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ABSTRACT els, demonstrating that these problems lie at the second level of the
This article formalises the dual problem to model-based diagnosipolynomial hierarchy. Given the intractability of MBD inference on
(MBD), i.e., generatindeststo isolate multiple simultaneous faults. real-world circuits [13], itis likely that multiple-fault ATPG will also
Using a standard propositional MBD framework, we first define a tesbe intractable, since both the MBD and multiple-fault ATPG are at
of minimal size that can isolate multiple simultaneous faults of anthe second level of the polynomial hierarchy.

arbitrary nature. Second, we prove complexity results for multiple-

fault tests of minimal size in propositional system models, showing

such problems have complexity similar to those of MBD problems,?2 Related Work

i.e., complexity at the second level of the polynomial hierarchy.

This article applies a standard MBD framework [14] to test genera-

tion. To our knowledge, no article has formalised a similar approach
1 Introduction for multiple-fault ATPG using the MBD consistency-based frame-
o . o .. work. Further, the ATPG literature lacks any methodology that di-
Many real-world applications have focused on identifying minimal . . . .

rectly generates tests to isolate faults of arbitrary size, often leading

sensor observations, tests that will accurately isolate faults. For . " . . S .

examole. in the aerospace industry. it is common bractice to ret_o inefficient and inaccurate fault isolation; ATPG focuses instead on
pie, in t P Y, P . pr i}erated single-fault approaches for this task, e.g., [18, 19]. ATPG

compute minimal test sets for systems, and also to build specia

equipment, called Built-in Test Equipment (or BITE), to conduct also differs fromsequential diagnosifl7], in that it computes all

; . . . testsa priori; in contrast, test sequencing computes the next best test
such fault-isolation tests (called Built-In Tests) [11]. The BITE will prioni, ' q 9 P
dynamlcally

then conduct pre-defined sensor analysis upon system start-up 0 . . .
malfunction. This area of diagnosis, called Automated Test Pattern The complexity of test generation has been carefully studied, and

. R L we review the complexity of ATPG and MBD.
_Generatlon (.ATPG) [3], has significant practl_cal importance. ATPG, ATPG Complexity: The standard single-fault ATPG model has
in more precise terms, concerns pre-computing a set of tests that ¢

E%en proven to be NP-complete [8], as it is an instance of the well-

validate circuits or diagnose hardwa_re in embedded applications [3 :nown SAT and CIRCUIT-SAT problems. Although this worst-case
In contrast, model-based diagnosis (MBD) [14] addresses the task L . oo . S
. . : . . . result indicates intractability, in practice test-generation is tractable
of isolating multiple simultaneous faults, givenaritrary observa-

tion a.. Although the objectives of efficient fault isolation are similar, because of the structural properties of circuits: the complexity is ex-

. . N ponential in the undirected circuit cut-width [12], and the average-
the approaches, and the entailed algorithms, are quite different. - T T
: - . . case complexity is poly-time in circuit size for circuits with bounded
This article formalises ATPG as a dual problem to MBD. Using a . : .

- . . cut-width. However, in the real world systems, multiple faults can
standard propositional MBD framework, we first define a test that can . o ;
; - . . : occur simultaneously, necessitating multiple-fault ATPG methods.
isolate multiple simultaneous faults, of an arbitrary nature. This for-

malisation extends standard notions of ATPG, which are restricted to MBD Complexity: Computing a diagnosis which is minimal

) . with respect to subset-inclusion or fault cardinality is NP-complete
generating tests that can isolaiagle, stuck-ataults, namely, faults o . .
g S . ... for propositional Horn models [1, 6]. The complexity for arbitrary
in discrete circuits that occur when wires or gates are stuck at either

. . ropositional models, for several minimality conditions, has been
O or 1[3, 15]. In this article we address models framed as I'D’O()leaughown to be at the second level of the polynomial hierarchy [4]. The

functions, since all existing ATPG is based on Boolean functions. . . ? .
: ) complexity becomes less tractable if we instead consider the prob-
However, our framework applies to more general models; for ex- : L . : .
: . ... lem of computing theset of all minimal diagnosed his problem is

ample, we can generalise our results to multi-valued propositiona

functions in a straightforward fashion, thus allowing our results toat least as difficult as counting the number of diagnoses, which has

be applicable to qualitative MBD/ATPG models with finite, discrete- been_shown_ o be #co-NP-Complete [7). _These resu_lts indicate t_hat
valued variables the diagnosis problems in which we are interested, i.e., computing

Our contributions are as follows. First, we define a general ATPGthe set of minimal-cardinality diagnoses over propositional models,

model, cast within a satisfiability (SAT) framework, which adopts thealre intractable.
multiple-fault definitions of MBD [14]. This general ATPG problem
addresses multiple simultaneous faults of an arbitrary nature. Se<§

ond, we prove complexity results for these more general ATPG mod* Definitions and Notation

1 Supported by SFI grant 04/IN3/1524. We now introduce notation for Boolean functions, MBD and ATPG.



3.1 Boolean Functions

Let f : {0,1}™ — {0,1} be a Boolean function over a sat =
{z1,z2,...,zn} Of n variables. A conjunctive normal form (CNF)
Boolean formulaf on Boolean variableX is a conjunction ofin
clause§C1, Cs, ...Cy, }. Each claus€; is a disjunction ok; literals
l1,...ls;. Aliteral is an instance of a variable or its complement.

We call Ay anassignmentor f if we set each of the variables jh
to either 0 or 1; such an assignment may be represented hyb&n
vector in{0, 1}" in the natural way.

A satisfying assignmenk, or model, for f is one for which
f(A) = 1. The set of satisfying assignments ffris denoted by
Ay. A partial assignmenis obtained when only a subset of variables
in X is assigned values. A partial assignment may be represented
a vector of lengtm, each of whose elements is either 0, 1xor

The generic satisfiability problem can be defined as follows.

Definition 1 (SAT) Given a CNF formula,f(z1,z2,...,z»), the
Boolean satisfiability problem SATfX has an answer YES iff
there exists an assignment of Boolean values to the variables
Z1, T2, ..., Tn, i.6.,3X such thatf evaluates to 1.

3.2 Model-Based Diagnosis Problem

This section introduces the notion of system model and diagnosi
that we use to generalise ATPG to multiple-fault scenarios. MBD

models are applicable to arbitrary systems, but in the following we,
assume that we are defining the MBD problem for circuits, to ensurg

consistency between the MBD and ATPG formalisms. In future work
we will define ATPG for arbitrary systems.

Central to MBD, anodelof an artifact is represented as a Boolean
propositional functiory’ over X . Distinguishing two subsets of these
variables asssumabl@ndobservablé variables gives us a diagnos-

b

In the MBD literature, a range of types of “preferred” diagnosis has
been proposed. This turns the MBD problem into an optimization
problem. In the following definition we consider the common subset-
and cardinality-ordering.

Definition 5 (Minimal Diagnosis) A diagnosisv is defined as min-
imal, if no diagnosis.’ exists such that the set of negative literals in
w’ form a proper subset of the set of negative literalsyin

Definition 6 (Diagnosis Cardinality) The cardinality of a diagno-
sis, denoted adw|, is defined as the number of negative liter-
als in w. A diagnosis is defined as cardinality-minimal, denoted
MinCard(w), if it minimizes the number of negative literals.

g.S ATPG Definitions

We now define the tasks performed by ATPG in terms of comput-
ing tests (satisfying assignments) that can isolate faults in a system
specified in terms of a Boolean functigh ATPG traditionally uses

a particular type of Boolean function, a Boolean circuit.

Definition 7 (Boolean circuit) A Boolean circuitC' is a directed
acyclic graph (DAG) with distinguished observables ouT, such
thatiINuouT= O¢ andINN ouT= ), where the vertices are labeled
as follows:

3

The input verticesN, labeled with a variabler; or a constant (0
or 1), have fan-in 0.

The output verticeyuT, labeled “output”, have fan-out 0.

The gate verticesH = {h1,..., hn}, with fan-ink > 0, are

labeled with a Boolean functioh; € H on k inputs(V, A, =),

where the- gate has fan-in of 1.

We now define notions of faults on Boolean circuits, using no-
tation introduced in [12]. The standard ATPG notion of a fault and

tic system. We use a standard specification of MBD [14], except thafaulted-circuit is restricted to a single faulty gate witktack-atault.
we use the notion of health assignment (defined below) rather than

sets of assumables to denote system health status.

Definition 2 (Diagnostic System) A diagnostic systen¥ is defined
as the triple¥ = (f, H, O), wheref is a propositional theory over
a set of variablesX, H C X is the set of assumables, addC X
is the set of observables.

Throughout this paper we will assume tlath H = @ and f L.

The traditional query in MBD computes terms of assumable vari-
ables, which are explanations for the system description and aj

observation. By convention, if the set of health variablés =
{h1,...,hm}, thenh; = 0 denotes normal functionality for com-
ponenti, andh; = 1 denotes a fault.

Definition 3 (Health Assignment) Given a diagnostic systef =
(f, H,O), an assignmenhy to all variables in? is defined as a
health assignment.

The MBD notion of diagnosis covers multiple simultaneous faults,
as denoted below.

Definition 4 (Diagnosis) Given a diagnostic system& =
(f,H,0), and an observatiorn over some variables irO, a
health assignment is a diagnosis ifff A a Aw L.

2 In the MBD literature the assumable variables are also referred to as “co
ponent”, “failure-mode”, or “health” variables. Observable variables are
also called “measurable” or “control” variables.

m

Definition 8 (Single stuck-at-fault) Given a Boolean circuit’, a
single stuck-at faul:(h;, ) causes a componeht € H to be per-
manently stuck at logic value € {0,1}.

Definition 9 (Faulted circuit) Given a circuitC and a single stuck-
at fault ¢(h;, v), a faulted circuit, denoted by, is the circuitC
with the output forh; set to valuev.

We can translate a circuit into a propositional formula which cor-
Eesponds to a diagnostic systet¢ = (f, H, O¢), in which we
restrict observables t®¢ (which covers only the inputs and out-
puts of the system) and translate each gate into an equivalent logical
formula. Based on this translation, the notion of faulted circuit cor-
responds to a single-fault health assignmehtn which only one
health variable is setto 1, i.e., for one {1,...,m}, h; = 1 and all
otherh;.;»; = 0. We denote a “nominal” health assignment, where

all h; = 0, usingw”.

Definition 10 (Test) Given a circuit diagnostic syster¥c
(f;H,0Oc), and a health assignment’, a test is an instantiation
o over some variables i@ such thatf A o A w" L.

Just as in MBD, we are interested in computing tests with respect
to some completeness and minimality criteria. A test sebiaplete
if it detects all single stuck-at faults; a complete test set of minimal
size is aminimaltest set.

We now define the (single-fault) ATPG problem using
consistency-based terminology from MBD:



Definition 11 (ATPG testability problem) Given a Boolean circuit Proof: We prove this result using a reduction from a propositional
diagnostic system¥ ¢, a single stuck-at faulp(h;, ), correspond-  abduction problem (PAPP [16], for which the problem of solu-
ing to health assignment’, is testable if and only if there exists a tion existence (as defined below) has been shown Bheomplete
testa such thatf A a Aw' L andf AaA w? L. Otherwise the [4]. A propositional abduction problem (PAP) can be defined us-
fault is said to be untestable. ing a tuple(V, =, u, 7), whereV is a set of variables of whick

and . are disjoint subsets, whil@ is a (consistent) propositional

The ATPG problem is to compute a minimal set of tests such thaformula. = is typically referred to as the hypotheses, ands the

every single stuck-at fault is testable. manifestations. A solutio,(7, 1), given manifestations, exists if

ZU T isconsistentan& U 7 = p.

We can reduce a PAP into a generalised ATPG problem using the

3.4 Review of Complexity Classes following procedure:

In this article we will be defining the complexity of several problems, ® for each hypothesig; € = create an observable varialile € O;
and we introduce the polynomial hierarchy as the standard means for for each manifestatiop; € n create a component variable €
classifying different complexity classes. The best-known complexity 7;

classes ard®> and N P: P is the set of languages possessing algo-¢ for each variable; € V'\ (E U u) create a variable;;

rithms that run in time that is a polynomial in the length of the input; ® for the propositional formuld” create a Boolean functiof, in
NP is the set of languages possessing algorithms that run in nonde- Which we have the variable correspondence as defined.
terministic polynomial time. Since we will be considering problems
that are harder than those inand N P, we define the polynomial
hierarchy in terms of languages as follows. A langudgis in the
classx? iff there is another languag€’ in the classP and an inte-
gerk for which £ = {z : (3y1)(Vy2)3ys) - - - (Qui), lws| = |=|*

for all 4, [(z,y1,v2, - ,v:) € L']}, where the sequence of quan-
tifiers alternates, ending wit = Jif ¢ is odd orQ = Vif ¢ is
even. According to this definitior? = " andP = . We can
also define the complementary hierardhy of problems, which de-
note the problems defined by €o= {L : L € L}, or in other
words, coxl = TIF fori = 0, ..., 00. In a manner analogous to
N P-hard problems being computationally more difficult th&a
hard problemsy. -hard problems are computationally more difficult
than N P-hard (or2¥-hard) problems.

We assume that in both PAP and ATPG, a variablé&&nu), and
its corresponding paifO, k), has value 0 denoting “normal” and 1
denoting “abnormal” (fo, ©O) or “faulty” (u, h).

Clearly this reduction can be performed in polynomial time. We
now show that the PAP has a solution iff the multiple-fault ATPG
problem is testable.

=-: Since7 is a (consistent) propositional formula, then it must
be the case thé&€ U7 = p whenp = {0,...,0}, together with
= ={0,...,0}, denote a “normal” state.

Assume a solution exists in the PAP with somehat is abnor-
mal; by our mapping, there exists a solutionMi-TEST such that
some faultyh corresponding t@. has a consistent assignment. Con-
sequently, we must have a testable multiple-fault settingRfTEST,
since there exists an assignment of Boolean values to the primary in-
puts and output of” (and alsoC) such that the output from com-
4 Multiple-Fault ATPG ponentsh; € H have complementary logic values@handC.
<: Assume that a testable multiple-fault setting exists in our

We now define more general notions of ATPG problems, using théfTPG problem. By our reduction, this means that there must be a
multiple-fault specifications defined in the previous section. solution to our PAP with abnormal setting for O

Definition 12 (Multiple-fault Health Assignment) Given a diag- 5 Minimal Multiple-Fault ATPG
nostic systen¥ = (f, H, ©), a multiple-fault health assignmemnt

is an instantiation of where at least 2 elements®of are setto 1. When we generate tests for multiple faults, there are two types of

minimality that must be considered: (1) minimality of the multiple-
fault; and (2) minimality of the size of the test set.

Multiple-fault minimality has largely been ignored within ATPG,
since ATPG computes multiple simultaneous faults by isolating sin-
gle faults in a sequential manner; however, this issue has received
considerable attention in MBD, and special-purpose algorithms have
been defined for minimal multiple-fault isolation, e.g., [14, 2]. Typi-
cally, given an anomalous observation in MBD, one wants to isolate
the fault-set of minimal cardinality, since (1) it is most likely that

The multiple-fault ATPG problem is hence defined as the problenteyer components have failed, and (2) this leads to replacing as few
of computing a test-set that can isolate every multiple fault Combi'components as possible.

nation in2"*. We now show the complexity of a decision version of  computing a test set of minimal size is a key underlying ATPG

We can now define a multiple-fault ATPG test:

Definition 13 (Multiple-fault Test) Given a circuit diagnostic sys-
temUc = (f,H,Oc), and a multiple-fault health assignment,
a multiple-fault ATPG test is an instantiatienover some variables
inOsuchthatf Aa Aw! ELandf AaAw? EL.

Definition 13,MF-TEST. task, since running the fewest tests leads to the most efficient (cheap-
est) fault isolation procedure. Test-set minimality has been largely
Problem 1 (vF-TEST) Given a circuit diagnostic systel¥c = ignored in MBD, which assumes arbitrary, rather than optimised, ob-
(f,H,0¢), and a multiple-fault health assignment, does there  servations will be input to the inference engine. It has been shown
exist a multiple-fault ATPG test? that computing the minimum numb@t* (C) of tests to identify all
single stuck-at faulté a circuitC' is NP-hard [10]. Further, approx-
Theorem 1 The Multiple-fault ATPG problenMF-TEST is 21 - imating this minimum test-set size is NP-hard as well [10], i.e., it

complete. is NP-hard to define somé@ > 1 and number of tests such that



T(C) <t <T*(C)- . As a consequence, we anticipate that the
minimal test-set problem for multiple faults will be intractable, given
the intractability of the simpler, single-fault problem.

Hence our space of possible health values is givenHoy=
{hl,h h1,2: ) hl,J7 h2,1, ceey h27J, vy h[J}.
Let f = Ci ACa A--- A Cy, be a CNF formula withn clauses.

In the following, we address the issue of generating a test-set for We construct a CNF formulé from G as follows.

minimal faults which are not restricted to the single-fault case.

5.1 Tests for Minimal Multiple-Fault Diagnoses

Almost all real-world systems suffer from being under-sensed, i.e.,
having too few sensors to uniquely isolate every multiple-fault sce-
nario, and from the model being over-constrained [15]. A conse-
guence of the diagnostic system being over-constrained and under-

sensed is that, for different, there may be minimal-cardinality di-
agnoses of differing cardinalities. Multiple-fault ATPG is thus faced
with the task of identifying thex leading to the max-cardinality diag-
nosis amongst the different This fault isolation problem has been
defined as a Max/Fault Min/Cardinality (MFMC) problem [5]. Here,
we show the complexity of generating tests for MFMC diagnoses.
The problem of computing a test for the Max-Fault Min-
Cardinality (MFMC) problem [5] can be defined as follows.

Definition 14 (MFMC-Test) Given a diagnostic systef, a Max-
Fault Min-Cardinality (MFMC) test (observation) is an instantiation
o over the variables ir0 such thatMinCard(f A «) is maximized.

5.1.1 Worst-Case Complexity

We will show that a restricted, decision version of the MFMC-Test
problem,M FMC'p, is I15 -complete, by showing a reduction from
MINMAX -CLIQUEtO M FM Cp. M FMCp frames the problem of
finding a testa that isolates a cardinality-minimal diagnosisof
cardinality at leask.

Problem 2 (M FMCp) : Given a CNF boolean functioii over a
setX of variables, for which the variable set is partitioned into dis-
joint subsets denoting observabl®s health variables{ and unob-
servable variabled/, an integerx, does there exist a test and a
health assignment such thatmin, — frq |w| > &2

Theorem 2 MFMClp is IT5 -complete.

Proof: We need to show two things: (1) thaf FMCp is in 115 ;
and (2) a reduction from HZ -complete problem.

1. ltis easy to see tha/ FM Cp is in IIZ, since it is solvable by
a polynomial-time nondeterministic machine with the use of an
NP-complete set of an oracle.

2. We now show a reduction from th&lZ-complete problem
MINMAX -CLIQUE [9].
MINMAX -CLIQUE is denoted by a grap¥ = (V, E), a partition
(Vi,5)ier,jes Of V, an integerx, a functiont : I — J, andx:

Variables The variables irf are as follows:

e For each vertex; ;, introduce a variablé.,; ; (the semantics
is thath., ; is true ifv; ; is in the clique, and the only literals
occurring in a cliquey are health literals).

e Foreach =1,2,...,1,7=1,2,...,Jandk =0,1,2, ..., s,
introduce a variablé’ ;..

The second set of variables ensures thal;. is
true if there are at least true variables in the set
{hor 1y Doy 5Py 1y ey By 5 1

Clauses The clauses irff are as follows:

e For each pair of vertices, v € G having no edgéu, v), add
aclause-h, V —h, to f.2

e Foreachi = 1,2,....1,j = 1,2,....,J andk = 1,2, ...k,
add C|aUSé/7;_1,j,k \Y (}/;_17]',16_1 A h”i,j)'

e Foreachi =1,2,....,1,j =1,2,...,J add clauses enforcing
Y; j0 =true

e Foreachk =1, ..., k, add clauses enforcing, o, = false.

e Finally, add a clause containing just the variable; ..

The above reduction clearly can be computed in polynomial time.
Next we verify that the reduction is correct.

= Supposé&= has a cliquey; of sizex. If this is true, then inf
we must assign true to the variablessuch that € ., and false
to the other variables. We also assign true to tigsg's such that
there are at leagt true variables in{h, , Aoy, ..., ho, }, @and we
assign false to the othéf;;.’s. This gives a satisfying assignment
for f.

Further, under the partition functioh : I — J, x:(G) =
min¢ max, {|x| : x € V. This corresponds in our satisfying as-
signment inf to there existingnin, s |w| = &, Since every
node iny. (G) consists of a health literal from a different partition,
i.e., it consists of a minimal diagnosissuch thajw| = .

<: Supposef has a satisfying assignment. Let= {v : h, is
assigned “true’}. Theny is a clique because for any pair of ver-
ticesu, v € x, there cannot be a clausé., vV —h,, in f (because
such a clause would not be satisfied), so there must be an edge
(u,v) € G. x has sizes or more becaus¥r, ;. must be true.
Further, a satisfying assignment frmust correspond to there ex-
isting x+(G) = min; max, {|x| : x € V, since under the satis-
fying assignment we hav@in, 1. |w| = &, and every node in
xt(G) consists of a health literal from a different partition, i.e., it
consists of a minimal diagnosissuch thafw| = . O

5.1.2 Approximation Complexity

We can also prove the complexity of approximating this problem. As
based on the approach presented in [9], we will use the method of
proving thellZ -completeness results forapproximation problems
MINMAX-A in terms of G-reductions. Ko and Lin [9] describe a
G-reduction fromMINMAX-SAT (I'sar) to MINMAX-A , where
MINMAX-A is an arbitrary optimisation problem. In particular, Ko
and Lin constructed G-reductions froffisar : |f]; (1 — ¢)|f]) to
apair(lyinmax—a : (1 — ez)size(z); (1 — €1)size(x)), where

€1 > €2 > 0. Based on this approach, they proved the following:

is the size of the largest clique @ restricted td J, ., (Vi,+(5)). In
other words, we can denofg (G) = min; maxy{|x| : x C V

is a clique inG+}. G denotes the induced subgraph@®@fon the
vertex setV; = U_, Vi.iqi)-

Given the partition,|V| = I -J = n; henceV =
{’0171, V1,2 ooy U1, T, V2 1y eeey U2, Ty eeny 1}1,]}. Partition: is given by
{’Ui,l, Vi, 2y +-ey ’Ui“]}, fori = 1,...,1.

We assume that in/ M Cp, there arel health variables, each
of which hasJ possible (abnormal) health values, i.e., health vari-
able k has values given byhy 1, hi,2, ..., hi, s}, & = 1,..., 1.

3 At this point, the satisfying assignmentsfteorrespond to cliques iy



Theorem 3 [9] There exists a constant > 1 such that the c-
approximation problem dflINMAX-CLIQUE is II5-complete.

We can use this result to prove the following:

Theorem 4 (M F M Cp-approximation) There exists a constant
¢ > 1 such that the c-approximation problem bf FMCp is 1L -
complete.

Proof: Let p be the reduction of theorem 2. In the above
proof, we showed that for any grapghi, MINMAX-CLIQUE
MFMCp(p(G)) For any graph whose vertex sét’ is partitioned
intoV;;,1 <¢<1,1< 5 < J,we definesize(G) = I. Simi-
larly, for any CNF formulaf whose variables are partitioned into
(O, H,U) such that the partition fof follows H; ;, 1 < i < I,

1 <j < J,wedefinesize(f) = |w|.

Then the above observation implies thas a G-reduction frong
MINMAX-CLIQUE : size(G); (1 — €)size(G)) to (MFMCp :
size(f); (1 — €)size(f)). O

5.2 Test-Set Minimality

. . |
We now address the problem of computing a minimal test to identify

amultiple fault diagnosis$n a circuit.

Given a test sef’, we define the size dt" as|T'|. A given test
a € T may identify a set of diagnoses as being consistent with
If testa € T is consistent with fault, then we assign = 1; we
assignt = 0 otherwise. A test seT’ unambiguously isolates if,
when applied tav A f, w is the only fault consistent witfi". A test
setT is of minimal size for isolating a fault if 7" unambiguously
isolatesw and there is no other test sEt such tha{T”’| < |T'| and

6 Summary and Discussion

We have described a generalised framework for ATPG that allows
this important technique to be applied to a wider range of tasks than
the current single-fault tasks; such new tasks include multiple-fault
inference for a range of embedded and other applications. In addi-
tion, we have described the complexity of these generalised ATPG
problems, showing that these problems lie on the second level of the
polynomial hierarchy.

This multiple-fault ATPG framework offers significant advances
to test generation, both in the ability to isolate multiple faults, and in
the ability to address systems more complex than digital circuits. The
drawback is the intractability of these generalised ATPG problems.
Since it is likely that inference will be intractable for real-world ar-
tifacts (as is true for MBD [13]), further work needs to be done to
develop efficient, approximation algorithms. One promising MBD
approach, that of stochastic approximation algorithms for multiple-
fault test generation, has been explored in [5].
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