arbitrary SD. The lemma which comes next is a direct consequence of MDH
and weak-fault models.

Lemma 4. Given a diagnostic system DS = 〈SD,COMPS,OBS〉, SD ∈ WFM, and a
diagnosis ω for some observation α, it follows that ω is non-minimal iff another diagnosis
ω′ can be obtained by changing the sign of exactly one negative literal in ω.

Proof (Sketch). From Def. 2 and SD ∈WFM, it follows that if ω is a minimal diagnosis,
any diagnosis ω′ obtained by flipping one positive literal in ω is also a diagnosis. Applying
the argument in the other direction gives us the above statement.

Our greedy algorithm starts with an initial diagnosis and then randomly flips faulty assum-
able variables. We now use the MDH property to show that, starting with a non-minimal
diagnosis ω, the greedy stochastic diagnosis algorithm can monotonically reduce the size of
the “seed” diagnosis to obtain a minimal diagnosis through appropriately flipping a fault
variable from faulty to healthy; if we view this flipping as search, then this search is con-
tinuous in the diagnosis space.
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Proposition 1. Given a diagnostic system DS = 〈SD,COMPS,OBS〉, an observation α,
and SD ∈WFM, the greedy stochastic algorithm can be configured to compute a minimal
diagnosis.

Proof. Let us configure Alg. 1 with M = |COMPS|. The diagnosis improvement loop starts,
in the worst case, from a health assignment ω which is a conjunction of negative literals only.
Necessarily, in this case, ω is a diagnosis as SD ∈WFM. A diagnosis ω′ that is subsumed
by ω would be found with at most M consistency checks (provided that ω′ exists) as M
is set to be equal to the number of literals in ω and there are no repetitions in randomly
choosing of which literal to flip next. If, after trying all the negative literals in ω, there is
no diagnosis, then from Lemma 4 it follows that ω is a minimal diagnosis.

Through a simple inductive argument, we can continue this process until we obtain a
minimal diagnosis.

From Proposition 1 it follows that there is a an upper bound of |COMPS|2 consistency
checks for finding a single minimal diagnosis. In most of the practical cases, however,
we are interested in finding an approximation to all minimal diagnoses. As a result the
complexity of the optimally configured Safari algorithm becomes O(|COMPS|2S), where
S is the number of minimal diagnoses for the given observation. The number of assumable
variables in a system of practical significance may exceed thousands, rendering an optimally
configured Safari computationally too expensive. In the next section we will see that while
it is more computationally efficient to configure M < |COMPS|, it is still possible to find a
minimal diagnosis with high probability. We now formalize this notion of flips, in order to
characterize when Safari will be able to compute a minimal diagnosis. We can define two
types of flips, which differ on what kind of literal we are flipping.

Definition 10 (Superset Flip Φ⇑). Given a diagnostic system DS = 〈SD,COMPSOBS〉
and a health assignment HA with a non-empty set of positive literals (Lit+(HA) 6= ∅), a
superset flip Φ⇑ turns one of the positive literals in HA to a negative literal, i.e., it creates
a health assignment HA′ with one more negative literal.

The converse type of flip is a subset flip:

Definition 11 (Subset Flip Φ⇓). Given a diagnostic system DS = 〈SD,COMPSOBS〉 and
a health assignment HA with a non-empty set of negative literals (Lit−(HA) 6= ∅), a subset
flip Φ⇑ turns one of the negative literals in HA to a positive literal, i.e., it creates a health
assignment HA′ with one more positive literal.

Safari operates by performing subset flips on non-minimal diagnoses, attempting to com-
pute minimal diagnoses. We now characterize flips as valid or invalid based on whether
they produce consistent models after the flip.

Definition 12 (Invalid Subset Flip). Given a diagnostic system DS = 〈SD,COMPS,OBS〉
and an observation α, the ordered pair X = 〈ω, l〉 is defined as an “invalid subset flip” iff ω
is a non-minimal diagnosis, l ∈ Lit−(ω), and SD ∧ α ∧ (ω ∨ l) ∧ l |=⊥.

We can define an invalid superset flip in an analogous fashion. What we are really interested
in are valid flips. We now define a “Valid Subset Flip”, and note that a “Valid Superset
Flip” has an analogous definition.
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Definition 13 (Valid Subset Flip). Given a diagnostic system DS = 〈SD,COMPS,OBS〉
an observation α, and a non-minimal diagnosis ω, a valid flip exists if we can perform a
subset flip in ω which is not an invalid subset flip.

Given these notions, we can now characterize continuity of the diagnosis search space for
weak fault models, as a corollary to Lemma 4. The proof of this corollary follows directly
from the Lemma and definitions of valid flips.

Corollary 1. Given a diagnostic system DS = 〈SD,COMPS,OBS〉, SD ∈ WFM, the
diagnosis space is continuous, in that the following hold:

• starting from a diagnosis with all negative literals, ∃ a sequence of valid subset flips
until we reach a minimal diagnosis;

• starting from a minimal diagnosis, there exists a sequence of valid superset flips until
we reach a diagnosis with all negative literals.

We can also characterize the guarantee of finding a minimal diagnosis with Safari in terms
of a continuous diagnosis space. Note that this is a sufficient, but not necessary, condition;
for example, we may configure Safari to flip multiple literals at a time to circumvent
problems of getting trapped in discontinuous diagnosis spaces.

Theorem 2. Given a diagnostic system DS = 〈SD,COMPS,OBS〉, and an starting di-
agnosis ω, Safari is guaranteed to compute a minimal diagnosis if the diagnosis space is
continuous.

Proof. Given an initial diagnosis ω, Safari attempts to compute a minimal diagnosis by
performing subset flips. If the diagnosis space is continuous, then we know that there exists
a sequence of valid flips leading to a minimal diagnosis. Hence Safari is guaranteed to find
a minimal diagnosis from ω.

6.2 Performance and Optimality Trade-Offs

In contrast to deterministic algorithms, in the Safari algorithm there is no absolute guar-
antee that the optimum solution (minimal diagnosis) is found. Below we will provide an
intuition behind the performance of the Safari algorithm by means of an approximate,
analytical model that estimates the probability of reaching a diagnostic solution of specific
minimality for weak-fault models. We will start by considering a single run of the algorithm
without retries where we will assume the existence of only one minimal diagnosis. Next,
we will extend the model by considering retries. Finally, we take into account the fact that
there usually is a large number of minimal diagnoses.

6.2.1 Basic Model

Consider a diagnostic system DS = 〈SD,COMPS,OBS〉 such that SD ∈ WFM and an
observation α such that α manifests only one minimal diagnosis ω. For the argument that
follows we will configure Safari with M = 1 and we will assume that the starting solution
is the trivial “all faulty” diagnosis.
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When Safari randomly chooses a faulty variable and flips it, we will be saying that it is
a “success” if the new candidate is a diagnosis and, a “failure” otherwise. Let k denote the
number of steps that the algorithm successfully traverses in the direction of the minimal
diagnosis of cardinality |ω|. Thus k also measures the number of variables whose values are
flipped from faulty to healthy in the process of climbing.

Let f(k) denote the pdf of k. In the following we derive the probability p(k) of suc-
cessfully making a transition from k to k + 1. A diagnosis at step k has k positive literals
and still |COMPS| − k negative literals. The probability of the next variable flip being
successful equals the probability that the next negative to positive flip out of the H − k
negative literals does not conflict with a negative literal belonging to a diagnosis solution
ω. Consequently, of the |ω| − k literals only COMPS| − |ω| − k literals are allowed to flip,
and therefore the success probability equals:

p (k) =
|COMPS| − |ω| − k

|COMPS| − k
= 1−

|ω|

|COMPS| − k
(3)

The search process can be modeled in terms of the Markov chain depicted in Fig. 4, where
k equals the state of the algorithm. Running into an inconsistency is modeled by the
transitions to the state denoted “fail”.

fail

p(0) p(1) p(i) p(n − 1)

1 − p(0) 1 − p(1) 1 − p(2) 1 − p(i + 1)

k = 0 k = 1 k = 2 k = i k = n

1

Figure 4: Model of a Safari run for M = 1 and a single diagnosis ω (n = |COMPS| − |ω|)

The probability of exactly attaining step k (and subsequently failing) is given by:

f(k) = (1− p(k + 1))

k
∏

i=0

p(i) (4)

After substituting (3) in (4) we receive the pdf of k:

f(k) =
|ω|

|COMPS| − k + 1

k
∏

i=0

[

1−
|ω|

|COMPS| − i

]

(5)

At the optimum goal state k = |COMPS| − |ω| the failure probability term in (5) is correct
as it equals unity.

If p were independent of k, f would be according to a geometric distribution, which
implies that chances of reaching the goal state k = |COMPS| − |ω| are slim. However,
the fact that p decreases with k moves probability mass to the tail of the distribution,
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which works in favor of reaching higher-k solutions. For instance, for single-fault solutions
(|ω| = 1) the distribution becomes uniform. Fig. 5 shows the pdf for problem instances
with |COMPS| = 100 for an increasing fault cardinality |ω|.
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Figure 5: Empirical (left) and analytic (right) f(k) for no retries and a single diagnosis

In the next section we show that retries will further move probability mass towards the
optimum, providing the increasing distribution tail, needed for (almost always) reaching
optimality.

6.2.2 Modeling Retries

In this section we extend the model to account for retries, which has a profound effect on
the resulting pdf of f . Again, consider the transition between step k and k + 1 where the
algorithm can spend up to m = 1, . . . ,M retries before bailing out. As can be seen by the
algorithm (cf. Alg. 1), when a variable flip produces an inconsistency a retry is executed
while m is incremented.

From elementary combinatorics we can compute the probability of having a diagnosis
after flipping any of M different negative literals at step k. Similar to (3), at stage k there
are |COMPS| − k faulty literals from which M are chosen (as variable “flips” leading to
inconsistency are recorded and not attempted again, there is no difference between choosing
in advance or one after another the M variables). The probability of advancing from stage
k to stage k + 1 becomes:

p′(k) = 1−

(|ω|
M

)

(|COMPS|−k
M

)
(6)

The progress of Safari can be modeled for values of M > 1 as a Markov chain, similar to
the one shown in Fig. 4 with the transition probability of p replaced by p′. The resulting
pdf of the number of successful steps becomes:

f ′(k) =

(|ω|
M

)

(|COMPS|−k+1
M

)

k
∏

i=0

[

1−

(|ω|
M

)

(|COMPS|−i
M

)

]

(7)
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It can be seen that (5) is a private case of (7) for M = 1.
The retry effect on the shape of the pdf is profound. Whereas for single-fault solutions

the shape for M = 0 is uniform, for M = 1 most of the probability mass is already located
at the optimum k = |COMPS| − |ω|. Fig. 6 plots f for a number of problem instances with
increasing M . As expected, the effect of M is extremely significant. Note that in case of
the real system, for M = |COMPS| the pdf would consist of a single, unit probability spike
at |COMPS| − |ω|.
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Figure 6: Empirical (left) and analytic (right) f ′(k) for multiple retries and a single diag-
nosis

Although the above transition model is not amenable to analytic treatment, the graphs
immediately shows that for large M the probability of moving to k = |COMPS| − |ω| is
very large indeed. Hence, we expect the pdf to have a considerable probability mass located
at k = |COMPS| − |ω|, depending on M relative to |COMPS|.

Thus far, we have only considered a single solution. In general, however, depending on
the observation, there are many minimal diagnoses, with all of them or a fraction being of
minimal cardinality. In what follows we will discuss how this fact influences the performance
model of Safari.
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6.2.3 Solution Multiplicity

In the preceding text of this section we have considered an observation leading to a single
minimal diagnosis. Although this is a desirable situation for real-world systems (diagnostic
results containing one minimal solution only maximize the diagnostic precision), it is often
the case that multiple minimal diagnoses exist due to uncertainty in the model or in the
observation. More solutions implies that the search success is prolonged due to the fact that
although a change of the sign of literal may lead to a failure for one particular diagnosis,
for other diagnoses the flip may prove consistent.

As the success criterion of the algorithm is the logical disjunction of the success criteria
per individual diagnosis solution, the number of successful flips k becomes the maximum of
the individual k outcomes per single diagnosis solution. Let ks denote the value k would
have reached in case of a single diagnosis s, s = 1, . . . , S. Then the value k will reach in
case of S non-overlapping diagnoses is simply:

k =
s=1
max

s
ks (8)

The effect of the multiplicity of the diagnostic solution space on the pdf of k is that the
resulting pdf is that of the highest order statistic (maximum) of the group of S independent,
identically distributed (iid) variates ks, each with a pdf f(k). Again, this implies another
shift of probability mass to the region of the optimal solution. Let g(k) denote the pdf of
the maximum of the ks with pdf f(k) as given by (7). Let G(k) and F (k) denote the cdf of
g and f , respectively. Since the cdf of the highest order statistic of S iid variates is given
by G(k) = F (k)S , it follows that

g(k) =
dF (k)S

dk
(9)

The left plot of Fig. 7 shows empirically g(k) for a number of previous synthetic problem
instances with increasing S while the right plot from the same figure compares the effect of
M and S on g(k).
Note that in the above derivation we have assumed the existence of a set of S non-
overlapping diagnoses. In reality, this assumption cannot be made. In practice, however,
the influence of this approximation is small, as from Fig. 7 it is readily seen that the order-
statistical influence of S on the shape of the pdf of k is far smaller than the effect of M .
As our analysis is aimed to provide a basic understanding into the workings of the Sa-
fari algorithm, we refrain from a more thorough investigation into the effect of solution
multiplicity.

6.2.4 Optimality of Safari in Strong-Fault Models

From the above analysis we have seen that in WFM it is easy, starting from a non-minimal
diagnosis, to reach a minimal diagnosis. As will be discussed in more detail below, this is not
necessarily the case for strong-fault models. In many practical cases, however, strong-fault
models exhibit, at least partially, behavior similar to MDH, thus allowing greedy algorithms
like Safari to achieve optimal or near-optimal results. In what follows we will restrict our
attention to a large subclass of SFM which is of great practical significance (Struss &
Dressler, 1992), SFSM.
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Figure 7: g(k) for various S (left) and comparison of the effects of M and S (right)

Definition 14 (Strong-Fault Stuck-At Model). A system DS = 〈SD,COMPS,OBS〉 be-
longs to the class SFSM iff SD is in the form (h1 ⇒ F1) ∧ (¬h1 ⇒ l1) ∧ · · · ∧ (hn ⇒
Fn) ∧ (¬hn ⇒ ln) such that 1 ≤ i, j ≤ n, {hi} ⊆ COMPS, Fj ∈Wff , none of hi appears in
Fj , and lj is a positive or negative literal in Fj .

Before we analyze the optimality of Safari with SFSM, we first illustrate the process of
computing minimal diagnoses with such a model by continuing the running example started
in Sec. 3.

A Simple Example (Continued) First, we will create a system description SDsa for a
SFSM model. Let SDsa = SDw ∧ SDf , where SDw is given by Equation (1). The second
part of SDsa, the strong fault description SDf , specifies that the output of a faulty gate
must be stuck-at-1:

SDf = (¬h1 ⇒ i) ∧ (¬h2 ⇒ d) ∧ (¬h3 ⇒ j) ∧ (¬h4 ⇒ m) ∧ (¬h5 ⇒ b)∧
∧ (¬h6 ⇒ l) ∧ (¬h7 ⇒ k)

(10)

A key idea to analyzing SFSM models is to “split” the diagnosis into “weak fault” and
“strong fault” parts. As a result we will be diagnosing two “simultaneous” diagnostic
problems: DSw = 〈SDw,COMPS,OBS〉 and DSf = 〈SDf ,COMPS,OBS〉 with the same
observation α1.

It is clear that SDsa ∈ SFSM. We will next compute the diagnoses of SDsa ∧ α1 (cf.
Sec. 3 for the value of α1). There is one minimal diagnosis of SDsa ∧ α1 and it is ω⊆

5 =

¬h1∧h2∧h3∧· · ·∧h7. If we choose the two literals h3 and h4 from ω⊆
5 and change the signs

of h3 and h4, we create two new health assignments: ω15 = ¬h1∧h2∧¬h3∧h4∧h5∧h6∧h7

and ω16 = ¬h1 ∧ h2 ∧ h3 ∧ ¬h4 ∧ h5 ∧ h6 ∧ h7. It can be checked that both ω15 and ω16 are
diagnoses, i.e., SDsa ∧ α1 ∧ ω15 6|=⊥ and SDsa ∧ α1 ∧ ω16 6|=⊥. The fact that ω15 and ω16

are diagnoses follows from (1) the fact that ω15 and ω16 are diagnoses of SDw ∧ α1 (this is
true because of MDH and the fact that ω⊆

5 is a minimal diagnosis of SDw ∧α1) and (2) the
strong part of the model SDs is consistent with the values of the internal variables which
must be modified to ensure a consistent global assignment once we negate h3 and h4; these
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internal variables are j and m, respectively. Equivalently, if negating h3 in ω⊆
5 , which makes

j stuck-at-1, results in a diagnosis, and negating h4 in ω⊆
5 , which makes m stuck-at-1, also

results in a diagnosis, negating both h3 and h4 in ω⊆
5 will also result in a diagnosis (consider

the fact that the fault mode of h4 sets m only, but does not impose constraints on j).
The above argument can be extended inductively to h5, h6, and h7. Hence, for any

assignment of COMPS containing ¬h1 ∧ h2 is a diagnosis of SDsa ∧ α1, no matter what
combination of signs we take for h3, h4, h5, h6, and h7.

Weak-Fault Model
Diagnoses of the

due to fault modes
Inconsistent Health States

{¬h1,¬h2,¬h4}

{¬h1,¬h3}

{¬h1} {¬h4}

{¬h1,¬h2,¬h3}

{¬h1,¬h2} {¬h1,¬h4}

{¬h2} {¬h3}

{}

Figure 8: Part of the diagnosis space for SDsa ∧ α1

What is more important than computing the set of minimal diagnoses of DSsa and α1 is
that we have seen a mechanism of how the weak portion SDw of SDsa, an observation α,
and a diagnosis ω assign unique values to all internal variables which must “agree” with the
“stuck-at” values from the “strong” part SDf . This, combined with the fact that “stuck-at”
faults in different components are independent of each other (they can create contradictions
with SDw∧α∧ω only but not amongst themselves), results in one minimal diagnosis ω⊆

5 with
every health assignment containing ¬h1 ∧ h2 being also a diagnosis. Part of the diagnosis
space is shown in Fig. 8. The search space defined in this way is still continuous from
the viewpoint of Safari. Before we formalize these notions in the general case and draw
conclusions about the optimality of Safari, we will see that this is not necessarily the case
for strong-fault models not members of SFSM.

h2h1

x z

h3 h4

y

Figure 9: A four inverters circuit

An Example of a Discontinuous Diagnosis Space There exist strong-fault models
that can impose arbitrary difficulty to Safari, leading to suboptimal diagnoses of any
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cardinality. Consider for example, the Boolean circuit shown in Fig. 9 and modeled by the
propositional formula

SDd =

{

[hi ⇒ (y ⇔ ¬x)] ∧ [¬hi ⇒ (y ⇔ x)] , for i = 1 and i = 3
[hi ⇒ (z ⇔ ¬y)] ∧ [¬hi ⇒ (z ⇔ y)] , for i = 2 and i = 4

(11)

and an observation αd = x ∧ z. There are exactly two diagnoses of SDd ∧ αd: ω15 =
h1 ∧ h2 ∧ h3 ∧ h4 and ω16 = ¬h1 ∧ ¬h2 ∧ ¬h3 ∧ ¬h4. As only ω15 is minimal, |ω15| = 0, and
|ω16| = 4, if the algorithm starts from ω16 it is not possible to reach the minimal diagnosis ω15

by performing single flips. Similarly we can construct models which impose an arbitrarily
bad bound on the optimality of Safari. Such models, however, are not common and we
will see that the greedy algorithm performs well on a wide class of strong-fault models.

Optimality Guarantee for Minimal Diagnosis in Strong-Fault Stuck-At Models
The theorem that follows contains an important results for SFSM and is similar to MDH
for a strong-fault stuck-at models. An important consequence of it is that the set of minimal
diagnoses of a system description SD ∈ SFSM characterizes all diagnoses of SD. This paper
uses the theorem for analyzing the optimality of Safari, since it shows that the underlying
diagnosis search space is continuous.

Theorem 3 (SFSM MDH). Consider a system DS = 〈SD,COMPS,OBS〉, SD ∈ SFSM,
an observation α, and a minimal diagnosis ω⊆ of SD ∧ α. The diagnosis space for (DS, α)
is continuous.

Proof (Sketch). We prove this theorem by first partitioning COMPS such that COMPS =
W ∪ S, W ∩ S = ∅, and then showing that a health assignment ω̃ is a diagnosis of SD ∧ α
iff Lit−(ω̃w) ⊇ Lit−(ω⊆

w ) and ω̃s = ω⊆
s , where ω⊆

w contains variables from W only and ω⊆
s

contains variables from S only. We start by reordering the conjunctions in the general
SFSM representation given by Def. 14:

SDsa =

{

(h1 ⇒ F1) ∧ (h2 ⇒ F2) ∧ · · · ∧ (hn ⇒ Fn)
(¬h1 ⇒ l1) ∧ (¬h2 ⇒ l2) ∧ · · · ∧ (¬hn ⇒ ln)

(12)

Next SDsa is split in two system descriptions, which have disjoint sets of clauses, but which
are built on the same set of literals: SDsa = SDw ∧ SDs, SDw = (h1 ⇒ F1) ∧ (h2 ⇒
F2) ∧ · · · ∧ (hn ⇒ Fn), and SDs = (¬h1 ⇒ l1) ∧ (¬h2 ⇒ l2) ∧ · · · ∧ (¬hn ⇒ ln). Consider
an observation α and a minimal diagnosis ω⊆ of SDw ∧ α. If we assume that we have a
well-formed circuit, and all inputs and outputs observed, α and ω⊆ assign unique values
to all internal variables4 in SDw (respectively SDsa). We further assume that there exists
at least one minimal-diagnosis ω⊆ of SDw ∧ α, such that the “faulty” literals of ω⊆ assign
exactly the “stuck-at” values implied by SDs ∧α (otherwise SDsa ∧α |=⊥). This ω⊆, then,
is also a minimal-diagnosis of SDsa ∧ α.

Next, we start from the minimal diagnosis ω⊆ and do a proof by contradiction to show
that there can be no strong fault diagnosis leading to a discontinuous diagnosis space.

We assume that the diagnosis space for the strong fault model is discontinuous. From
Corollary 1, we know that the diagnosis space for SDw is continuous. Hence there must

4. An internal variable is any variable v such that v 6∈ OBS ∪ COMPS.
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be some set of valid superset flips that leads to the weak-fault diagnosis where all liter-
als in the diagnosis are faulty (negative). We can call this sequence of diagnoses D =
{ω⊆

1 , ω⊆
2 , . . . , ω⊆

m}. First we can take some ω⊆
i ∈ D, and assume that the corresponding

strong-fault diagnosis is inconsistent (i.e., the diagnosis space for the strong fault model is
discontinuous).

By definition, ω⊆
i is consistent with SD∧α; further, we know that in the WFM model, all

internal variables will be assigned values. Since SDw = (h1 ⇒ F1)∧ (h2 ⇒ F2)∧· · ·∧ (hn ⇒
Fn), all the Fi(i = 1, 2, . . . , n) must be assigned consistent values. In other words, we can
take F =

∧n
i=1 Fi (since these are forced consistent values) such that F is consistent with

SD∧α. This gives exactly the definition of a consistent diagnosis in the strong fault model,
since SDs ⊆ SD. But by our prior assumption, this strong fault diagnosis was inconsistent,
meaning that we have a contradiction.

The above theorem allows us to evaluate the optimality of Safari with SFSM.

Corollary 2. Given a diagnostic system DS = 〈SD,COMPS,OBS〉, an observation α,
and SD ∈ SFSM, the greedy stochastic algorithm can be configured to compute a minimal
diagnosis.

Proof (Sketch). The idea is that starting from any arbitrary diagnosis ω, as a consequence
of Theorem 3, ω can be split into ω = ωs ∧ ωw where ωs would be fixed by the observation
α and SDs. What remains is to “flip” the negative literals in ωw and, by trying all negative
literals in ω, we are guaranteed to find the ones which appear in ωw. The greedy algorithm
is then guaranteed to reach an optimum (minimal diagnosis) in a way similar to the one
given in Proposition 1.

Performance Modeling with Stuck-At Models To further characterize the optimality
of Safari in strong-fault models, we first define a case in which the algorithm cannot
improve a non-minimal diagnosis by changing the sign of a faulty literal. Note that the
existence of such cases is not a sufficient condition for Safari to be suboptimal, as it is
possible to reach a minimal diagnosis by first changing the sign of some other faulty literal,
thus “circumventing” the missing diagnosis.

From the preceding section we know that the probability of encountering an “invalid flip”
is constant throughout the search (it is determined by the observation vector and the fault
modes). The probability of Safari to progress from any non-minimal diagnosis becomes

p(k) = 1−

(|ω|+|X|
M

)

(|COMPS|−k
M

)
(13)

where |X| is the number of “invalid flips” in stage k. The ratio of the number of “in-
valid flips” to the cardinality of the non-minimal diagnoses we will call SFM density d.
Alternatively, the probability of success of Safari is:

p(k) = 1−

(|ω|
M

)

(|COMPS|−k
M

)
− d (14)
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Figure 10: Empirical (left) and analytic (right) f ′(k) for various diagnostic densities, mul-
tiple retries and a single diagnosis

Plugging p into (4) allows us to predict f(k) for the SFM models for which our assumptions
hold. This pdf, both measured from an implementation of Safari and generated from (4)
and (14) is shown in Fig. 10 for different values of the density d.

From Fig. 10 it is visible that increasing the density d leads to a shift of the probability
density of the length of the walk k to the left. The effect however is not that profound
even for large values of d and is easily compensated by increasing M as discussed in the
preceding sections.

It is interesting to note that d can be computed from the system description and the
algorithm and can be further used for increasing the performance of Safari.

6.2.5 Validation

In the preceding sections we have illustrated the progress of Safari with synthetic circuits
exposing specific behavior (diagnoses). In the remainder of this section we will plot the pdf
of the greedy search on one of the small benchmark circuits (for more information on the
74181 model cf. Sec. 7).

The progress of Safari with a weak-fault model of the 74181 circuit is shown in Fig. 11.
We have chosen a difficult observation leading to a minimal diagnosis of cardinality 7 (left)
and an easy observation leading to a single fault diagnosis (right). Both plots show that
the probability mass shifts to the right when increasing M and the effect is more profound
for the smaller cardinality.

The effect of the density d on the probability of success of Safari is shown in Fig. 12.

Obviously, in this case the effect of increasing M is smaller, although still depending on
the difficulty of the observation vector. Last, even for small values of M , the absolute
probability of Safari finding a minimal diagnosis is sizeable, allowing the use of Safari
as a practical anytime algorithm which always returns a diagnosis, the optimality of which
depends on the time allocated to its computation.
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Figure 11: f(k) for a weak-fault model of the 74181 circuit with observations leading to
two different minimal-cardinality diagnoses and various M
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Figure 12: f(k) for two strong-fault models of the 74181 circuit with various M

Next we will continue our argument with experimenting on bigger models.

7. Experimental Results

This section discusses empirical results measured from an implementation of Safari. For
the experiments, we have performed a total of 248 820 diagnostic computations on 64 dual-
CPU nodes belonging to a cluster. Each node contains two 2.4 GHz AMD Opteron DP 250
processors and 4 Gb of RAM.

In all experiments, Safari was configured with M = 8 and N = 4, that is, maximum
number of 8 retries before giving up the climb, and a total of 4 attempts. To provide more

26



Approximate Model-Based Diagnosis Using Greedy Stochastic Search

precise average run-time performance data, Safari, due to its randomized character, has
been run 10 times on each model and observation vector.

7.1 Implementation Notes and Test Set Description

We have implemented Safari in approximately 1 000 lines of C code (excluding the LTMS,
interface, and DPLL code) and it is a part of the Lydia package.5

Traditionally, MBD algorithms have been tested on diagnostic models of digital circuits
like the ones included in the ISCAS85 benchmark suite (Brglez & Fujiwara, 1985). As mod-
els derived from ISCAS85 are large from the diagnostic perspective, we have also considered
four medium-sized circuits from the 74XXX family (Hansen, Yalcin, & Hayes, 1999). In
order to provide both weak- and strong-fault cases, we have translated each circuit to a
weak, stuck-at-0 (S-A-0), and stuck-at-1 (S-A-1) model. In the stuck-at models, the output
of each faulty gate is assumed to be the same constant (cf. Def. 14).

Table 2: An overview of the 74XXX/ISCAS85 benchmark circuits

Variables Observations
Name Description |OBS| |COMPS| Weak S-A-0 S-A-1

74182 4-bit carry-lookahead generator 14 19 250 150 82
74L85 4-bit magnitude comparator 14 33 150 58 89
74283 4-bit adder 14 36 202 202 202
74181 4-bit ALU 22 65 350 143 213

c432 27-channel interrupt controller 43 160 301 301 301
c499 32-bit SEC circuit 73 202 835 235 835
c880 8-bit ALU 86 383 1 182 217 335
c1355 32-bit SEC circuit 73 546 836 836 836
c1908 16-bit SEC/DEC 58 880 846 846 846
c2670 12-bit ALU 373 1 193 1 162 134 123
c3540 8-bit ALU 72 1 669 756 625 743
c5315 9-bit ALU 301 2 307 2 038 158 228
c6288 32-bit multiplier 64 2 416 404 274 366
c7552 32-bit adder 315 3 512 1 557 255 233

The performance of diagnostic algorithms depends to a various extent on the observation
vectors. Hence, we have performed our experimentation with a number of different obser-
vations for each model. The generation of these observation vectors is a topic on its own
(Feldman, Provan, & van Gemund, 2007). These observations lead to diagnoses of different
minimal-cardinality, varying from 1 to nearly the maximum for the respective circuits (for
the 74XXX models it is the maximum). The experiments omit nominal scenarios as they
are trivial from the viewpoint of MBD.

Table 2 provides an overview of the fault diagnosis benchmark used for our experiments.
The third and fourth columns show the number of observable and assumable variables,

5. Lydia, Safari, and the diagnostic benchmark can be downloaded from http://fdir.org/lydia/.
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which characterize the size of the circuits. The next three columns show the number of
observation vectors with which we have tested the weak, S-A-0, and S-A-1 models. For the
stuck-at models, we have chosen these weak-fault model observations which are consistent
with their respective system descriptions (while in strong-fault models it is often the case
that SD ∧ α |=⊥, we have not considered such scenarios).

7.2 Comparison to ALLSAT and Model Counting

We have compared the performance of Safari to that of a pure SAT-based approach,
which uses blocking clauses for avoiding duplicate diagnoses (Jin, Han, & Somenzi, 2005).
Although SAT encodings have worked efficiently on a variety of other domains, such as
planning, the health modeling makes the diagnostic problem so underconstrained that an
uninformed ALLSAT strategy (i.e., a search not exploiting the continuity imposed by the
weak-fault modeling) is quite inefficient, even for small models.

To substantiate our claim, we have experimented with the state-of-the-art satisfiability
solver RelSat, version 2.02 (Bayardo & Pehoushek, 2000). Instead of enumerating all so-
lutions and filtering the minimal diagnoses only, we have performed model-counting, whose
relation to MBD has been extensively studied (Kumar, 2002). While it was possible to solve
the two smallest circuits, the solver did not terminate for any of the larger models within
the predetermined time of 1 h. The results are shown in Table 3.

Table 3: Model count and time for counting

Name Models Time [s]

74182 3.9896 × 107 1

74L85 8.3861 × 1014 340
74283 > 1.0326 × 1015 > 3 600
74181 > 5.6283 × 1015 > 3 600

The second column of Table 3 shows the model count returned by RelSat, with sam-
ple observations from our benchmark. The rightmost column reports the time for model
counting. This slow performance on relatively small diagnostic instances leads us to the con-
clusion that specialized solvers like Safari are better suited for finding minimal diagnoses
than off-the-shelf ALLSAT (model counting) implementations that do not encode inference
properties similar to those encoded in Safari.

A satisfiability-based method for diagnosing an optimized version of ISCAS85 has been
used by (Smith, Veneris, & Viglas, 2004). In a recent paper (Smith, Veneris, Ali, & Vi-
glas, 2005), the SAT-based approach has been replaced by Quantified Boolean Formula
(QBF) solver for computing multiple-fault diagnoses. These methods report good absolute
performance for single and double-faults (and we believe that they scale well for higher car-
dinalities), but require modifications of the initial circuits (i.e., introduce cardinality and
test constraints) and suggest specialized heuristics for the SAT solvers in order to improve
the search performance. Comparison of the performance of Safari to the timings reported
by these papers would be difficult due to a number of reasons like the use of different and
optimized benchmark sets, trading-off memory for speed, rewriting the original circuits, etc.
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7.3 Comparison to Complete Algorithms

Table 4 shows the results from comparing Safari to implementations of two state-of-the-art
complete and deterministic diagnostic algorithms: a modification for completeness of CDA∗

(Williams & Ragno, 2007) and HA∗ (Feldman & van Gemund, 2006).

Table 4: Comparison of CDA∗, HA∗, and Safari [% of tests solved]

CDA∗ HA∗ Safari
Name Weak S-A-0 S-A-1 Weak S-A-0 S-A-1 Weak S-A-0 S-A-1

74182 100 100 100 100 100 100 100 100 100
74L85 100 100 100 100 100 100 100 100 100
74283 100 100 100 100 100 100 100 100 100
74181 79.1 98.6 97.7 100 100 100 100 100 100

c432 74.1 75.4 73.1 71.1 94.7 69.1 100 100 100
c499 29 45.5 27.7 24.1 77.9 25.9 100 100 100
c880 11.6 44.7 32.2 12.4 62.2 41.5 100 100 100
c1355 3.8 4.7 5.4 10.8 10.6 12.2 100 100 100
c1908 0 0 0 6.1 6 6.5 100 100 100
c2670 0 0 0 5 64.2 44.7 100 100 100
c3540 0 0 0 1.1 3.8 2.2 100 100 100
c5315 0 0 0 1.1 8.2 5.7 100 100 100
c6288 0 0 0 3.5 5.1 3.3 100 100 100
c7552 0 0 0 3.9 7.8 12 100 100 100

Table 4 shows, for each model and for each algorithm, the percentage of all tests for which
a diagnosis could be computed within 1 min cut-off time.

As it is visible from the three rightmost columns of Table 4, Safari could find diag-
noses for all observation vectors, while the performance of the two deterministic algorithms
(columns two to seven) degraded with the increase of the model size. Furthermore, we have
observed a degradation of the performance of CDA∗ and HA∗ with increased cardinality of
the minimal-cardinality diagnoses, while, as we will see below, the performance of Safari
remained unaffected.

7.4 Performance of the Greedy Stochastic Search

Table 5 shows the absolute performance of Safari. This varies from under a millisecond
for the small models, to approx. 30 s for the largest strong-fault model. These fast absolute
times show that Safari is suitable for on-line reasoning tasks, where autonomy depends on
speedy computation of diagnosis.

For each model, the minimum and maximum time for computing a diagnosis has been
computed. These values are shown under columns tmin and tmax , respectively. The small
range of tmax − tmin confirms our theoretic results that Safari is insensitive to the fault
cardinalities of the diagnoses it computes. The performance of CDA∗ and HA∗, on the
other hand, is dependent on the fault cardinality and quickly degrades.
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Table 5: Performance of Safari [ms]

Weak S-A-0 S-A-1
Name tmin tmax tmin tmax tmin tmax

74182 0.41 1.25 0.39 4.41 0.40 0.98
74L85 0.78 7.47 0.72 1.89 0.69 4.77
74283 0.92 4.84 0.88 3.65 0.92 5.2
74181 2.04 6.94 2.13 22.4 2.07 7.19

c432 8.65 38.94 7.58 30.59 7.96 38.27
c499 14.19 31.78 11.03 30.32 10.79 31.11
c880 48.08 88.87 37.08 80.74 38.47 81.34
c1355 95.03 141.59 76.57 150.29 83.14 135.29
c1908 237.77 349.96 196.13 300.11 217.32 442.91
c2670 500.54 801.12 646.95 1 776.72 463.24 931.8
c3540 984.31 1 300.98 1 248.5 2 516.46 976.56 2 565.18
c5315 1 950.12 2 635.71 3 346.49 7 845.41 2 034.5 4 671.17
c6288 2 105.28 2 688.34 2 246.84 3 554.4 1 799.18 2 469.48
c7552 4 557.4 6 545.21 9 975.04 32 210.71 5 338.97 12 101.61

7.5 Optimality of the Greedy Stochastic Search

From the result produced by the complete diagnostic methods (CDA∗ and HA∗) we know
the exact cardinalities of the minimal-cardinality diagnoses for some of the observations.
By considering these observations which lead to single and double faults we have evaluated
the average optimality of Safari. Table 6 shows these optimality results for the greedy
search. The second column of Table 6 shows the number of observation vectors leading to
single faults for each weak-fault model. The third column shows the average cardinality of
Safari. The second and third column are repeated for the S-A-0 and S-A-1 models, and
then, all the six columns are repeated for double faults.

Table 6 shows that, for weak fault models, the average cardinality returned by Safari is
very close to the optimal values for both single and double faults. The c1355 model shows
the worst-case results for the single-fault observations, while c499 is the most-difficult weak-
fault model for computing a double-fault diagnosis. These results can be easily improved
by increasing M and N as discussed in Sec. 6.

With strong-fault models results are close to optimal for the small models and the quality
of diagnosis deteriorates for c3540 and bigger. This is not surprising considering the modest
number of retries and number of “flips” with which Safari was configured.

8. Conclusion and Future Work

We have described a greedy stochastic algorithm for computing diagnoses within a model-
based diagnosis framework. We have shown that subset-minimal diagnoses can be computed
optimally in weak fault models, and that almost all cardinality-minimal diagnoses can be
computed for more general fault models.
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Table 6: Optimality of Safari [average cardinality]

Single Faults Double Faults
Weak S-A-0 S-A-1 Weak S-A-0 S-A-1

Name # Card. # Card. # Card. # Card. # Card. # Card.

74182 50 1 37 1 40 1 50 2 38 2 18 2
74L85 50 1.04 18 1.02 40 1.03 50 2.12 17 2.06 35 2.07
74283 50 1.08 34 1.59 46 1.88 50 2.2 45 2.41 42 2.6
74181 50 1.19 36 2.81 46 2.6 50 2.25 36 3.61 43 3.16

c432 58 1.19 52 1.06 37 1.04 82 2.46 80 2.25 48 2.15
c499 84 1.49 53 1.49 84 1.01 115 3.27 34 3.01 115 2.03
c880 50 1 39 1.1 40 1.05 50 2.01 34 2.14 35 2.07
c1355 84 1.66 82 1 84 1.02 6 2.15 7 2 18 2.07
c1908 52 1.05 49 2.91 52 4.79 − − 2 3 3 3.17
c2670 29 1.03 39 1.77 28 2.06 13 2.12 24 2.78 15 3.27
c3540 8 1.01 23 2.5 16 3.74 − − 1 4.9 − −
c5315 14 1 9 3.54 12 5.4 7 2 3 3.7 1 3.8
c6288 13 1 13 28.83 12 28.68 1 2 1 27 − −
c7552 27 1.01 11 17.37 18 23.38 16 2 4 18.5 6 27.53

We have applied this algorithm to a suite of benchmark combinatorial circuits encoded
using weak fault models, and shown significant performance improvements for multiple-fault
diagnoses, compared to a well-known deterministic algorithm, CDA∗. Our results indicate
that, although the greedy stochastic algorithm is outperformed for the single-fault diagnoses,
it shows at least an order-of-magnitude speedup over CDA∗ for multiple-fault diagnoses.
Moreover, whereas the search complexity for the deterministic algorithms tested increases
exponentially with fault cardinality, the search complexity for this stochastic algorithm
appears to be independent of fault cardinality.

We have demonstrated the superior performance (over deterministic algorithms) of Sa-
fari for the class of discrete circuits specified using weak fault models. We argue that
Safari can be of broad practical significance, as it can compute a significant fraction of
cardinality-minimal diagnoses for systems too large or complex to be diagnosed by existing
deterministic algorithms.

In future work, we plan to experiment on models with a combination of weak and strong
failure-mode descriptions. We also plan on experimenting with a wider variety of stochastic
methods, such as simulated annealing and genetic search, using a larger set of benchmark
models. Last, we plan to apply our algorithms to a wider class of abduction and constraint
optimization problems.
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