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ABSTRACT
This article formalises the dual problem to model-based diagnosis
(MBD), i.e., generatingteststo isolate multiple simultaneous faults.
Using a standard propositional MBD framework, we first define a test
of minimal size that can isolate multiple simultaneous faults of an
arbitrary nature. Second, we prove complexity results for multiple-
fault tests of minimal size in propositional system models, showing
such problems have complexity similar to those of MBD problems,
i.e., complexity at the second level of the polynomial hierarchy.

1 Introduction

Many real-world applications have focused on identifying minimal
sensor observations, ortests, that will accurately isolate faults. For
example, in the aerospace industry, it is common practice to pre-
compute minimal test sets for systems, and also to build special
equipment, called Built-in Test Equipment (or BITE), to conduct
such fault-isolation tests (called Built-In Tests) [11]. The BITE will
then conduct pre-defined sensor analysis upon system start-up or
malfunction. This area of diagnosis, called Automated Test Pattern
Generation (ATPG) [3], has significant practical importance. ATPG,
in more precise terms, concerns pre-computing a set of tests that can
validate circuits or diagnose hardware in embedded applications [3].

In contrast, model-based diagnosis (MBD) [14] addresses the task
of isolating multiple simultaneous faults, given anarbitrary observa-
tion α. Although the objectives of efficient fault isolation are similar,
the approaches, and the entailed algorithms, are quite different.

This article formalises ATPG as a dual problem to MBD. Using a
standard propositional MBD framework, we first define a test that can
isolate multiple simultaneous faults, of an arbitrary nature. This for-
malisation extends standard notions of ATPG, which are restricted to
generating tests that can isolatesingle, stuck-atfaults, namely, faults
in discrete circuits that occur when wires or gates are stuck at either
0 or 1 [3, 15]. In this article we address models framed as Boolean
functions, since all existing ATPG is based on Boolean functions.
However, our framework applies to more general models; for ex-
ample, we can generalise our results to multi-valued propositional
functions in a straightforward fashion, thus allowing our results to
be applicable to qualitative MBD/ATPG models with finite, discrete-
valued variables.

Our contributions are as follows. First, we define a general ATPG
model, cast within a satisfiability (SAT) framework, which adopts the
multiple-fault definitions of MBD [14]. This general ATPG problem
addresses multiple simultaneous faults of an arbitrary nature. Sec-
ond, we prove complexity results for these more general ATPG mod-
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els, demonstrating that these problems lie at the second level of the
polynomial hierarchy. Given the intractability of MBD inference on
real-world circuits [13], it is likely that multiple-fault ATPG will also
be intractable, since both the MBD and multiple-fault ATPG are at
the second level of the polynomial hierarchy.

2 Related Work

This article applies a standard MBD framework [14] to test genera-
tion. To our knowledge, no article has formalised a similar approach
for multiple-fault ATPG using the MBD consistency-based frame-
work. Further, the ATPG literature lacks any methodology that di-
rectly generates tests to isolate faults of arbitrary size, often leading
to inefficient and inaccurate fault isolation; ATPG focuses instead on
iterated single-fault approaches for this task, e.g., [18, 19]. ATPG
also differs fromsequential diagnosis[17], in that it computes all
testsa priori; in contrast, test sequencing computes the next best test
dynamically.

The complexity of test generation has been carefully studied, and
we review the complexity of ATPG and MBD.

ATPG Complexity: The standard single-fault ATPG model has
been proven to be NP-complete [8], as it is an instance of the well-
known SAT and CIRCUIT-SAT problems. Although this worst-case
result indicates intractability, in practice test-generation is tractable
because of the structural properties of circuits: the complexity is ex-
ponential in the undirected circuit cut-width [12], and the average-
case complexity is poly-time in circuit size for circuits with bounded
cut-width. However, in the real world systems, multiple faults can
occur simultaneously, necessitating multiple-fault ATPG methods.

MBD Complexity: Computing a diagnosis which is minimal
with respect to subset-inclusion or fault cardinality is NP-complete
for propositional Horn models [1, 6]. The complexity for arbitrary
propositional models, for several minimality conditions, has been
shown to be at the second level of the polynomial hierarchy [4]. The
complexity becomes less tractable if we instead consider the prob-
lem of computing theset of all minimal diagnoses. This problem is
at least as difficult as counting the number of diagnoses, which has
been shown to be #co-NP-Complete [7]. These results indicate that
the diagnosis problems in which we are interested, i.e., computing
the set of minimal-cardinality diagnoses over propositional models,
are intractable.

3 Definitions and Notation

We now introduce notation for Boolean functions, MBD and ATPG.



3.1 Boolean Functions

Let f : {0, 1}n → {0, 1} be a Boolean function over a setX =
{x1, x2, ..., xn} of n variables. A conjunctive normal form (CNF)
Boolean formulaf on Boolean variablesX is a conjunction ofm
clauses{C1, C2, ...Cm}. Each clauseCi is a disjunction ofki literals
l1, ...lki . A literal is an instance of a variable or its complement.

We callλf anassignmentfor f if we set each of the variables inf
to either 0 or 1; such an assignment may be represented by ann-bit
vector in{0, 1}n in the natural way.

A satisfying assignmentλ, or model, for f is one for which
f(λ) = 1. The set of satisfying assignments forf is denoted by
Λf . A partial assignmentis obtained when only a subset of variables
in X is assigned values. A partial assignment may be represented by
a vector of lengthn, each of whose elements is either 0, 1, or∗.

The generic satisfiability problem can be defined as follows.

Definition 1 (SAT) Given a CNF formula,f(x1, x2, ..., xn), the
Boolean satisfiability problem SAT (f ) has an answer YES iff
there exists an assignmentλ of Boolean values to the variables
x1, x2, ..., xn, i.e.,∃λ such thatf evaluates to 1.

3.2 Model-Based Diagnosis Problem

This section introduces the notion of system model and diagnosis
that we use to generalise ATPG to multiple-fault scenarios. MBD
models are applicable to arbitrary systems, but in the following we
assume that we are defining the MBD problem for circuits, to ensure
consistency between the MBD and ATPG formalisms. In future work
we will define ATPG for arbitrary systems.

Central to MBD, amodelof an artifact is represented as a Boolean
propositional functionf overX. Distinguishing two subsets of these
variables asassumableandobservable2 variables gives us a diagnos-
tic system. We use a standard specification of MBD [14], except that
we use the notion of health assignment (defined below) rather than
sets of assumables to denote system health status.

Definition 2 (Diagnostic System)A diagnostic systemΨ is defined
as the tripleΨ = 〈f,H,O〉, wheref is a propositional theory over
a set of variablesX, H ⊆ X is the set of assumables, andO ⊆ X
is the set of observables.

Throughout this paper we will assume thatO ∩H = ∅ andf 6|=⊥.
The traditional query in MBD computes terms of assumable vari-

ables, which are explanations for the system description and an
observation. By convention, if the set of health variablesH =
{h1, ..., hm}, thenhi = 0 denotes normal functionality for com-
ponenti, andhi = 1 denotes a fault.

Definition 3 (Health Assignment) Given a diagnostic systemΨ =
〈f,H,O〉, an assignmentλH to all variables inH is defined as a
health assignment.

The MBD notion of diagnosis covers multiple simultaneous faults,
as denoted below.

Definition 4 (Diagnosis) Given a diagnostic systemΨ =
〈f,H,O〉, and an observationα over some variables inO, a
health assignmentω is a diagnosis ifff ∧ α ∧ ω 6|=⊥.

2 In the MBD literature the assumable variables are also referred to as “com-
ponent”, “failure-mode”, or “health” variables. Observable variables are
also called “measurable” or “control” variables.

In the MBD literature, a range of types of “preferred” diagnosis has
been proposed. This turns the MBD problem into an optimization
problem. In the following definition we consider the common subset-
and cardinality-ordering.

Definition 5 (Minimal Diagnosis) A diagnosisω is defined as min-
imal, if no diagnosisω′ exists such that the set of negative literals in
ω′ form a proper subset of the set of negative literals inω.

Definition 6 (Diagnosis Cardinality) The cardinality of a diagno-
sis, denoted as|ω|, is defined as the number of negative liter-
als in ω. A diagnosis is defined as cardinality-minimal, denoted
MinCard(ω), if it minimizes the number of negative literals.

3.3 ATPG Definitions

We now define the tasks performed by ATPG in terms of comput-
ing tests (satisfying assignments) that can isolate faults in a system
specified in terms of a Boolean functionf . ATPG traditionally uses
a particular type of Boolean function, a Boolean circuit.

Definition 7 (Boolean circuit) A Boolean circuitC is a directed
acyclic graph (DAG) with distinguished observablesIN , OUT, such
that IN∪OUT= OC and IN∩ OUT= ∅, where the vertices are labeled
as follows:

• The input vertices,IN, labeled with a variablexi or a constant (0
or 1), have fan-in 0.

• The output vertices,OUT, labeled “output”, have fan-out 0.
• The gate vertices,H = {h1, ..., hm}, with fan-in k > 0, are

labeled with a Boolean functionhi ∈ H on k inputs(∨,∧,¬),
where the¬ gate has fan-in of 1.

We now define notions of faults on Boolean circuits, using no-
tation introduced in [12]. The standard ATPG notion of a fault and
faulted-circuit is restricted to a single faulty gate with astuck-atfault.

Definition 8 (Single stuck-at-fault) Given a Boolean circuitC, a
single stuck-at faultφ(hi, ν) causes a componenthi ∈ H to be per-
manently stuck at logic valueν ∈ {0, 1}.
Definition 9 (Faulted circuit) Given a circuitC and a single stuck-
at fault φ(hi, ν), a faulted circuit, denoted byCφ, is the circuitC
with the output forhi set to valueν.

We can translate a circuit into a propositional formula which cor-
responds to a diagnostic system,ΨC = 〈f,H,OC〉, in which we
restrict observables toOC (which covers only the inputs and out-
puts of the system) and translate each gate into an equivalent logical
formula. Based on this translation, the notion of faulted circuit cor-
responds to a single-fault health assignmentωi in which only one
health variable is set to 1, i.e., for onei ∈ {1, ..., m}, hi = 1 and all
otherhj:j 6=i = 0. We denote a “nominal” health assignment, where
all hi = 0, usingω∅.

Definition 10 (Test) Given a circuit diagnostic systemΨC =
〈f,H,OC〉, and a health assignmentωi, a test is an instantiation
α over some variables inO such thatf ∧ α ∧ ωi 6|=⊥.

Just as in MBD, we are interested in computing tests with respect
to some completeness and minimality criteria. A test set iscomplete
if it detects all single stuck-at faults; a complete test set of minimal
size is aminimal test set.

We now define the (single-fault) ATPG problem using
consistency-based terminology from MBD:



Definition 11 (ATPG testability problem) Given a Boolean circuit
diagnostic system,ΨC , a single stuck-at faultφ(hi, ν), correspond-
ing to health assignmentωi, is testable if and only if there exists a
testα such thatf ∧α∧ωi 6|=⊥ andf ∧α∧ω∅ |=⊥. Otherwise the
fault is said to be untestable.

The ATPG problem is to compute a minimal set of tests such that
every single stuck-at fault is testable.

3.4 Review of Complexity Classes

In this article we will be defining the complexity of several problems,
and we introduce the polynomial hierarchy as the standard means for
classifying different complexity classes. The best-known complexity
classes areP andNP : P is the set of languages possessing algo-
rithms that run in time that is a polynomial in the length of the input;
NP is the set of languages possessing algorithms that run in nonde-
terministic polynomial time. Since we will be considering problems
that are harder than those inP andNP , we define the polynomial
hierarchy in terms of languages as follows. A languageL is in the
classΣP

i iff there is another languageL′ in the classP and an inte-
gerk for whichL = {x : (∃y1)(∀y2)(∃y3) · · · (Qyi), |yi| = |x|k
for all i, [(x, y1, y2, · · · , yi) ∈ L′]}, where the sequence of quan-
tifiers alternates, ending withQ = ∃ if i is odd orQ = ∀ if i is
even. According to this definition,P = ΣP

0 andP = ΣP
1 . We can

also define the complementary hierarchyΠP
i of problems, which de-

note the problems defined by coL = {L : L̄ ∈ L}, or in other
words,coΣP

i = ΠP
i , for i = 0, ...,∞. In a manner analogous to

NP -hard problems being computationally more difficult thanP -
hard problems,ΣP

2 -hard problems are computationally more difficult
thanNP -hard (orΣP

1 -hard) problems.

4 Multiple-Fault ATPG

We now define more general notions of ATPG problems, using the
multiple-fault specifications defined in the previous section.

Definition 12 (Multiple-fault Health Assignment) Given a diag-
nostic systemΨ = 〈f,H,O〉, a multiple-fault health assignmentωI

is an instantiation ofH where at least 2 elements ofωI are set to 1.

We can now define a multiple-fault ATPG test:

Definition 13 (Multiple-fault Test) Given a circuit diagnostic sys-
temΨC = 〈f,H,OC〉, and a multiple-fault health assignmentωI ,
a multiple-fault ATPG test is an instantiationα over some variables
in O such thatf ∧ α ∧ ωI 6|=⊥ andf ∧ α ∧ ω∅ |=⊥.

The multiple-fault ATPG problem is hence defined as the problem
of computing a test-set that can isolate every multiple fault combi-
nation in2H. We now show the complexity of a decision version of
Definition 13,MF-TEST.

Problem 1 (MF-TEST) Given a circuit diagnostic systemΨC =
〈f,H,OC〉, and a multiple-fault health assignmentωI , does there
exist a multiple-fault ATPG test?

Theorem 1 The Multiple-fault ATPG problemMF-TEST is ΣP
2 -

complete.

Proof: We prove this result using a reduction from a propositional
abduction problem (PAP)P [16], for which the problem of solu-
tion existence (as defined below) has been shown to beΣP

2 -complete
[4]. A propositional abduction problem (PAP) can be defined us-
ing a tuple〈V, Ξ, µ, T 〉, whereV is a set of variables of whichΞ
and µ are disjoint subsets, whileT is a (consistent) propositional
formula. Ξ is typically referred to as the hypotheses, andµ as the
manifestations. A solution,δ(T , µ), given manifestationsµ, exists if
Ξ ∪ T is consistent andΞ ∪ T |= µ.

We can reduce a PAP into a generalised ATPG problem using the
following procedure:

• for each hypothesisΞi ∈ Ξ create an observable variableOi ∈ O;
• for each manifestationµi ∈ µ create a component variableh ∈
H;

• for each variablevi ∈ V \ (Ξ ∪ µ) create a variablexi;
• for the propositional formulaT create a Boolean functionf , in

which we have the variable correspondence as defined.

We assume that in both PAP and ATPG, a variable in(Ξ, µ), and
its corresponding pair(O, h), has value 0 denoting “normal” and 1
denoting “abnormal” (forΞ,O) or “faulty” (µ, h).

Clearly this reduction can be performed in polynomial time. We
now show that the PAP has a solution iff the multiple-fault ATPG
problem is testable.
⇒: SinceT is a (consistent) propositional formula, then it must

be the case thatΞ ∪ T |= µ whenµ = {0, ..., 0}, together with
Ξ = {0, ..., 0}, denote a “normal” state.

Assume a solution exists in the PAP with someµ that is abnor-
mal; by our mapping, there exists a solution inMF-TEST such that
some faultyh corresponding toµ has a consistent assignment. Con-
sequently, we must have a testable multiple-fault setting inMF-TEST,
since there exists an assignment of Boolean values to the primary in-
puts and output ofC (and alsoCφ) such that the output from com-
ponentshi ∈ H have complementary logic values inC andCφ.
⇐: Assume that a testable multiple-fault setting exists in our

ATPG problem. By our reduction, this means that there must be a
solution to our PAP with abnormal setting forµ. 2

5 Minimal Multiple-Fault ATPG

When we generate tests for multiple faults, there are two types of
minimality that must be considered: (1) minimality of the multiple-
fault; and (2) minimality of the size of the test set.

Multiple-fault minimality has largely been ignored within ATPG,
since ATPG computes multiple simultaneous faults by isolating sin-
gle faults in a sequential manner; however, this issue has received
considerable attention in MBD, and special-purpose algorithms have
been defined for minimal multiple-fault isolation, e.g., [14, 2]. Typi-
cally, given an anomalous observation in MBD, one wants to isolate
the fault-set of minimal cardinality, since (1) it is most likely that
fewer components have failed, and (2) this leads to replacing as few
components as possible.

Computing a test set of minimal size is a key underlying ATPG
task, since running the fewest tests leads to the most efficient (cheap-
est) fault isolation procedure. Test-set minimality has been largely
ignored in MBD, which assumes arbitrary, rather than optimised, ob-
servations will be input to the inference engine. It has been shown
that computing the minimum numberT ∗(C) of tests to identify all
single stuck-at faultsin a circuitC is NP-hard [10]. Further, approx-
imating this minimum test-set size is NP-hard as well [10], i.e., it
is NP-hard to define someβ > 1 and number of testst such that



T ∗(C) ≤ t ≤ T ∗(C) · β. As a consequence, we anticipate that the
minimal test-set problem for multiple faults will be intractable, given
the intractability of the simpler, single-fault problem.

In the following, we address the issue of generating a test-set for
minimal faults which are not restricted to the single-fault case.

5.1 Tests for Minimal Multiple-Fault Diagnoses

Almost all real-world systems suffer from being under-sensed, i.e.,
having too few sensors to uniquely isolate every multiple-fault sce-
nario, and from the model being over-constrained [15]. A conse-
quence of the diagnostic system being over-constrained and under-
sensed is that, for differentα, there may be minimal-cardinality di-
agnoses of differing cardinalities. Multiple-fault ATPG is thus faced
with the task of identifying theα leading to the max-cardinality diag-
nosis amongst the differentα. This fault isolation problem has been
defined as a Max/Fault Min/Cardinality (MFMC) problem [5]. Here,
we show the complexity of generating tests for MFMC diagnoses.

The problem of computing a test for the Max-Fault Min-
Cardinality (MFMC) problem [5] can be defined as follows.

Definition 14 (MFMC-Test) Given a diagnostic systemΨ, a Max-
Fault Min-Cardinality (MFMC) test (observation) is an instantiation
α over the variables inO such thatMinCard(f ∧ α) is maximized.

5.1.1 Worst-Case Complexity

We will show that a restricted, decision version of the MFMC-Test
problem,MFMCD, is ΠP

2 -complete, by showing a reduction from
M INMAX -CLIQUE to MFMCD. MFMCD frames the problem of
finding a testα that isolates a cardinality-minimal diagnosisω of
cardinality at leastκ.

Problem 2 (MFMCD) : Given a CNF boolean functionf over a
setX of variables, for which the variable set is partitioned into dis-
joint subsets denoting observablesO, health variablesH and unob-
servable variablesU , an integerκ, does there exist a testα and a
health assignmentω such thatminω|=f∧α |ω| ≥ κ?

Theorem 2 MFMCD is ΠP
2 -complete.

Proof: We need to show two things: (1) thatMFMCD is in ΠP
2 ;

and (2) a reduction from aΠP
2 -complete problem.

1. It is easy to see thatMFMCD is in ΠP
2 , since it is solvable by

a polynomial-time nondeterministic machine with the use of an
NP-complete set of an oracle.

2. We now show a reduction from theΠP
2 -complete problem

M INMAX -CLIQUE [9].
M INMAX -CLIQUE is denoted by a graphG = (V, E), a partition
(Vi,j)i∈I,j∈J of V , an integerκ, a functiont : I → J , andχt

is the size of the largest clique inG restricted to
⋃

i∈I(Vi,t(i)). In
other words, we can denoteχt(G) = mint maxχ{|χ| : χ ⊆ V
is a clique inGt}. Gt denotes the induced subgraph ofG on the
vertex setVi =

⋃I
i=1 Vi,t(i).

Given the partition, |V | = I · J = n; hence V =
{v1,1, v1,2, ..., v1,J , v2,1, ..., v2,J , ..., vI,J}. Partitioni is given by
{vi,1, vi,2, ..., vi,J}, for i = 1, ..., I.
We assume that inMFMCD, there areI health variables, each
of which hasJ possible (abnormal) health values, i.e., health vari-
ablek has values given by{hk,1, hk,2, ..., hk,J}, k = 1, ..., I.

Hence our space of possible health values is given byH =
{h1,1, h1,2, ..., h1,J , h2,1, ..., h2,J , ..., hI,J}.
Let f = C1 ∧ C2 ∧ · · · ∧ Cm be a CNF formula withm clauses.
We construct a CNF formulaf from G as follows.

Variables The variables inf are as follows:

• For each vertexvi,j , introduce a variablehvi,j (the semantics
is thathvi,j is true ifvi,j is in the clique, and the only literals
occurring in a cliqueχ are health literals).

• For eachi = 1, 2, ..., I, j = 1, 2, ..., J andk = 0, 1, 2, ..., κ,
introduce a variableYijk.

The second set of variables ensures thatYijk is
true if there are at leastk true variables in the set
{hv1,1 , ..., hv1,J , hv2,1 , ..., hvi,J }.

Clauses The clauses inf are as follows:

• For each pair of verticesu, v ∈ G having no edge(u, v), add
a clause¬hv ∨ ¬hu to f .3

• For eachi = 1, 2, ..., I, j = 1, 2, ..., J andk = 1, 2, ..., κ,
add clauseYi−1,j,k ∨ (Yi−1,j,k−1 ∧ hvi,j ).

• For eachi = 1, 2, ..., I, j = 1, 2, ..., J add clauses enforcing
Yi,j,0 = true

• For eachk = 1, ..., κ, add clauses enforcingY0,0,k = false.
• Finally, add a clause containing just the variableYI,J,κ.

The above reduction clearly can be computed in polynomial time.
Next we verify that the reduction is correct.
⇒: SupposeG has a cliqueχt of sizeκ. If this is true, then inf
we must assign true to the variableshv such thatv ∈ χt, and false
to the other variables. We also assign true to thoseYijk ’s such that
there are at leastk true variables in{hv1 , hv2 , ..., hvi}, and we
assign false to the otherYijk ’s. This gives a satisfying assignment
for f .
Further, under the partition functiont : I → J , χt(G) =
mint maxχ{|χ| : χ ⊆ V . This corresponds in our satisfying as-
signment inf to there existingminω|=f∧α |ω| = κ, since every
node inχt(G) consists of a health literal from a different partition,
i.e., it consists of a minimal diagnosisω such that|ω| = κ.
⇐: Supposef has a satisfying assignment. Letχ = {v : hv is
assigned “true”}. Thenχ is a clique because for any pair of ver-
ticesu, v ∈ χ, there cannot be a clause¬hv ∨ ¬hu in f (because
such a clause would not be satisfied), so there must be an edge
(u, v) ∈ G. χ has sizeκ or more becauseYI,J,κ must be true.
Further, a satisfying assignment inf must correspond to there ex-
isting χt(G) = mint maxχ{|χ| : χ ⊆ V , since under the satis-
fying assignment we haveminω|=f∧α |ω| = κ, and every node in
χt(G) consists of a health literal from a different partition, i.e., it
consists of a minimal diagnosisω such that|ω| = κ. 2

5.1.2 Approximation Complexity

We can also prove the complexity of approximating this problem. As
based on the approach presented in [9], we will use the method of
proving theΠP

2 -completeness results forc-approximation problems
MINMAX-A in terms of G-reductions. Ko and Lin [9] describe a
G-reduction fromMINMAX-SAT (ΓSAT ) to MINMAX-A , where
MINMAX-A is an arbitrary optimisation problem. In particular, Ko
and Lin constructed G-reductions from〈ΓSAT : |f |; (1 − ε)|f |〉 to
a pair〈ΓMINMAX−A : (1 − ε2)size(x); (1 − ε1)size(x)〉, where
ε1 > ε2 ≥ 0. Based on this approach, they proved the following:

3 At this point, the satisfying assignments tof correspond to cliques inG.



Theorem 3 [9] There exists a constantc > 1 such that the c-
approximation problem ofMINMAX-CLIQUE is ΠP

2 -complete.

We can use this result to prove the following:

Theorem 4 (MFMCD-approximation) There exists a constant
c > 1 such that the c-approximation problem ofMFMCD is ΠP

2 -
complete.

Proof: Let µ be the reduction of theorem 2. In the above
proof, we showed that for any graphG, MINMAX-CLIQUE =
MFMCD(µ(G)) For any graphG whose vertex setV is partitioned
into Vi,j , 1 ≤ i ≤ I, 1 ≤ j ≤ J , we definesize(G) = I. Simi-
larly, for any CNF formulaf whose variables are partitioned into
(O, H, U) such that the partition forH follows Hi,j , 1 ≤ i ≤ I,
1 ≤ j ≤ J , we definesize(f) = |ω|.

Then the above observation implies thatµ is a G-reduction from〈
MINMAX-CLIQUE : size(G); (1 − ε)size(G)〉 to 〈MFMCD :
size(f); (1− ε)size(f)〉. 2

5.2 Test-Set Minimality

We now address the problem of computing a minimal test to identify
amultiple fault diagnosisin a circuit.

Given a test setT , we define the size ofT as |T |. A given test
α ∈ T may identify a set of diagnoses as being consistent withα.
If test α ∈ T is consistent with faultω, then we assignt = 1; we
assignt = 0 otherwise. A test setT unambiguously isolatesω if,
when applied toω ∧ f , ω is the only fault consistent withT . A test
setT is of minimal size for isolating a faultω if T unambiguously
isolatesω and there is no other test setT ′ such that|T ′| < |T | and
T ′ unambiguously isolatesω.

We define the problem of computing a minimal test-set for a
multiple-fault,MIN -MF-TEST, as follows:

Problem 3 (MIN -MF-TEST) : Given a CNF boolean functionf over
a setX of variables, for which the variable set is partitioned into dis-
joint subsets denoting observablesO, health variablesH and unob-
servable variablesU , a test setT , and an integerκ, does there exist
a testα and a health assignmentω such thatmaxα|=f∧ω |α| ≤ κ?

Theorem 5 MIN -MF-TEST is ΠP
2 -complete.

Proof Sketch:4 We prove this theorem analogously to the proof of
Theorem 2, except that we reduce Maxmin-Vertex Cover (MMVC),
which isΠP

2 -complete [9], toMIN -MF-TEST. We defineMMVC as:

Problem 4 (Maxmin-Vertex Cover (MMVC )) : Given a graph
G = (V, E), a partition (Vi,j)i∈I,j∈J of V , an integerκ, a func-
tion t : I → J , andχt is the size of the smallest vertex cover inG
restricted to

⋃
i∈I(Vi,t(i)),is maxt∈JI χt(G) ≤ κ?

We assume that inMMVC, there areI test variablesti ∈ T ,
each of which hasJ possible (abnormal) values, i.e., test vari-
able k has values given by{tk,1, tk,2, ..., tk,J}, k = 1, ..., I.
Hence our space of possible test values is given byT =
{t1,1, t1,2, ..., t1,J , t2,1, ..., t2,J , ..., tI,J}.

Let f = C1 ∧ C2 ∧ · · · ∧ Cm be a CNF formula withm clauses.
We construct a CNF formulaf from G similar to the construction
of the proof of Theorem 2, except that we introduce test variables
for health variables. Given the reduction fromMMVC to MIN -MF-
TEST, the theorem follows.2

4 We sketch this proof due to space limitations.

6 Summary and Discussion

We have described a generalised framework for ATPG that allows
this important technique to be applied to a wider range of tasks than
the current single-fault tasks; such new tasks include multiple-fault
inference for a range of embedded and other applications. In addi-
tion, we have described the complexity of these generalised ATPG
problems, showing that these problems lie on the second level of the
polynomial hierarchy.

This multiple-fault ATPG framework offers significant advances
to test generation, both in the ability to isolate multiple faults, and in
the ability to address systems more complex than digital circuits. The
drawback is the intractability of these generalised ATPG problems.
Since it is likely that inference will be intractable for real-world ar-
tifacts (as is true for MBD [13]), further work needs to be done to
develop efficient, approximation algorithms. One promising MBD
approach, that of stochastic approximation algorithms for multiple-
fault test generation, has been explored in [5].
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