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Abstract. Two approaches have been used to perform ap-
proximate inference in Bayesian networks for which exact in-
ference is infeasible: employing an approximation algorithm,
or approximating the structure. In this article we compare
two structure-approximation techniques, edge-deletion and
approximate structure learning based on sub-sampling, in
terms of relative accuracy and computational efficiency. Our
empirical results indicate that edge-deletion techniques dom-
inate the subsampling/induction strategy, in both accuracy
and performance of generating the approximate network. We
show, for several large Bayesian networks, how edge-deletion
can create approximate networks with order-of-magnitude in-
ference speedups and relatively little loss of accuracy.

1 Introduction

Bayesian networks (BNs) have become an important tool for
modeling and probabilistic inference. As the size and complex-
ity of BN models increase, so too do the demands of perform-
ing inference. In cases where exact inference is intractable, it
is important to use approximation techniques to enable in-
ference to take place. Such approximation may apply to the
inference algorithms (e.g., stochastic sampling algorithms [2],
or other approaches [3, 8]), or to the BN model B (e.g., edge-
reduction [1, 10], probability-table/state-space approximation
approaches [5, 7]). In this article, we focus on generating a
space-bounded, approximate model, in cases where we have
limitations on the space for embedding a BN model.

Our objective is the examine the tradeoff between space
and performance of different approximations, i.e., given an
approximate model B’, what kinds of inference speedups do
we obtain for what levels of inference accuracy, with re-
spect to B? This goal contrasts with the objectives of pre-
vious network-approximation (e.g,. edge-deletion) approaches
[1, 10], where the primary interest was deleting edges while
remaining within a certain error bound.

Our contributions are the following. First, we compare
two BN-approximation approaches, one using BN threshold-
based sub-sampling and network induction, and the other us-
ing threshold-based edge deletion. We show that the sam-
pling/induction approach is limited by the accuracy of the in-
duction algorithm, and produces networks which are inferior
to the edge-deletion approach, due to the network-induction.
We also show that, on a range of networks, the edge-deletion
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approach can produce several orders-of-magnitude speedups
in inference with small penalties in inference accuracy.

2 Technical Preliminaries

A BN model B is defined as a tuple (G,P), where G is a
directed acyclic graph (DAG), and P is a set of probability
distributions constructed from vertices V = {VZ} in G such
that Pr{V} = [["_, Pr{Vilpa(Vi}, where pa(V;) are the par-
ents of V; in G. We compare two approaches, sub-sampling
plus machine learning (SSML), and edge deletion (ED).

SSML Approach: In SSML, we generate from B a train-
ing dataset T composed of 10,000 random samples, using the
GeNle tool [4]. We then used a sampling threshold ¢ to prune
from T all cases for which Pr(B) < ¢, to create Ty. For each
value of ¢ examined, we induced an approximate network By
from T} using the constrained based PC-algorithm [9].

ED Approach: In ED, we generate from B an approxi-
mate network B, by pruning from B all those edges whose
Kulback-Leibler (KL) divergence is below a threshold . The
KL divergence [6] was chosen as the metric for indicating the
importance of the dependence related to each edge of the net-
work since it is one of the most widely used methods for mea-
suring the distance between distributions.

We adopt several metrics for the “quality” of an approxi-
mate network B’ with respect to B: the error € on a test set
is the difference in posterior probability averaged over the set
Vi of target nodes; the complexity reduction factor, %7;((%/)),
is the relative network complexity, based on using the maxi-
mum clique table size of B’, CT(B’), as an inference complex-
ity measure; and the network reduction factor, S(B',B), is a
measure of the degree of isomorphism between B’ and B.

3 Experimental Analysis

We empirically compared the SSML and ED approaches to
BN approximation using 7 benchmark networks: C17, Alarm,
Hailfinder, Pignet, Barley, Munin and C250 (a circuit with 250
nodes and 500 arcs). In our experiments, we created networks
based on sub-sampling thresholds of ¢ = e 19, 72, 5e~ 10,
and KL thresholds x = 0.1, 0.15 and 0.2. To test the error
€ of each approximate network, we sampled to create a test-
ing data set of 500 cases, such that we chose a set of “target”
nodes whose posterior distributions we computed during test-
ing. We computed several comparative measures, including
the error rate € for classification, the KL-divergence between



the distributions and the maximum clique table size C'T" of the
networks. Figure 1 shows that, whereas for ED the CT val-
ues never increase with increasing threshold « (meaning that
the network gets no computationally harder to evaluate), with
SSML the CT values can increase with ¢. This anomalous per-
formance is due to the induction process, in which we cannot
guarantee that the network structure learned will monotoni-
cally decrease in size and CT values with ¢; in contrast, with
ED, this is guaranteed as edge pruning occurs. This failure to
guarantee that approximate networks will be computation-
ally simpler with SSML means that it may not be possible to
use this approach unless structure-based constraints can be
applied during the induction phase.
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The other major difference is the computational cost for
the structure-approximation. The ED approach, since it uses
the computing of divergences and pruning of edges with KL
values, is proved very efficient. In contrast, the SSML has high
computational cost, since it involves computing posteriors for
the original network and inducing an approximate network
for a training set; both expensive tasks for complex BNs.

Since exact inference was computationally infeasible for
these larger networks, we used several sampling-based infer-
ence algorithms [2], all of which generate 10,000 samples to
ensure close convergence of the results to the exact value.

Figure 2 displays the results of tradeoffs made over a range
of KL threshold values using ED, showing that a significant
reduction in relative inference complexity occurs, with little
loss of accuracy. For example, our data indicate that for the
€250 network, we have O(10°) faster inference with > 90%
accuracy; for Munin, we have 0(105) faster inference with
~ 80% accuracy.

1 —m
> 0.9 =—o— Munin
IS - —&— Barley
— 0'8 =7 1
§ J Pignet
< 07 —=-C250 |
0.6
0.5 \ \ \ \
0 0.2 0.4 0.6 0.8 1
Relative Inference Complexity
Figure 2. Tradeoff curves for four larger networks using ED

4 Conclusions

This paper compared two models for BN structure approxima-
tion, based on sub-sampling with network induction (SSML)
and edge deletion (ED), to identify the types of tradeoff of
inference-speedup and loss of accuracy possible with each ap-
proach. We showed that SSML cannot guarantee monotoni-
cally faster inference with increasing network approximations;
this arises because the network structure induced from ap-
proximate data (sampled from the original network) has high
variance. In contrast, with ED, the tradeoffs of accuracy for
faster inference are guaranteed to be monotonic. We have
showed, for several large BNs, how ED can create approx-
imate networks with order-of-magnitude inference speedups
with relatively little loss of accuracy.
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