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A Benchmark Diagnostic Model Generation System
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Abstract—It is critical to use automated generators for syn-
thetic models and data, given the sparsity of benchmark models
for empirical analysis and the cost of generating models by hand.
We describe an automated generator for benchmark models
that is based on using a compositional modeling framework and
employs graphical models for the system topology. We propose
a three-step process for synthetic model generation: (1) domain
analysis; (2) topology generation; and (3) system-level functional
model generation. To demonstrate our approach on two highly
different domains, we generate models using this process for
circuits drawn from the ISCAS benchmark suite and a process-
control system. We then analyze the synthetic models according to
two criteria: topological fidelity and diagnostics efficiency. Based
on this comparison we identify parameters necessary for the
auto-generated models to generate benchmark diagnosis circuit
and process-control models with realistic properties.

Index Terms—diagnosis, benchmark model generation, com-
positional modeling

I. INTRODUCTION

Benchmark model suites are vital to facilitating progress in
a variety of domains, and the presence of good benchmarks has
had big impacts on several areas. For example, the benchmarks
for SATISFIABILITY (SAT), e.g. SATLIB1 and DIMACS2

have spurred progress in that area; further, it has enabled
SAT algorithms to be applied to a variety of other domains,
such as planning [1]. Benchmark model suites are becoming
increasingly important for validating a variety of algorithms in
other domains, including VLSI design [2], [3], process control
[4], [5], [6], and bioinformatics [7].

Diagnosis, in contrast to areas such as SATISFIABILITY
and constraint satisfaction (CSP), has very few benchmarks.
To our knowledge there are only two publicly-available bench-
marks for diagnostics, the ISCAS benchmark models for
discrete-valued models [8], and the DAMADICS benchmark
for continuous-valued models [9]. Given the sparsity of bench-
mark models and the cost of generating models by hand, it is
critical to design an automated generator for synthetic models
and data.

To satisfy the need for benchmark models, we describe
a domain-independent Complex Systems Model Generator
(CoSyMGen), which is based on using a compositional mod-
eling framework and employs graphical models for the system
topology. Compositional modeling [10] is the predominant
knowledge-based approach to automated model construction.
It assumes that a system can be decomposed into a collection
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of components, each of which can be defined using a func-
tional model. These component models are then integrated into
the full system model using a system topology graph, which
describes the component interactions.

Standard compositional modeling tools, e.g., [11], [12],
[13], [14] require manual construction of component models,
and then use the component library to speed up this tedious
manual process of system-level model development. This
manual process is necessary to capture target systems, but is
costly for compiling a suite of similar benchmark models for
tasks like algorithm analysis. Our use of automated topology
generators overcomes the drawback of hand-generated topolo-
gies typical of compositional modeling [10] by using topology
generators for this task.

We base our automated topology generation on the recent
discovery that the topology of virtually all real-world systems,
from domains as diverse as World Wide Web, social networks,
biological systems and technological systems [15], [16] can
be modeled using a graph framework [17]. A range of graph
models have been proposed, e.g., [18], [17], [19], which are
significant improvements over the classic random graph mod-
els traditionally used for empirical analysis of algorithms, in
that they capture the topological properties of realistic systems
much better than do classic random graphs [15]. Although it
is known that different domains have different properties, e.g.,
[20], [15], there has been little work on characterizing do-
mains based on underlying properties. Further, until now, most
analyzes of such models have been confined to the models’
global statistical properties (e.g. degree distribution, average
shortest connecting paths and clustering coefficients) or the
statistics of specific local connectivity patterns (motif)[15].
In contrast, little research has focused on the functionality
and corresponding complexity of generated graphs in practical
applications.

Further, existing models have been inherently inaccurate,
due to discrepancies between the graphical parameters of
the real systems and those of the auto-generated graphs. For
example, the well-known Watts-Stogatz [19] model requires
an integral mean degree, whereas the mean degree of many
systems is non-integral [21].

We address the validity of models generated not only in
terms of their topological properties, but also in terms of
their functional properties. The functional property that we
examine in this article is diagnostics, specifically the inference
efficiency of model-based diagnosis (MBD) [22], [23], [24].
The MBD problem focuses on isolating the root faults given
an observation (e.g., of sensor values). More formally, MBD
determines whether an assignment of failure status to a set of
mode-variables is consistent with a system description and an
observation (e.g., of sensor values). This problem is addressed
in various engineering fields, and the underlying structure
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of the problem which affects the diagnosis complexity is
governed by the graph framework [21].

In this article, we assume we have a library of functional
component models for the domain in question, so the main
focus of benchmark generation is on creating ensembles of
random but “realistic” topologies. A range of methods exist
to generate system topologies, each of which has a set of
specific input parameters that must be optimized to create a
model that accurately depicts a domain-specific topology. As
we will show, the different generation methodologies produce
quite different models, with different topological properties,
such as degree distribution, etc. Since each application domain
requires different topological properties, the key to generating
good benchmark models is to match the generation method-
ology to the domain requirements.

Our contributions are as follows.
1) We propose a domain-independent synthetic model-

generation system, CoSyMGen, which can create models
whose parameters can be optimized to conform to a
range of different criteria.

2) We describe the main phases of model-generation:
a) domain-analysis, which extracts topology and com-

ponent statistics, and selects fidelity metrics Φ.
b) topology-generation, which automatically, rather

than manually, generates a high-fidelity system
topology G by optimizing corresponding param-
eters Π in terms of Φ.

c) functional model-generation, which uses the do-
main library, the component statistics and the
system topology (G), to generate the behavioral
equations.

3) We illustrate the domain-analysis and model-generation
procedure on two quite different domains: (1) model-
based diagnosis of discrete Boolean circuits (where we
compare the topological fidelity of the generated models
to that of real circuit models), and (2) process control
diagnostics for a pulp mill.

We organize the remainder of the document as follows.
Section II describes the assumptions underlying our model-
generation approach. Section III illustrates the system ar-
chitecture of CoSyMGen. Sections IV, V and VI describe
the domain analysis, system topology generation and system
functional model generation in the proposed benchmark gen-
eration process, respectively. Sections VII and VIII present
the experimental results of diagnosis benchmark generation on
the two different application domains. Section IX compares
our contributions to previous results in the literature. Finally,
section X summarizes our contributions.

II. KEY ASSUMPTIONS

This section discusses two key assumptions underlying this
approach: model compositionality and the ability to generate
realistic system topologies. We first introduce the necessary
notation to discuss these topics.

A. Notation
The models used in standard MBD frameworks, such as the

qualitative (logical) [22] or FDI [23], [24] approaches typically

define a system model in terms of a set B of behavioral
equations, defined over sets of failure-modes and observ-
able/controllable variables. The underlying assumption is that
such systems are not explicitly viewed as being decomposable,
and the system model is treated monolithically. In contrast
to these approaches, we are interested in system models that
are explicitly decomposable, so we must capture not just the
behavioral equations, but also a framework that captures the
system’s compositional properties.

A system is compositional if its behavior consists of
the combination of the behaviors of its constituent compo-
nents’ behaviors. Due to this assumption, modeling/analysis
of compositional models can be more efficient than non-
compositional modeling/analysis, and scale better. A precon-
dition for compositional modeling is the existence of an
underlying structure for the model. This will describe how
the different components of the system constrain each other.

We can thus describe a decomposable model Ψ using two
orthogonal aspects: behavior and topology (interaction). The
behavior model describes the (possibly dynamic) behaviors
of the system and components; the topology model describes
the component connectivity in terms of components and their
connections, and defines the constraints on component behav-
iors that enable their interactions to specify the system-level
interaction [25].

Definition 1. A composable system Ψ is defined using the pair
(B, G), where B is the behavior model and G is the topology
model.

We assume that a system Ψ can be decomposed into sub-
systems. There are two types of sub-system: a component,
which is a primitive sub-system, and a composite sub-system,
which can be further decomposed. A component represents the
specification of a primitive functionality of Ψ, i.e, no further
decomposition of functionality is possible that allows each
sub-function to coherently describe a process. We assume a set
C = {C1, ..., Cm} of components, and that the input/output
tuple for each Cj can be specified. By merging components
and/or sub-systems, we can define a hierarchical model; we
define a flat model to consist of a system represented only in
terms of components Ci ∈ C and their interconnections.

In this article we focus on two classes of model, a propo-
sitional logic MBD model, and a Bayesian network model, as
described below.

1) Model-Based Diagnosis Model: This section describes
the general MBD framework, which we will use to illustrate
our model construction process throughout this article. We can
characterize a MBD problem using the triple 〈COMPS,SD,
OBS〉 [22], where:
• COMPS= {C1, ..., Cm} describes the operating modes

of the set of m components into which the system is
decomposed.

• SD, or system description, describes the function of the
system. This model encodes the system’s topology within
the equations in SD.

• OBS, the set of observations, denotes possible sensor
measurements, which may be control inputs, outputs or
intermediate variable-values.



3

We adopt a propositional logic framework for our MBD sys-
tem behavior models SD. Component i has associated mode-
variable Ci; Ci can be functioning normally ([Ci = OK]), or
can take on a finite set of abnormal behaviors.

MBD inference, using weak fault models [26], assumes
initially that all components are functioning normally: [Ci =
OK], i = 1, ..., m. Diagnosis is necessary when SD∪OBS∪
{[Ci = OK]|Ci ∈ COMPS} is proved to be inconsistent.
Hypothesizing that component i is faulty means switching
from [Ci = OK] to [Ci 6= OK]. Given some minimality
criterion ω, a (minimal) diagnosis is a (ω-minimal) subset
C ′ ⊆ COMPS such that: SD ∪ OBS ∪ {[Ci = OK]|Ci ∈
COMPS \ C ′} ∪ {[Ci 6= OK]|Ci ∈ C ′} is consistent.

In this article, we adopt a multi-valued propositional logic
using standard connectives (¬,∨,∧,⇒). We denote variable
A taking on value α using [A = α]. An example equation for
a buffer X is [In = t] ∧ [X = OK] ⇒ [Out = t].

2) Bayesian Network Diagnosis Model: We can frame a
diagnosis problem as a Bayesian network (BN), as done in
[27]. Using our (B, G) framework, in a BN the behavior model
B consists of a set of factorized probability distributions, and
the topology model G is a graph.

Definition 2 (Bayesian Network). A Bayesian network is a
tuple (B, G), where G is a directed acyclic graph (DAG), and
B is a set of factorized probability distributions constructed
from vertices V in G based on the topological structure of G.
B satisfies Pr(V ) =

∏n
i=1 Pr(vi|π(vi)), where π(vi) are the

parents of vi in G.

If we model a diagnosis system as in [27], given an
observation OBS, a diagnosis consists of the posterior distribu-
tion of the failure modes, i.e., Pr(COMPS|OBS). We typically
will select those components with highest probability as the
most-likely diagnoses. We can also compute multiple-fault
diagnoses within this framework [28].

B. Compositionality Assumption

A domain D is compositional if a system model from D
can be composed from model components, each of which
is defined by a component functional model. CoSyMGen is
applicable to any compositional domain for which structural
models and component libraries exist.

Since the focus of this article is not on the theory of system
compositionality, we will assume the all of the domains to
which the synthetic generator will be applied are compo-
sitional domains, and refer the reader to the literature for
precise expositions of system compositionality. There is a large
literature on system compositionality: for example, [29], [30],
[10], [31]. In this article, we focus on two forms of behavior
equation:
• logic: the compositionality of propositional logic models

has been described in [32];
• probability equations: if we model a probability distribu-

tion in terms of a graphical model, the compositionality
of probability distributions is well-defined [33].

We assume that a model can be generated from the tuple
(G,B), where G denotes the topology graph, and B denotes

the system functionality. The topology graph G = (V, E) con-
sists of vertices V and edges E and specifies the topological
relations among the system components. For any system Ψ
that can be decomposed into a set of components, we define
the graph G(V, E) for Ψ such that
• the vertices V of G correspond to the components, inputs

or outputs of Ψ;
• the edges E of G are such that (vi, vj) ∈ E if (vi, vj)

correspond to the component pair (Ci, Cj) of Ψ and
(Ci, Cj) are coupled.

If the coupling relations indicate directionality, then we
assume that all edges of G are directed. Our component library
specifies a functional description Bi for each component vi in
the system being modeled.

1) Compositionality Requirements: When we assume com-
positionality, we assume that components can be represented
in terms of a block, which consists of the tuple (I, O, X,B),
where a block has two types of ports (I is a set of input ports,
O is a set of output ports), X defines the internal variables, and
B is the block’s functional description (behavioral equations)
defined over (I, O, X). The process of composing a system
from components consists of selecting appropriate blocks and
connecting the outputs of particular blocks to the inputs of
other blocks. The output-input connection is possible if the
types of the corresponding ports match [12]. Formal studies
of causal block diagrams can be found in [34], [12], [29], [35],
[36].

Bond graphs are one modeling framework that explicitly
capture a block-composition framework for a broad range of
continuous-time physical systems. Cellier [37] describes how
to interconnect a set of basic bond graph elements within the
object oriented modeling language Dymola.

In this article we focus on discrete-valued systems. As an
example of composing such systems, consider the case where
we have two simple blocks, Bi and Bj , each with one input
and one output. We further assume that the equations for
blocks Bi and Bj are Oi = φ(Ii, Xi) and Oj = φ(Ij , Xj),
respectively. Assume that we connect the output of block Bi,
denoted Oi, to the input of block Bj , denoted Ij . By our
assumption of compositionality, we can compose the equations
of Bi and Bj by equating Oi and Ij , or by renaming the input
Ij to the name of the output Oi.

Consider an example where Bi and Bj are both inverters,
with modes Mi,Mj respectively, where each mode has values
{OK, bad}, and with equations given by:

Bi : (Mi = OK) ∧ (Ii ⇒ ¬Oi);

Bj : (Mj = OK) ∧ (Ij ⇒ ¬Oj).

If we rename Ij to be Oi, then we obtain the composed
equations:

(Mi = OK) ∧ (Ii ⇒ ¬Oi); (Mj = OK) ∧ (Oi ⇒ ¬Oj).

If the system equations are defined by differential equations,
then an analogous example on block compositionality can be
provided, e.g., [34], [12].

In our model generation, we assume that we can represent
the block diagram, which consists of a set of blocks connected
by directed arcs, in terms of a directed graph G.
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2) Topology Graph: The topology graph G defines the con-
nectivity over the system components. For example, electronic
circuits can be viewed as graphs in which nodes are electronic
components (such as logic gates in digital circuits) and edges
are wires in a broad sense [16]. In gene TRNs, nodes represent
genes and edges correspond to regulatory interactions at the
transcriptional level between the genes [7], [38].

G can be either directed or undirected, depending on the se-
mantics of the component coupling relations. It is important to
note, however, that most compositional modeling frameworks
assume directionality, either explicitly [29] or implicitly (i.e.,
deriving the directionality) [34], [12].

C. Topology Generation Assumption

A second key assumption that we make is that the topology
of real-world systems can be captured using a random graph
framework. In the past several years several recent theoretical
studies and extensive data analyzes have shown that a variety
of complex systems, including biological [17], [15], social
[17], [15], and technological [16], [17] systems, share a
common underlying structure, which is characterized by a
class of random graph models. In this structure, the nodes
form several loosely connected clusters, every node can be
reached from every other by a small number of hops or steps,
and the degree distribution Pk, which is the probability of
finding a node with k links, displays a heavy tail [17]. Several
random-graph models have been proposed to capture the real-
world graph properties, such as the Watts-Strogatz (or small-
world graph)[19] and the Barabasi-Albert (or preferential
attachment) models [18].

Throughout this article, we use this topological property to
automatically generate the structure of our diagnosis models.

III. SYSTEM ARCHITECTURE

A. Architecture
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Fig. 1. Automated model generation framework.

Generation Algorithm: We generate diagnostic (bench-
mark) models in a three-step process.
• Domain analysis: analyze existing domain models to

extract important model properties;

• Topology generation: generate the (topology) graph Ĝ
underlying each synthetic model;

• System-level functional model generation: assign com-
ponents to each node in Ĝ, and create the system-level
functional model B̂.

Figure 1 depicts the system architecture. The figure shows
how Step 1, domain analysis, computes two types of infor-
mation: (1) domain topological properties, which are used
for topology generation (Step 2), and component statistics,
which are used for functional-model generation (Step 3). Step
2 is concerned with generating a system topology graph Ĝ
that captures the domain topology with high fidelity. We
have implemented this step in terms of model selection, i.e.,
selecting the model type (from among a large set of model
types that can be created by different model generators) that
best matches the topological properties of the original domain
model. Finally, in Step 3, using Ĝ, the component statistics
and a component library, we create the behavioral model for
the synthetic system.

In the following sections, we will show the main model-
generation steps in detail.

IV. DOMAIN ANALYSIS MODULE

We perform domain analysis to capture two types of data:
• component statistical properties.
• topological statistical properties;
We now describe each data type in turn.

A. Component analysis

The analysis of the component properties extracts informa-
tion about the distribution of components in Ψ, and also poten-
tially the connectivity patterns, or motifs, for the components.
The statistical data on components help us to generate more
realistic functional models.

For example, for a circuit, we must classify the component
types based on their connectivity, and the obtain the relative
distribution for each connectivity class. Hence, in a circuit,
which has a directed graph as its underlying structure such
that every node corresponds to a gate, we identify:
• the set of connectivity classes, where each class is dis-

tinguished by the pair ηij =(#-inputs,#-outputs) of every
component (node v ∈ G);3

• for each ηij , we identify the relative proportion of gates;
for example, for η11, we compute the relative proportion
of buffers and inverters.

It is possible to generate models using component clusters
of size larger than the primitive components for model gen-
eration. This approach has been advocated as the proper one
for biological domains, among others. For example, various re-
searchers, e.g., [39], [40], [41], have argued that the underlying
building blocks of bio-systems, motifs, consist of interacting
groups of between 2 and 4 genes, which control transcriptional
regulation [42]. Given this evidence, Shen-Orr et al. [40] have

3Our current automated procedure deals only with the number of inputs,
but in future we plan to extend the implementation to cover both inputs and
outputs.
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proposed motifs as the basic building blocks in biological and
technological networks, and further argue that such motifs
possess direct analogues in technological systems. A motif
has been defined as a subgraph that occurs significantly more
frequently in real-world networks than expected by chance
alone [43]. The observed over-representation of motifs has
been interpreted as a manifestation of functional constraints
and design principles that have shaped network architecture at
the local level. Some researchers believe that motifs reflect
the underlying processes that generated different networks,
and may have specific functions as elementary computational
circuits in the networks [43]. Motifs may then predict what
system-level function a network performs, and how it performs
them.

The proposed model-generation approach can be used for
synthetic generation based on motifs, as long as the domain
analysis is focused on the motif level, rather than the compo-
nent level.

B. Topological Analysis
We extract topological properties that are widely used to

characterize complex systems [44], [45]. The obtained statis-
tical data, based on key topological properties, can help us to
select the most plausible topology generation algorithms and
behavioral model.

We assume that we have a graph G(V, E) with n vertices
and m edges. Some key topological properties are now sum-
marized.

1) Global Graph Properties: Two fundamental global
graph properties, which are highly domain-dependent, are
characteristic path length L̄ and clustering coefficient C̄.

Shortest paths play an important role in the transport and
communication within a network. For such a reason, shortest
paths have also played an important role in the characterization
of the internal structure of a graph. A measure of the typical
separation between two nodes in the graph is given by the
average shortest path length, also known as characteristic path
length L̄, defined as the mean of geodesic lengths over all
couples of nodes.

Graph clustering characterizes the degree of cliquishness
of a typical neighborhood (a node’s immediately connected
neighbors). The clustering coefficient Ci for a vertex vi is
the proportion of links between the vertices within its neigh-
borhood divided by the number of links that could possibly
exist between them. The graph clustering coefficient C̄ is the
average of the clustering coefficient Ci for each vertex vi [15].

2) Graph Degree Properties: The degree (or connectivity)
ki of a node vi is the number of edges incident with the node.
A list of the node degrees of a graph is called the degree
sequence. The most basic topological characterization of a
graph G can be obtained in terms of the degree distribution
Pk, defined as the probability that a node chosen uniformly at
random has degree k or, equivalently, as the fraction of nodes
in the graph having degree k.

Degree distributions of some complex systems, such as
power grids, appear to have exponential tails: Pk ∝ e−k/κ,
as indicated by their approximately straight-line forms on the
semi-logarithmic scales [17].

Many real-world systems, such as the WWW and gene
transcriptional regulatory networks, are heavy-tailed in their
degree distributions. Power laws can characterize their tails,
i.e., Pk ∝ k−γ , as indicated by their approximately straight-
line forms on the double-logarithmic scales [17]. They are also
referred to as scale-free networks, although it is only their
degree distributions that are scale-free [17].

Other common forms for degree distributions are power
laws with cutoffs [20], [46], [17], such as those seen in
electronic circuits and airport networks. The degree distribu-
tion looks like a power law over the lower range of values,
but decays quickly for higher values. Often, this decay is
exponential, and hence this is usually called an exponential
cutoff: Pk ∝ k−γe−k/κ, where e−k/κ is the exponential cutoff
term, and k−γ is the power law term.

While most of the focus regarding node degrees has fallen
on degree distributions, there are higher-order statistics that
could also be considered. [45] introduces the dK-series of
probability distributions which specify all degree correlations
within d-sized subgraphs of a given graph G. In this frame-
work, the degree distribution Pk is the 1K distribution. The
2K distribution is the joint degree distribution which describes
degree correlations for pairs of connected nodes. The joint
degree distribution is

Pk1,k2 =
m(k1, k2)µ(k1, k2)

2m
,

where m(k1, k2) is the number of edges between nodes of
degree k1 and k2, and µ(k1, k2) is 2 if k1 = k2, and
1 otherwise. The higher-order distributions can be defined
analogously. The statistical data of dK distribution can be used
the input constraints of random graph generation approach in
the subsequent section.

3) Spatial Properties: A particular class of networks are
those embedded in the real space, i.e. networks whose nodes
occupy a precise position in two or three-dimensional Eu-
clidean space, and whose edges are real physical connections.
Along with a complex topological structure, many spatial
networks display a large heterogeneity in the wire length of
the connections [15]. For example, both electronic circuits
and brain networks have heavy-tailed wire length distributions
[47], [48].

4) Design Objectives: Various researchers have also pro-
posed optimization approaches as a means of generating sys-
tem topologies [49], [50]. By investigating plausible objectives
and constraints in the design of actual networks, observed
topological properties such as node degree distributions can
be understood as the natural by-product of an approximately
optimal solution to a network design problem. For example,
empirical analysis demonstrates that the wire length optimiza-
tion is among the underlying driving forces creating power law
degree distributions with cutoffs in both electronic circuits and
brain networks [51], [47], [48].

C. Metrics Selection

We assume that we have a correct set of functional com-
ponents, meaning that the system topology is the source of
model fidelity. In this case, we need to identify metrics for
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topology comparison, i.e., methods to measure topological
distance δ(G, Ĝ) between real topology graph G and synthetic
topology graph Ĝ.

Naturally, the topological properties discussed in the pre-
vious section, i.e., the characteristic path length L̄, clustering
coefficient C̄ and degree distribution Pk can be used as the
standard metrics. In addition to these standard metrics, some
extended metrics are also introduced for various applications
recently [15], [45], [52].

Extended Topology Metrics: We focus on the following
extended metrics.

s-Metric: The s-Metric of graph G is defined as s(G) =∑
edge(vi,vj)

didj , where (vi, vj) is the edges in the graph,
and di and dj are the degrees of the node vi and vj respec-
tively. The s-Metric is closely related to betweenness, degree
correlation and graph assortativity [45]. Recent research in
both technological and biological systems showed the corre-
lation structure has important impact on system function and
performance [53].

Subgraph Frequency Distribution: P (Fx(G)) defines that
probability of subgraph of type x occurring in graph G. The
distribution P (Fx(G)) enables us to analyze the frequencies
of all sub-graphs with specified sizes, and such subgraph fre-
quency statistics have been successfully applied on evaluation
of biological network models [54], [55].

Join-tree Metrics: In many applications involving inference
over systems Ψ, e.g., probabilistic inference and model-based
diagnosis, the inference complexity has been found to be
dependent on parameters of the join-tree T of the graph G of
Ψ [32].4 As a consequence, for applications involving system
inference, we use appropriate join-tree metrics, such as the
largest clique size µ(T ) [32], which can be used to represent
the inference complexity of the system.

The complexity of inference in a large class of discrete
models, which include propositional, CSP and BN models, is
exponential in the treewidth of the underlying graph. We can
define for a propositional logic model an underlying graph, the
topology graph G, which is called the Gaifman graph [56];5

the constraint graph underlying a CSP is also well-defined in
an analogous manner.

We need to select suitable metrics to validate the synthetic
topology based on the requirements of the particular applica-
tion. A parsimonious model can capture the general principles
or structures of real-world systems, but it is hard to match
all topological metrics simultaneously and perfectly. As a
consequence, we need to identify and understand the essential
metrics that are responsible for key behaviors of each appli-
cation, in order to rank the performance of synthetic models
primarily in terms of the specified metrics. For example, if
the performance of a routing algorithm depends only on the
distribution of the shortest path length in the network, then
the topologies of a real-world and synthetic network match

4Roughly speaking, the join-tree T of a graph G is a topological trans-
formation of G into a tree of cliques, where a clique is a fully-connected
subgraph [32].

5The Gaifman graph of a CNF formula is a graph having a vertex for each
variable and an edge (v1, v2) if the variables v1 and v2 occur in the same
clause of the formula. By treewidth (pathwidth) of a CNF formula we refer
to the treewidth (pathwidth) of its Gaifman graph.

perfectly as soon as their distance distributions are the same,
independent of other characteristics [45], [57].

Our proposed framework enables a user to specify any
evaluation metrics. To empirically demonstrate the use of
metrics, in this paper focus on generating benchmark models
for evaluating the complexity of discrete MBD algorithms, and
adopt a join-tree metric that focuses on diagnostic inference
complexity, as will be described in Section VII and VIII.
We have previously shown that this inference metric more
important than other network characteristics [21] metrics.

V. TOPOLOGY GENERATION MODULE

A

Explanatory Descriptive

SWG PA, SPA, PD, OPT

SPA, OPT PA, PD

Pk∝ e - k

Pk has cutoff Pk has no cutoff

Pk∝ k -γ

Fig. 2. Selecting the plausible algorithms depending on domain analysis

To generate a synthetic topology graph Ĝ using an algorithm
A, we provide to A a set Π of input parameters. We then
measure the properties of Ĝ (e.g., degree distribution) using a
set Φ of graph metrics [45] to compare the properties of the
real and synthetic topology graphs, and make adjustments to
the generation process, if necessary.

There is a wide range of generation algorithms available for
synthetic topology generation, e.g., [15], [58]. Table I classifies
the space of topology-generation approaches that our model-
generation tool supports, together with their key properties,
corresponding parameters, recommended applications, and as-
sociated model-generation computational costs. Based on the
results of domain analysis, the key properties can be applied
to select suitable algorithms. Figure 2 shows an overview of
this selection process. For example, the preferential attachment
(PA) [15] algorithm requires the number of nodes and edges
of Ĝ as input parameters, and is a viable model when the
degree distribution Pk ∝ k−γ (is power-law distributed) with
no cutoff. We classify the generator models into two main
groups, as shown in column 1 of Table I: explanatory models,
which attempt to capture the underlying growth or evolution
process of the system topology in the resulting model, or
descriptive models, which randomly generate topology graphs
under the constraints on the specified topological properties,
independent of any complex system growth process. For
example, the Preferential Attachment (PA) model captures
a specific network growth process of complex systems, in
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which new structure preferentially forms around existing sub-
structures [15], and provides a plausible explanation for the
origin of the corresponding power law degree distributions.
In contrast, given a specified degree sequence, the descriptive
generalized random graph (GRG) model [15], [59] randomly
forms edges by pairing nodes with uniform probability and sat-
isfies the degree constraint on each node simultaneously. The
process we adopt to generating high-fidelity synthetic models
differs based on this basic classification. In the following, we
will summarize our model selection process (using these two
classes), and then review the different generation approaches.

A. Topology Generation using Explanatory Models

Given key properties obtained from topological analysis of
real-world network G in domain D, and specified metric set
Φ according to domain-specific requirements, we select an
explanatory model from a set A of possible generators (see
Table I) as follows:

1) generate potential algorithm set A′ ⊆ A based on results
in domain analysis;

2) optimize parameters Πi of each algorithm Ai ∈ A′ to
match G in terms of specified topological metrics Φ,
and put the Ai into the result set Â if it can match G
with appropriate values of Πi;

3) if Â contains multiple algorithms, we compute addi-
tional metrics Φ′, according to further requirements in
D, and continue to evaluate and select algorithms in
terms of Φ′.

As discussed in Section IV, the degree distribution is one of
the most fundamental topological properties, and as shown in
Table I, many current topology generation approaches focus
on the capability to capture the degree distributions of real-
world systems. Figure 2 shows a typical example of the
step 1 in the above topology generation process, in which
potential algorithms are selected according to analysis on de-
gree distribution. For example, in gene expression simulation,
we analyzed the topology graph of the E.coli transcriptional
regulatory network (TRN) and found that it displays a clear
power law degree distribution. According to Figure 2, the PA
and PD model seem viable choices for topology generation.
Since the synthetic TRN topology graph Ĝ are used to
generate gene expression data (on which the accuracy of
reverse-engineering algorithms is evaluated), we only need to
measure the model fidelity in terms of regular topological
metrics. For this task, we can use the degree distribution
Pk as the basic fidelity metric Φ for the synthetic topology
Ĝ. The metric of Pk can be simplified as the corresponding
exponent γ when following a power law; the γ of the E.coli
TRN is about 2.5. The parameters in the PA(n,m) and
PD(n,m, gs, pd) algorithms are optimized in terms of γ; n
and m are assigned as the numbers of nodes and edges in
the actual TRN model respectively. In the step 2, we further
optimize values of input parameters to minimize the difference
in terms of the γ between the synthesized topology and the
actual TRN. The PA model can only generate graphs with
γ around 3 deviating from that of the TRN, but the PD
model can generate γ in a wide range (1 ∼ 3). Finally,

the PD model with (pd = 0.2) closely matches the actual
TRN, much better than can the PA model [60]. In some more
complicated cases, both the PA and PD model can closely
match the degree distribution of a real system, such as the
yeast protein interaction network, and we need to compute
additional metrics Φ′ like subgraph frequency distribution in
order to further evaluate and select algorithms, as presented
in step 3 [61]. Our topology generation approaches can be
used in a wide range of applications including diagnosis
benchmark generation and bioinformatics simulation. More
concrete examples of the topology generation process for
diagnosis are demonstrated in Section VII and VIII.

When using an explanatory model, we first restrict the
possible algorithms based on Model Focus (cf. column 2 of
Table I), i.e., whether the domain D provides information
to to generate a model from topological properties, or using
an optimization approach given the system’s global objective
function. We briefly discuss these two types of approaches.

1) Topology-Based Generators: Given the wide range of
graph generators defined in the literature, e.g., [15], [58], we
have selected four of the most important approaches, i.e.,
the small-world graph (SWG), Preferential Attachment (PA),
Spatial Preferential Attachment (SPA) and Partial Duplication
(PD) models. Actually, these models show the general and
fundamental principles underlying topologies of real-world
systems, and we can extend them and achieve higher fi-
delity by introducing richer sets of domain-specific external
parameters. Each approach has particular properties, which
lend themselves to modeling particular domains with differing
fidelity. We now summarize each model in turn.

SWG Model: This model aims to capture “small-world”
properties observed in many real-world systems like electronic
circuits [16] and power grids [19], such as low characteristic
path length L̄ relative to that of a classic random-graph
(ER) model Lr (L̄ ' L̄r), and high clustering coefficient
C̄ relative to that of a ER model C̄r (C̄ À C̄r). The SWG
generator extends a regular ring lattice with a set of random
connections determined by a rewiring probability pr. We adopt
the extended SWG approach of [21], which can model the
arbitrary mean degrees k̄ that occur in real systems, and not
just integral mean degrees, as in the standard generator. pr ' 0
corresponds to a regular graph, and pr ' 1 corresponds to
a random graph; graphs with real-world structure occur in
between these extremes. Figure 3 depicts the graph generation
process, where we control the proportion of random edges
using a rewiring probability pr. By continually increasing
pr, the regularity and modularity of the generated graph will
keep decreasing, more long-range links and nodes with higher
degree will appear, and consequentially characteristic path
length L̄ will become smaller.

PA Model: This model focuses on capturing the power-law
of the degree distribution, using an WWW-inspired generation
process [18]. Starting with n0 isolated nodes, at each t =
1, 2, ..., n − n0 a new node vj with mnew links is added to
the graph. The probability P (vi, vj) that a link will connect
vj to an existing node vi is linearly proportional to the actual
degree di of the node vi.
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TABLE I
TOPOLOGY GENERATION APPROACHES. INPUT PARAMETERS FOR GENERATION ALGORITHMS ARE AS FOLLOWS: n—NODE NUMBER; m—EDGE

NUMBER; pr—REWIRING PROBABILITY; α—SPATIAL FACTOR; gs—SEED NETWORK; pd—DUPLICATION PROBABILITY; λi—TRADE-OFF WEIGHT;
d—SUBGRAPH SIZE

Model
Class

Model Focus Generation
Algorithm

Key
Properties Parameters Recommended

Applications
Computational
Cost

Explanatory
Topological
Properties

Small-world Graph
(SWG)

Exponential degree distribu-
tion

n, m, pr Technological systems Low

Preferential
Attachment (PA)

Power law degree distribu-
tion

n, m WWW, social and citation
networks

Low

Spatial Preferential
Attachment (SPA)

Power law degree distribu-
tion with cutoff

n, m, α Spatial technological sys-
tems

Medium

Partial Duplication
(PD)

Power law degree distribu-
tion

n, m, gs, pd Biological systems Low

Functional
Optimization Multi-constraint Opti-

mization (OPT)
Power law degree distribu-
tion with cutoff

λi Technological and
transportation systems

High

Descriptive Topological
properties

dK-series All degree correlations in d-
sized subgraphs

d Technological and biological
systems

High

p=0 0 < p < 1 p=1

Regularity Randomness

Fig. 3. Generating a small-world graph from a regular ring lattice with
rewiring probability pr .

SPA Model: The SPA model extends the PA model with
a parameter α that improves the ability to capture networks
with spatial constraints embedded in physical space, such as
electronic circuits, telecommunications networks, and trans-
portation networks [15]. In the SPA model, the node position is
chosen randomly in a 2-D square space with uniform density.
Connections of a new node vj with each existing node vi are
established with probability P (vi, vj) ∝ diw

−α
ij , where wij

is the spatial (Euclidean or Manhattan) distance between the
node positions, di is the degree of the node vi, and α ≥ 0
is tunable parameter used to adjust spatial constraint and
shape the connection probability in the preferential attachment
process. When α = 0 the model corresponds to the standard
PA model. By continually increasing α, the modularity of the
generated graph will keep increasing, and fewer long-range
links and high-degree nodes will appear, and consequentially
characteristic path length L̄ will become larger. Finally the
degree distribution will degrade from the power-law distri-
bution to the exponential distribution with sharper cutoff.
Figure 4 displays the SPA graph generation by adjusting the
geometric constraint. Similarly, we also extend the preferential
attachment process in order to match the mean degree k̄ of the
real circuit.

PD Model: The PD model aims to capture the duplication
mechanism which is a dominant evolutionary force in shaping
biological networks [58], in contrast to other mechanisms
such as preferential attachment. Given a initial seed network
Gs, the network is updated by randomly choosing a node

Enhancing spatial constraint by increasing α

Fig. 4. Graphs generated by the SPA model by enhancing the spatial
constraint.

vi, adding a duplicate of vi, called node vj , and connecting
vj to each neighbor of vi with probability pd. This model
and its variants have been widely applied on bioinformatics
applications related to protein interaction networks (PINs) and
TRNs.

2) Optimization-Based Generators: Rather than explicitly
replicate of statistical properties, the Optimization approach
(OPT) use an optimization framework to model the mecha-
nisms driving network growth or evolution. The OPT model
formulates a weighted objective function over conflicting
system properties ξi and weights λi, e.g., f =

∑n
i=1 ξi ·λi, and

trades off the properties using the weights λi. For example, in
some systems embedded in physical space, such as electronic
circuits and brain networks, the topological structures are
shaped and optimized under two conflicting constraints: infor-
mation transmission steps (characteristic path length L̄) and
cost of constructing connection (average wire length W̄ ) [51],
[48], [62]. The objective function is formulated as follows:
f = λL̄ + (1− λ)W̄ , where 0 ≤ λ ≤ 1. For this OPT model,
the optimization function concentrates only on minimizing the
total wire length at λ = 0, and a regular network emerges
with a nearly uniform degree and high characteristic path
length L̄. At λ = 1, the optimization function concentrates
only on minimizing the average shortest path length, and a
star-like network emerges with highly connected hubs. The
topology graphs with the power law distributions with cutoffs
should emerge when 0 < λ < 1 [49], [50]. The optimization
process is looking for a solution that minimizes the above
objective function at an appropriate value of λ. This approach
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can also give rise to power-laws in graph degree distributions
with cutoffs under appropriate values of λ [49], [50]. Starting
from a connected random network in which nodes are evenly
put on a 2-D square, we use simulated annealing to search
for the minimum cost of the objective function [63], [64].
In each annealing rearrangement step, an edge is randomly
selected and rewired. In rearrangements, duplicated edges and
self-loops are not allowed, to ensure that no node will be
disconnected or isolated.

B. Topology Generation using Descriptive Models

The dK-series Model generator [45] has as its primary
input parameter an integer d, which allows one to specify all
degree correlations within d-size subgraphs of a given graph
G6. 1K captures the degree distribution Pk and is equal to
the generalized random graph (GRG) approach [15], [59]. 2K
randomly generates synthetic graphs by maintaining of the
joint degree distribution of the given topology graph G, and
3K considers interconnectivity among triples of nodes.

Generally, the set of (d + 1)K-graphs is a subset of dK-
graphs, and larger values of d further constrain the number of
possible graphs. Given a descriptive dK-series algorithm, we
generate a synthetic model Ĝ by increasing the input parameter
d until the generated graph Ĝ matches the properties of the
real-world graph G with sufficient fidelity in terms of the
specified metrics Φ. Increasing values of d capture progres-
sively more properties of G, at the cost of more complex
representation of the probability distribution and dramatically
increasing computational complexity.

[45] found that the d = 2 case is sufficient for most practical
purposes, while d = 3 essentially reconstructs the Internet AS-
and router-level topologies exactly in terms of regular graph
metrics. Our experiments show similar results on the TRN of
the E.coli and electronic circuits [60].

Another dimension in model selection encompasses trade-
offs between: (1) complexity of a model and the number of
metrics it tries to reproduce, and (2) its explanatory power and
associated generality. Although the dK-series model generally
can capture regular topological metrics better than explanatory
models due to the number of constraints imposed, we cannot
use it to discover laws governing the topology growth process
of a particular system. It lacks predictive and rescaling power
necessary for benchmark generation. Our experiments on
diagnosis model generation also showed that the dK-series
model is not flexible enough for fitting more complicated join-
tree metrics.

VI. SYSTEM FUNCTIONAL MODEL GENERATION

To generate a functional model, we assign components to
G, and then merge the functional equations for each assigned
system component.

6Actually, a large number parameters are needed for every value of d in
real implementations, but d is the governing parameter.

A. Assign Components to graph G

Given a topology graph G, we associate with each node
in G a component, based on the number of incoming and
outgoing arcs for the node. Hence, given a node v ∈ G
with i inputs and o outputs, we assign a component, denoted
∆Z(i, o, τ,BZ , w) where τ denotes the type (e.g., AND-gate,
OR-gate), BZ defines the functionality (behavioral equations)
of component Z, and w the weights assigned to variables, e.g.,
probabilities assigned to the component failure modes of Z.

Fig. 5. Graph created for simple circuit topology. Inputs are denoted by
yellow nodes, components by blue nodes, and outputs by dotted green nodes.

Example 1. Consider that the topology generation process
has created a graph G, as shown in Figure 5. This graph has
been created with appropriate proportions of input, component
and output nodes, based on our domain analysis. Given this
structure as input, together with a component library and
component statistics, we can now assign components to G.

Given a node v ∈ G, we randomly assign to v a suitable
component with probability based on the computed component
distribution. For example, the single-input nodes correspond
to single-input gates (NOT, buffer), and the dual-input nodes
correspond to dual-input gates (AND, OR, NAND, NOR,
XOR).

B. Generate the System Functional Model

In the final step we generate the system functionality in
terms of the union of the component functions, such that we
match corresponding inputs and outputs. As an example of
input/output matching, consider the following: if output 1 of
component X , denoted OX,1, is the second input to component
Y , denoted OY,2, then we set OX,1 = OY,2. Once this is done,
we merge the component functional descriptions to generate
the system functional model B. At present, we assume that
we can simply take the union of the component functional
descriptions; in future work we plan to explore systems for
which functional composition is more complicated.

VII. CASE STUDY 1: ISCAS-BENCHMARK CIRCUITS

This section summarizes experimental results comparing
the structure and diagnostic inference complexity properties
of auto-generated models with ISCAS benchmark models,
which are an established benchmark for circuit optimization
[8]. The benchmark suites consist of multiple sets of circuits,
which include the ISCAS85, ISCAS89 and ISCAS99 circuits.
We have run experiments for the full suite of ISCAS85
benchmarks. We present only a few demonstrative results here,
due to space limitations.
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A. Domain Analysis

1) Component Analysis: The ISCAS-85 benchmark circuits
are presented in netlists of fundamental logic gates, which
provide a standard, non-hierarchical representation specifying
both network topology and functionality (in terms of the
functionality of primitive gates) [65]. Our component analysis
revealed that only seven types of primitive gates (NAND,
NOR, NOT, AND, OR, XOR and BUFF) appear in ISCAS-85
circuits, and in general each circuit contains only four or five
types of gates. Figure 6 shows several of the gates that we use
in our component library, together with the gates’ functionality
(in terms of truth-tables).

Fig. 6. Partial component library for combinatorial digital circuit domain.
Each gate also has an associated truth-table defining the gate’s functionality.

The NAND gates are most common components in every
ISCAS-85 circuit. For instance, the % of NAND gates in C17,
C432 AND C1355 is 100, 74 and 84%, respectively. One
possible reason for the prevalence of the NAND gate is that it
is the cheapest gate to manufacture. Additionally, NAND gates
alone can be used to reproduce the functions of all the other
logic gates. Figure 7 shows how an XOR functional block can
be implemented by four NAND gates, and the prevalence in
C1355 of many NAND gates may be due to the XOR functions
it repeatedly performs.

Another property of note is that the same type of component
may have various numbers of inputs. For example, in C432
most AND gates have two inputs, but a small number of
AND gates have four, eight and even nine inputs. We need to
carefully consider above circuit component statistics in system
functional model generation.

2) Topological Analysis: Cancho et al. found small-world
graph patterns for a small collection of electronic circuits,
and observed the power law tails with cutoffs in degree distri-
butions [16]. Figure 8 shows cumulative degree distributions
for the full suite of ISCAS-85 benchmark circuits in log-
log scale. We can see that most circuits exhibit long tails
with cutoffs in their degree distributions. Existing analysis has
conjectured that the cutoffs in power law degree distributions

 

Fig. 7. A 2-input XOR functional block implemented by 4 NAND gates.
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might result from the presence of spatial constraints limiting
the number of links when connections are costly [20], and
this has been confirmed by further studies on diverse networks
such as the Internet, power grids, transport networks and brain
networks [20], [16], [66], [67], [68], [48].

In circuit design, wire length has been treated as the prime
parameter for performance evaluation since it has a direct
impact on several important design parameters [51], [69].
Recent research on circuit placement showed that the wire
length of real circuits exhibits a power law distributions [51],
[47], [62]. Another driving force underlying circuit design
is timing. Many design cost metrics can be treated as tech-
nological parameters that can be optimized by trading off
delay and wire length [62]. The delay of signal transmission
among components can be approximately simplified as the
characteristic path length.

In an electronic circuit, a cluster of components corresponds
to components that together serve a particular task, e.g., a sub-
system; the relatively small number of connections between
clusters corresponds to the fact that sub-systems are typically
loosely-coupled. As shown in Table II, the characteristic path
length of each ISCAS85 circuit is close to that of the 1K
random graph with corresponding size. Figures 9 and 10
show different views of a typical ISCAS-85 benchmark circuit,
C432. It is important to note the density of shortcut edges
joining nodes that have long paths (based on the circle connec-
tivity). This circular network view displays such connections
clearly, and demonstrates that the overall graph distance or
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TABLE II
THE CHARACTERISTIC PATH LENGTHS OF REAL CIRCUITS AND

CORRESPONDING RANDOM GRAPHS.

Circuit real random
C432 4.5309 4.3333
C499 4.6475 4.4053
C880 6.9756 5.4689

characteristic path length for this network will be relatively
low due to such connections.

Fig. 9. The directed graph depicting the topology of circuit C432, displayed
in a circular view.

Fig. 10. The directed graph depicting the topology of circuit C432, displayed
in a regular view.

3) Objective Metric Selection: This section addresses ways
in which we analyse the fidelity of the synthetic models. The
primary metric that we use is derived from the MBD inference
task.

MBD Auto-Generation Task: Given a real-world model
(B, G), the objective of MBD auto-generation is to cre-
ate an “equivalent” synthetic model (B̂, Ĝ) that minimizes
|γA(B̂, OBS)−γA(B, OBS)|, where A is an MBD inference
algorithm that has complexity γA(B, OBS) when computing
a probability-minimal diagnosis given B and observations
OBS.7

As noted earlier, the treewidth of the topology graph is
the key parameter for determining inference complexity. The
treewidth is closely related to the largest clique size µ(T )
of G [32], which is the parameter we adopt as a complexity
measure for an MBD model defined in terms of propositional
logic or as a BN.

B. Topology Generation

1) Explanatory Model Approach: We generated topology
graphs using the steps shown below.

Step 1: Based on the evidence of power-laws with cutoffs in
degree distribution and wire length, the SPA model combining
preferential attachment with the constraint of spatial layout is
a plausible candidate for topology generation of circuits. The
OPT model can give rise to power laws with cutoffs in both
degree distribution and wire length distribution under appropri-
ate λ. We, along with Barthelemy [70] have found that, under
appropriate parameters, the SPA model can generate structures
similar to that of the OPT model. However, the computational
cost of model-generation using the OPT model is significantly
higher than that of using the SPA model, so we use the SPA
model as an efficient alternative of the OPT model in practical
applications. The SWG model is also possible choice to fit
the small-world graph pattern observed in circuits. The SWG
model naturally has sharp cutoff in its exponential degree
distribution, and can vary the tail length of degree distribution
in a limited range.

Step 2: we automatically optimized parameters in each
model to match the µ(T ) of real circuits. Experiments showed
that two selected models can both match real circuits with
appropriate parameters. For example, the typical circuit C432
can be matched by the SWG model with pr ' 0.28 [21] as
shown in Figure 12, the SPA model with α ' 3.7 as shown
in Figure 13. Figures 14, 15, 16 and 17 show the results of
some other circuits.

Step 3: since both the SPA and SWG model fit the real
circuits well in terms of µ(T ), we can further refine the
model selection by other topological metrics, such as degree
distribution Pk. As shown in Figure 18, the SPA model can
match real circuits better than can the SWG model in terms
of Pk.

2) dK-series Approach: As shown in Table IV, when d = 3
the dK-series model can match almost all common circuit
topological metrics perfectly, as also occurs in the case of the
TRN and Internet modeling [45].

Example 2. Given a desired system with n components, we
generate the required topology, as shown in Figure 11(a). The

7We assume that γ(·) returns a complexity parameter such as CPU-time or
number of nodes searched.
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topology of Figure 11(a) depicts the schematic of a simple
circuit with arbitrary components A, B, C, D and E. The circuit
has two inputs, I1 and I2, with the output of component i
denoted by Oi.

C. Functional Model Generation

We illustrate how we construct a circuit functional model
using a continuation of our running example. We show how we
create functional models using propositional logic and BNs.

A B D

C E

I1

OD

OE

OA OB

OCI2

Circuit
Topology

invertSA0

SA1
SA1

SA1

OD

OE

OA OB

OC

I1

I2

A B

C

D

E

Components
Assigned

(a)

(b)

SA0: stuck-at-0 SA1: stuck-at-1 Invert: inverse of normal
behaviour

Fig. 11. Schematic of simple electronic circuit.

Example 3. Propositional logic: Given the topology of the
9-node graph G of Figure 5, we assign components to G as
follows:
• for each input-node we assign an input;
• for each output-node we assign an output;
• for each component-node we assign a component based

on the distribution over component types.
Figure 11(a) depicts the schematic of the circuit with two

inputs, I1 and I2, with the output of component i denoted by
Oi, and arbitrary components A, B, C, D and E. Given the
component distribution, Figure 11(b) shows the circuit with
instantiated components.

Finally we generate the system functionality in terms of the
union of the component functions. For our diagnostic applica-
tion, we generate the functional description as the union of the
components’ normal-mode equations (and potentially failure-
mode equations). In the following, we define the normal-mode
equations for the components Inverter, Buffer and AND:

Inverter i: (Mi = OK) ∧ (Ii ⇒ ¬Oi);
Buffer i: (Mi = OK) ∧ (Ii ⇒ Oi);
AND i: (Mi = OK) ∧ [(Ii1 ∧ Ii2) ⇒ Oi]

(Mi = OK) ∧ [(¬Ii1 ∨ ¬Ii2) ⇒ ¬Oi]

If we rename appropriate inputs and outputs, then we obtain
the composed equations:

(MA = OK) ∧ (I1 ⇒ ¬OA); (MB = OK) ∧ (OA ⇒ OB);
(MD = OK) ∧ (IB ⇒ ¬OD); (ME = OK) ∧ (IC ⇒ ¬OE);
(MC = OK) ∧ [(OA ∧ I2) ⇒ OC ];
(MC = OK) ∧ [(OA ∧ I2) ⇒ ¬OC ].

Example 4. Bayesian network: In a Bayesian Network (BN)
[71], we assign to each node v ∈ G a probability distribution
(CPT) Pr(v|π(v)), where π(v) are the parents of v in G.

Given the component assignment of Figure 11(b), we assign
a distribution to failure-mode values by assuming that normal
behavior is highly-likely, i.e., Pr{Ci = OK} ' 0.99, and
faulty behavior is unlikely, i.e., Pr{Ci 6= OK} ' 0.01.
Figure 11(b) depicts the instantiated failure-mode for the com-
ponents in shaded boxes: Components B, C and E have SA1
fault-modes8, component A has a SA0 fault-mode, and com-
ponent D has a INVERT fault-mode. Given this information,
we can generate a system description with distributions corre-
sponding to the component-types and fault-mode types as just
described. The distributions required are: Pr(OA|I1,MA),
Pr(OB |OA,MB), Pr(OC |I2, OA,MC), Pr(OD|OB ,MD),
and Pr(OE |OC ,ME). Table III shows a sample distribution
for Pr(OA|I1,MA).

TABLE III
TRUTH-TABLE FOR INVERTER A, WITH SA0 FAULT-MODE (WHERE THE

OUTPUT IS f INDEPENDENT OF THE INPUT).

MA I1 Pr(OA)=(t,f)
OK t (.05,.95)
OK f (.75,.25)
sa0 t (.05,.95)
sa0 f (.15,.85)

D. Analysis of Synthetic Model
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Fig. 12. The inference complexity and maximal degree of the SWG model
corresponding to the circuit C432 (averaged over 100 runs).

1) Explanatory Model Approach: As shown in Figures 12,
13, 14, 15, 16 and 17, the tail lengths of the degree distribu-
tions are highly correlated with inference complexity, and the
tail of Pk must be modeled well, since it defines the high-
degree nodes that contribute to large cliques in the join-tree,
and hence high complexities using join-tree metrics. The PA
and PD model generate degree distributions with tails that are
longer than those of real circuits, and therefore the resulting
models have inference complexity higher than those of the
corresponding real circuits.

8A component with a stuck-at-1(stuck-at-0) fault outputs t(f) (resp.)
independent of the input(s).
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Fig. 13. The inference complexity and maximal degree of the SPA model
corresponding to the circuit C432 (averaged over 100 runs).
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Fig. 14. The inference complexity and maximal degree of the SWG model
corresponding to the circuit C499 (averaged over 100 runs).
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Fig. 15. The inference complexity and maximal degree of the SPA model
corresponding to the circuit C499 (averaged over 100 runs).

 1

 100000

 1e+010

 1e+015

 1e+020

 1e+025

 1e+030

 1e+035

 1e+040

 0  0.2  0.4  0.6  0.8  1
 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

m
ax

 c
liq

ue
 s

iz
e

m
ax

 d
eg

re
e

rewiring probability p

Complexity of C880

max clique size
max degree

Fig. 16. The inference complexity and maximal degree of the SWG model
corresponding to the circuit C880 (averaged over 100 runs).
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Fig. 17. The inference complexity and maximal degree of the SPA model
corresponding to the circuit C880 (averaged over 100 runs).
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TABLE IV
THE STATISTICS ON THE AVERAGE CLUSTERING COEFFICIENT C̄ ,

CHARACTERISTIC PATH LENGTH L̄, AND s-METRIC OF CIRCUITS AND THE
GRAPHS GENERATED BY THE CORRESPONDING 3K-SERIES MODEL

(AVERAGED OVER 100 GRAPHS).

Model L̄ C̄ s-Metric
C432 4.5309 0.003118 6896
3K 4.4008 0.003118 6896

TABLE V
THE INFERENCE COMPLEXITY OF C432 AND CORRESPONDING

dK-SERIES MODELS (d = 1, 2, 3). ALL VALUES OF THREE MODELS ARE
AVERAGED OVER 100 GRAPHS RESPECTIVELY.

Model C432 1K 2K 3K
max clique size 1.4e14 8.9e17 3.3e16 1.8e16

2) dK-series Approach: Although this model captures the
degree distribution and other regular topological properties
well, Table V shows, however, that d = 3 provides insuf-
ficient fidelity to match µ(T ) metrics for MBD benchmark
generation; it also shows that increasing d can generate
random graphs with increasing levels of fidelity of inference
complexity. For d > 3 the computational complexity increases
dramatically, and the size of the generated random-graph
ensemble decreases exponentially as well. In this case, the dK-
series model is unsuitable for diagnosis benchmark generation,
compared with the SPA and the SWG model.

3) Diagnosis Complexity Analysis: Table VI lists the in-
ference complexity data of the ISCAS-85 benchmark circuits.
For all circuits of non-trivial size, the maximum clique size is
very large, indicating that the diagnostics inference complexity
for multiple-fault diagnoses would be high.

VIII. CASE STUDY 2: PROCESS-CONTROL SYSTEMS

This section summarizes experimental results comparing
the structure and diagnostic inference complexity properties
of auto-generated models with a real pulp mill benchmark
model developed by Castro and Doyle [6], which consists
of modular representations of unit operations in a complete
pulp mill. The pulping process benchmark is based on a
nonlinear dynamic mathematical model of an actual pulp mill
process. The benchmark can used for several as a basis for
studying several process-system tasks, including modeling,
control, estimation and fault diagnosis [6].

TABLE VI
THE MBD INFERENCE COMPLEXITY IN TERMS OF THE LARGEST CLIQUE

SIZE IN THE COMPILED BN MODEL.

circuit node number edge number max clique size
C17 11 12 16
C432 196 336 1.40737488355328E14
C499 243 408 8.796093022208E12
C880 443 729 1.15292150460684698E18
C1355 587 1064 7.0368744177664E13
C1908 913 1497 4.6116860184273879E18
C2670 1350 2075 2.4758800785707605E27
C3540 1719 2936 3.5681192317648997E44
C5315 2485 4386 6.73998666678766E66
C6288 2448 4800 2.037035976334486E90
C7552 3718 6144 2.9230032746618058E48

TABLE VII
THE STATISTICS OF MAJOR COMPONENTS IN THE PULP MILL BENCHMARK.

Component Statistics
Valve 60%
Condenser 10%
Evaporator 6%
Tower 4%
Tank 4%
Washer 3%
Filter 2%
Causticizer 2%

A. Domain Analysis

1) Component Analysis: The primary goal of a pulp mill
is to produce pulp of a given Kappa number, which specifies
the “brightness” of a pulp stream, while minimizing energy
costs, utilities and chemical make-up of each stream. Pulp
mills can be divided in two major areas: fiber line and
chemical recovery. In a typical pulp mill, the major units of
operation are: a digester, pulp washers, oxygen tower, storage
vessels, bleaching towers, evaporators, recovery boiler, smelt
dissolving tank, clarifiers, slaker, causticizers and lime kiln
[6].

According to the detailed schematic diagrams in [6], there
are 130 basic physical components and about 180 connections
in the pulp mill benchmark, and the most common basic
components are valves, which are used to connect components
in and between various key units. Table VII lists the statistics
of the major components used in the pulp mill benchmark.

Valve

(Flow)

Condenser 

(Temperature)

Tank

(Volume)

Tower

(Volume, Pressure)

Washer

(Dilution Factor)
Filter

(Wash to liq. ratio)

Fig. 19. Partial component library for pulp mill process control domain.
Each component has specific process measurement variables associated with
the component’s functionality, as shown under the component’s name.

Figure 19 shows several typical devices used in our pulp
mill process control component library, together with the
variables representing the devices’ primary functional role.
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Only the pulp washers are modeled by algebraic equations.
All other units are modeled by ordinary differential equations
(ODE) or partial differential equations (PDE) [6].

2) Topological Analysis: Based on the flowsheet and de-
tailed schematic diagrams in [6], we decomposed the pulp
mill benchmark into fundamental device components, and
generated the underlying topology graph according to the
physical connections among these fundamental components.
As shown in Figure 29, the topology graph of the pulp mill
displays a clear power law degree distribution with cutoff,
which is discovered in many technological complex systems.
Figures 20 and 21 show different views of the topology
graph of the pulp mill, and both figures show that most
connections are local connections between near neighbors, and
there are few long range connections. The pattern displayed in
both figures are consistent with the modular structure of the
topology of the pulp mill. The detailed schematic diagrams in
[6] show that the pulp mill consists of 8 loosely-coupled sub-
modules, in each of which nodes are densely connected. We
also found that the characteristic path length L̄ of the topology
graph is much larger than that of corresponding random graph.

In our topological analysis, we only consider connections
between physical components; however, some components,
such as valves and condensers, have an embedded control
interface in addition to the inlet and outlet flow. The topology
shown in Figures 20 and 21 ignores the embedded control
interfaces of these components. If we treat each embedded
control interface as an “input” component, we can generate
a new topology graph with 232 nodes and nearly 300 edges.
Figures 22 and 23 show different views of the correspond-
ing topology graph, which share a similar pattern with the
topology graph in Figures 20 and 21. As shown in Figure 30,
the new topology graph displays a clear power law degree
distribution with cutoff as well.

If we compare the two circular views of the pulp mill
(Figure 20 and 22) with that of a typical circuit, C432
(Figure 9), we see that the pulp mill has far fewer shortcut
edges than does the circuit. As noted earlier, these shortcut
edges connect components that would otherwise be connected
by long paths. Hence, these figures clearly show that the
pulp mill has a longer mean graph distance or characteristic
path length than does the circuit. Also, even with the control
structure, the essential linear aspect of the process-control
system is the dominant structural feature.

3) Objective metric selection: The main objective of our
study was to provide as close a comparison of the system
models of the circuit and pulp mill domains as possible. To
achieve this in terms of diagnostic complexity, we can create
propositional logic and Bayesian network (BN) diagnostic
models for the system-level pulp mill, since this was the
class of model we generated for the circuits. Although this
class of model differs from the FDI approach taken for most
diagnostics studies of the pulp mill, e.g., [72], [73], system-
level BN models can provide useful diagnostics for the global
behaviors of a pulp mill.

To build a qualitative model for the pulp mill benchmark,
we discretized all of our variables. For example, the input
signals (manipulated variables) are scaled and constrained

Fig. 20. The topology graph of the physical components in the pulp mill
displayed in a circular view.

Fig. 21. The topology graph of the physical components in the pulp mill
displayed in a regular view.

between ±1.0, and output signals are scaled based on the
nominal/steady-state value of outputs, and the maximum range
of change of the outputs [6]. The scaled continuous-valued
variables can be further converted into discrete-valued vari-
ables according to the specification of the pulp process.

In using the logic and BN approaches for our experiments
on the pulp mill, we selected µ(T ) as the objective metric, as
done for our circuit experiments.

B. Topology Generation

1) Explanatory Model Approach: We generated topology
graphs using the steps shown below.

Step 1: Since the pulp mill displays a power law degree
distribution with cutoff, the SPA model is a natural candidate
for topology generation. According to the connection pattern
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Fig. 22. The topology graph of the physical components and embedded
control interfaces in the pulp mill displayed in a circular view.

Fig. 23. The topology graph of the physical components and embedded
control interfaces in the pulp mill displayed in a regular view.

shown in Figure 20 and Figure 22, the SWG model seems
another possible candidate. Due to the large characteristic path
length L̄, the pr of the SWG model should have rewiring
probability with a relatively small value.

Step 2: We automatically optimized parameters in each
model to match the µ(T ) of the above two types of topology
graphs of the pulp mill benchmark respectively.

The topology graph of physical components: Figure 25
shows that the pulp mill benchmark can be matched by the
SWG model with pr ' 0.15. But as shown in Figure 26,
the corresponding SPA model cannot match the low µ(T ) of
the pulp mill benchmark. By increasing α, the SPA model
generally can produce the graphs with sharper cutoffs in degree
distributions and consequent lower µ(T ), but as shown in
Figure 26, tuning α becomes counterproductive when α > 5
due to the limited size of the pulp mill benchmark. As
shown in Figure 29, the SPA model can match the pulp
mill benchmark much better than can the SWG model in
terms of Pk. The data in Figure 29 are averaged over 100

graph instances, and demonstrate that the SPA model generally
can closely match the degree distribution of the pulp mill
benchmark, although a small fraction of graph instances, with
overly long tails in their degree distributions, contribute to a
high µ(T ).

The topology graph of physical components and control
interfaces: The results are similar to those of the topology
graph of physical components. Figure 27 shows that the pulp
mill benchmark can be matched by the SWG model with
pr ' 0.08. As shown in Figure 28, the SPA model cannot
match the low µ(T ) of the pulp mill benchmark. Figure 30
shows similar results on Pk as well.

2) dK-series Approach: The dK-series model is not flex-
ible enough for diagnosis benchmark generation, due to the
number of constraints imposed, so we only analyze the ap-
proach in terms of the regular topological metrics. When
d = 3, the dK-series model cannot capture the basic topo-
logical properties of the pulp mill benchmark, although the
same approach can perfectly match all regular topological
metrics of the Internet, TRNs and electronic circuits. The
characteristic path lengths L̄ of the both topology graphs of
the pulp mill benchmark are around 30% larger than that of
the corresponding 3K models.

C. Functional Model Generation

According to the process described in the previous section,
we can generate a synthetic topology graph G. Figure 24(a)
shows a snippet of the generated topology graph G (including
both physical components and control interfaces) with nodes
A, B, C and D. We associate with each node in G a component,
based on the number of inputs and outputs for the node. All
four nodes in Figure 24(a) have two inputs and one output,
and we randomly select a component for each node with
probability which is proportional to its frequency in the actual
pulp mill. As shown in Figure 24(b), the four nodes are
randomly associated with the valve and condenser respectively,
which are two types of the most common components in the
pulp mill as shown in Table VII.

In the component library of the pulp mill domain, a
component is denoted ∆Z(i, o, τ,BZ , wZ) where τ denotes
the type (e.g., valve, condenser, tank), BZ defines the func-
tionality (behavioral equations) of component Z, and wZ

the probabilities assigned to the component failure modes of
Z. For example, the valve component V is represented as
SDV (2, 1, valve,BV , wV ) in the component library.

According to the technological specification of the valve V ,
we can discretize the flow rate of the V based on appropriate
thresholds, and define the flow rate as following three states: f
(flow), rf (reduced flow) and nf (no flow) [74]. The possible
fault modes MV for valves can be modeled as: OK, sc(stuck
closed), lk (leaking), and hb (half-blocked) [74]. We assume
the control condition ctrlV of the valve V (i.e., whether it
has been commanded to be open or closed) is known. The
propositional equations for a functional model BV of the
valve V can be defined as shown in Table VIII. The group
of formulas in Table VIII describing the behavior of a valve
V shows that the output flow outV depends, beside on the
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Fig. 24. Schematic of a snippet of the synthetic pulp mill benchmark.

TABLE VIII
THE BEHAVIORAL EQUATIONS FV FOR THE VALVE COMPONENT V .

[Mv = OK] ∧ [inV = ∗] ∧ [ctrlV = o] ⇒ [outV = ∗]
[Mv = OK] ∧ [inV = ∗] ∧ [ctrlV = c] ⇒ [outV = nf ]
[MV = so] ∧ [inV = ∗] ∧ [ctrlV = o] ⇒ [outV = ∗]
[MV = so] ∧ [inV = ∗] ∧ [ctrlV = c] ⇒ [outV = ∗]
[MV = sc] ∧ [inV = ∗] ∧ [ctrlV = o] ⇒ [outV = nf ]
[MV = sc] ∧ [inV = ∗] ∧ [ctrlV = c] ⇒ [outV = nf ]
[MV = lk] ∧ [inV = f ] ∧ [ctrlV = o] ⇒ [outV = rf ]
[MV = lk] ∧ [inV = rf ] ∧ [ctrlV = o] ⇒ [outV = rf ]
[MV = lk] ∧ [inV = nf ] ∧ [ctrlV = o] ⇒ [outV = nf ]
[MV = lk] ∧ [inV = ∗] ∧ [ctrlV = c] ⇒ [outV = nf ]
[MV = hb] ∧ [inV = f ] ∧ [ctrlV = o] ⇒ [outV = rf ]
[MV = hb] ∧ [inV = rf ] ∧ [ctrlV = o] ⇒ [outV = rf ]
[MV = hb] ∧ [inV = nf ] ∧ [ctrlV = o] ⇒ [outV = nf ]
[MV = hb] ∧ [inV = f ] ∧ [ctrlV = c] ⇒ [outV = rf ]
[MV = hb] ∧ [inV = rf ] ∧ [ctrlV = c] ⇒ [outV = rf ]
[MV = hb] ∧ [inV = nf ] ∧ [ctrlV = c] ⇒ [outV = nf ]

behavioral mode MV , on the input flow inV and on the current
control condition ctrlV of the valve V ; for example, the first
formula of the group asserts that, if valve V is in the OK
behavioral mode and the control condition is o(open), it will
simply report its input flow inv (for example, f ) to its output.
On the contrary, if valve V is in the hb behavioral mode (half-
blocked), its control condition is c (closed) and the input inV

is f , the output outV is rf (reduced flow). In general, we use
the symbol ∗ to denote any admissible value for a variable to
limit the number of formulas [74].

Similarly, we can also define the functional model for con-
densers, on which the temperatures of the flow are measured.

In the final step we generate the system functionality in
terms of the union of the component functions, such that we
match corresponding inputs and outputs. The system model for
our model fragment consists of three sets of valve equations
(as depicted in Table VIII), together with a set of condenser

equations.
To construct a BN model, we need conditional probability

distributions for the components VA, COB , VC , VD, rather
than propositional equations. The set of distributions needed
for our model fragment is:

Pr(outVA
|inVA

, ctrlVA
,MVA

)
Pr(outCOB

|outVA
, ctrlCOB

,MCOB
)

Pr(outVC
|outCOB

, ctrlVC,D
,MVC

)
Pr(outVD

|inCOB
, ctrlVC,D

,MVD
).

For the distributions, we assume that all the faulty be-
havioral modes are equally likely, i.e., Pr{MV 6= OK} =
0.01, and have a much smaller probability than the nominal
mode,i.e., Pr{MV = OK} = 0.99. We extract the remaining
probabilities based on analysis of the differential equation
models.

D. Analysis of Synthetic Model

1) Explanatory Model Approach: Although the SWG gen-
erally cannot match the degree distribution well, it is a good
and flexible model for fitting small-scale systems in terms of
µ(T ). Even for the systems without “small-world” properties
like the pulp mill benchmark (with large characteristic path
length) the SWG model with a small pr is appropriate.
In contrast, the SPA model is not suitable for generating
diagnosis benchmark of the pulp mill, which has relatively
low complexity.

 10

 100

 1000

 10000

 100000

 0  0.2  0.4  0.6  0.8  1
 4

 4.5

 5

 5.5

 6

 6.5

m
ax

 c
liq

ue
 s

iz
e

m
ax

 d
eg

re
e

rewiring probability p

Complexity of Pulp mill

max clique size
max degree

Fig. 25. The average-case inference complexity and average maximal degree
of the SWG model fitting the Pulp Mill (averaged over 100 runs)

2) dK-series Approach: In existing topological analysis of
complex systems [60], [45], researchers found k = 3 is gen-
erally sufficient for reproducing regular topological properties
perfectly. But we found that the characteristic path length L̄ of
the pulp mill benchmark is much larger than the corresponding
3K model, and the result shows that the underlying topology
of the pulp mill benchmark has some organizational principles
different from the Internet, TRNs and electronic circuits. To
distinguish underlying mechanisms will be a interesting topic
in the future.

3) Diagnosis Complexity: The topology graph shown in
Figures 20 and 21, and the topology graph shown in Figures 22
and 23 of the pulp mill have the same µ(T ) value 512, a really
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Fig. 26. The average-case inference complexity and average maximal degree
of the SPA model fitting the Pulp Mill (averaged over 100 runs)
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Fig. 27. The average-case inference complexity and average maximal degree
of the SWG model fitting the Pulp Mill (averaged over 100 runs)

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 1  2  3  4  5  6  7
 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

m
ax

 c
liq

ue
 s

iz
e

m
ax

 d
eg

re
e

spatial constraint α

max clique size
max degree

Fig. 28. The average-case inference complexity and average maximal degree
of the SPA model fitting the Pulp Mill (averaged over 100 runs)
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Fig. 29. Cumulative degree distributions of the pulp mill and graphs
generated by the SWG (p = 0.15) and SPA (α = 5) model (averaged over
100 graphs).
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Fig. 30. Cumulative degree distributions of the pulp mill and graphs
generated by the SWG (p = 0.08) and SPA (α = 4) model (averaged over
100 graphs).

small value compared with that of C432 (1.4 e14), although
C423 has approximately the same number of components as
the pulp mill benchmark.

IX. RELATED WORK

A. Automated Model Generation

The topology-generation method we adopt was originally
developed based on the theory of random graphs and complex
networks–see [15], [17] for background in this area. However,
this method focuses solely on the system structure (as cap-
tured by the graph), and ignores the system functionality. We
extend this approach by adopting the system structure based
on the random-graph generators, and then encoding system
functionality using a component library.

This work is most closely related to domain-specific model
generators, which exist for circuits [51] and biological interac-
tion kinetics models [7]. Our approach is different from either
of these approaches, in that we make no prior assumptions
about domain properties, but rather compute the domain prop-
erties necessary for model generation. Our model generation
approach differs from related work in VLSI auto-generation,
e.g., [51], in several ways. The VLSI approach emphasizes
circuit design for circuit optimization and simulation after
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placement and routing; in contrast, our approach focuses on
topological and organizational principles of circuits, and can
be used for a wider variety of applications, including the
diagnostics applications we report.

This paper improves upon the model generation approach
of [21] in several ways. First, it explicitly defines a domain-
analysis phase. Second, it extends and improves upon the
topology generation algorithms for creating the underlying
system structure, and examines a wider range of metrics for
empirically evaluating synthetic networks.

B. Model Composability and Modeling Tools

Compositional modelling uses a set of functional com-
ponent models, together with a specification of component
interactions (called a “scenario” in [10]) to generate useful
(mathematical) models. Our approach differs from that of
[10] in that we create the system structure, or scenario using
model generators instead of manual work. Further, although
the model-generation (or compositional modeling) approach
has primarily been applied to physical systems, it can be
applied to other domains, such as socio-economic, ecological
and biological systems [7], [75], [76], [38].

Biswas et al. explore the use of bond graphs [77], [78]
for compositional modeling: [31] describes how a meta-
programmable visual modeling tool, called the Generic Mod-
eling Environment (GME), can be used for compositional
modeling, and in [79] they describe the use of this approach for
system simulation. Along similar lines, Bouamama et al. [80]
describe a tool for designing FDI algorithms for thermofluid
processes, together with a library of component models [81].
Our proposed model-generation approach is fully compatible
with bond-graph modeling and model generation for FDI.

Several authors have addressed the formal aspects of com-
positional modeling. For example, Gossler et al. [82], [25]
address formal modeling for compositional modeling from the
point of view of heterogeneous interaction and execution, and
extend the framework in [30]. Denckla and Mosterman [29]
have defined a formal block-diagram language. They have
applied it to hybrid systems [29]; in addition, [83] provides a
translational semantics for block diagrams using the program-
ming language Haskell. Rather than focus of the formal aspects
of compositional modeling, we have addressed issues of model
generation, assuming such formal properties will hold.

A variety of causal (or block-oriented) languages have
been developed, and have been implemented in tools such
as Modelica [11] and Simulink [13]. Such languages often
support object-oriented tools such as Dymola [84] and Mod-
elica [11], [85]. Our proposed model-generation approach can
be viewed as an extension of such modeling tools, in that
our proposed tool can act as a generator for models using the
component libraries associated with such tools. The objectives
of our approach are different than those of such tools: we
start with existing models to generate additional benchmark
models; most modeling tools create new models from scratch.

X. CONCLUSION

A. Summary
This article has described a tool, CoSyMGen, for generating

functional models that have real-world topology. CoSyMGen
provides a key advance for benchmark generation: given a
set of exemplar system models and a component library, it
can automatically analyze the exemplar models to generate
synthetic benchmark models, of arbitrary size, with prop-
erties that closely match those of the exemplar models. In
addition, users can provide a range of experimental metrics
for the synthetic models, such as diagnostics complexity, or
simulation fidelity, in order to fine-tune the synthetic models.
This method circumvents the problems with using random
graphs for experimental studies of diagnostics, and provides
an alternative to manually developing suites of benchmark
models.

We have demonstrated CoSyMGen on two real-world do-
mains, those of diagnostics for discrete circuits and pulp mill
process-control. Our experiments have shown that CoSyMGen
can be used for two domains with significant differences,
from the discrete-valued models typically studied in the MBD
community, to the continuous-valued process-control models
typically studied in the FDI community. We argue that this
approach can be used for any domain where systems can be
composed from a library of components. For example, if we
use a library of pump/engine components, CoSyMGen could
build systems from fluid-flow or engine domains.

B. Discussion
In addition to the benchmark generation capabilities, the

domain analysis approach of CoSyMGen reveals several useful
system properties that can be used to guide diagnosticians
in the selection of inference and analysis techniques. In this
sense, one can view domain analysis as the meta-analysis of
domain properties. For example, in comparing the circuit and
process-control domains, our topological analysis has revealed
significant differences in topology, which affect the choice of
system-level inference algorithms which use structure-based
approaches, e.g., methods based on SAT or CSP techniques
[86]. Circuits have large clusters and high treewidth, leading
to intractability for any algorithm whose complexity is gov-
erned by treewidth. Hence, one will need to use additional
techniques, such as component abstraction [87], or stochastic
algorithms, e.g., [88], to render inference more tractable in this
domain. In contrast, process-control systems have relatively
small clusters and low treewidth, leading to tractability for
any algorithm whose complexity is governed by treewidth.

In future work, we plan to extend our domain analysis to
cover properties governing continuous-valued inference pa-
rameters, analogous to the structure-based parameters (cluster-
size and treewidth) that our current system covers. In addition,
we plan to make this tool available as an extension to composi-
tional modeling tools for benchmark generation from existing
component libraries.
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[30] G. Gößler, S. Graf, M. E. Majster-Cederbaum, M. Martens, and
J. Sifakis, “An approach to modelling and verification of component
based systems,” in SOFSEM (1), 2007, pp. 295–308.

[31] E. Manders, G. Biswas, N. Mahadevan, and G. Karsai, “Component-
oriented modeling of hybrid dynamic systems using the Generic Mod-
eling Environment,” Proc of the 4th Workshop on Model-Based Devel-
opment of Computer Based Systems, Potsdam, Germany, 2006.

[32] A. Darwiche, “Model-based diagnosis using structured system descrip-
tions,” J. Artif. Intell. Res. (JAIR), vol. 8, pp. 165–222, 1998.

[33] J. Keppens and Q. Shen, “Causality Enabled Compositional Modelling
of Bayesian Networks,” Proceedings of the 18th International Workshop
on Qualitative Reasoning about Physical Systems, pp. 33–40, 2004.

[34] A. Breunese, J. Broenink, J. Top, and J. Akkermans, “Libraries of
Reusable Models: Theory and Application,” Simulation, vol. 71, no. 1,
p. 7, 1998.

[35] E. Posse, J. de Lara, and H. Vangheluwe, “Processing causal block
diagrams with graph-grammars in AToM 3,” European Joint Conference
on Theory and Practice of Software (ETAPS), Workshop on Applied
Graph Transformation (AGT), pp. 23–34, 2002.

[36] L. Pradeep and K. Khosla, “Object-Oriented Libraries of Physical
Components in Simulation and Design,” Simulation, vol. 10, p. 11.

[37] F. Cellier, “Hierarchical non-linear bond graphs: a unified methodology
for modeling complex physical systems,” Simulation, vol. 58, no. 4, p.
230, 1992.

[38] P. Mendes, W. Sha, and K. Ye, “Artificial gene networks for objective
comparison of analysis algorithms.” Bioinformatics, vol. 19 Suppl 2,
October 2003.

[39] C. T. Harbison, B. D. Gordon, T. I. Lee, N. J. Rinaldi, K. D. Macisaac,
T. W. Danford, N. M. Hannett, J.-B. Tagne, D. B. Reynolds, J. Yoo, E. G.
Jennings, J. Zeitlinger, D. K. Pokholok, M. Kellis, A. P. Rolfe, K. T.
Takusagawa, E. S. Lander, D. K. Gifford, E. Fraenkel, and R. A. Young,
“Transcriptional regulatory code of a eukaryotic genome,” Nature, vol.
431, no. 7004, pp. 99–104, 2004.

[40] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, “Network motifs in
the transcriptional regulation network of escherichia coli,” Nat Genet,
vol. 31, no. 1, pp. 64–68, May 2002.

[41] D. E. Zak, G. E. Gonye, J. S. Schwaber, and F. J. Doyle, “Importance of
input perturbations and stochastic gene expression in the reverse engi-
neering of genetic regulatory networks: insights from an identifiability
analysis of an in silico network.” Genome Res, vol. 13, no. 11, pp.
2396–2405, November 2003.

[42] N. Barkai and S. Leibler, “Circadian clocks limited by noise,” Nature,
vol. 403, no. 6636, pp. 267–8, Jan. 2000.

[43] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: simple building blocks of complex networks.”
Science, vol. 298, no. 5594, pp. 824–827, October 2002.

[44] L. Costa, F. Rodrigues, G. Travieso, and P. Boas, “Characterization of
complex networks: A survey of measurements,” Advances in Physics,
vol. 56, no. 1, pp. 167–242, 2007.

[45] P. Mahadevan, D. V. Krioukov, K. R. Fall, and A. Vahdat, “Systematic
topology analysis and generation using degree correlations.” in SIG-
COMM, 2006, pp. 135–146.

[46] D. Chakrabarti and C. Faloutsos, “Graph mining: Laws, generators, and
algorithms,” ACM Comput. Surv., vol. 38, no. 1, 2006.

[47] D. Christie, P. Stroobandt, “The interpretation and application of Rent’s
rule,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 8, pp. 639–648, 12 2000.

[48] Y. He, Z. J. J. Chen, and A. C. C. Evans, “Small-World Anatomical
Networks in the Human Brain Revealed by Cortical Thickness from
MRI,” Cereb Cortex, January 2007.

[49] R. M. D’Souza, C. Borgs, J. T. Chayes, N. Berger, and R. D. Kleinberg,
“Emergence of tempered preferential attachment from optimization,”
Proc. Natl. Acad. Sci. USA, vol. 104, no. 15, pp. 6112–6117, April
2007.

[50] N. Mathias and V. Gopal, “Small worlds: How and why,” Physical
Review E, vol. 63, p. 021117, 2001.

[51] D. Stroobandt, “Analytical methods for a priori wire length estimates in
computer systems,” Ph.D. dissertation: Ghent University, 2001.

[52] N. Przulj, “Biological network comparison using graphlet degree distri-
bution,” Bioinformatics, vol. 23, no. 2, pp. e177–e183, 2007.

[53] L. Li, J. C. Doyle, and W. Willinger, “Towards a Theory of Scale-Free
Graphs: Definition, properties, and Implications,” Internet Mathematics,
vol. 2(4), pp. 431–523, March 2006.

[54] N. Przulj, D. G. Corneil, and I. Jurisica, “Modeling interactome: scale-
free or geometric?” Bioinformatics, vol. 20, no. 18, pp. 3508–3515,
2004.



21

[55] M. Middendorf, E. Ziv, and C. H. Wiggins, “Inferring network mecha-
nisms: the drosophila melanogaster protein interaction network.” Proc.
Natl. Acad. Sci. USA, vol. 102, no. 9, pp. 3192–7, Mar 1 2005.

[56] M. Grohe and J. Flum, Parameterized Complexity Theory. Springer,
2006.

[57] D. Krioukov, K. Claffy, M. Fomenkov, F. Chung, A. Vespignani,
and W. Willinger, “The workshop on internet topology (wit) report,”
SIGCOMM Comput. Commun. Rev., vol. 37, no. 1, pp. 69–73, 2007.

[58] F. R. K. Chung, L. Lu, T. G. Dewey, and D. J. Galas, “Duplication
models for biological networks,” Journal of Computational Biology,
vol. 10, no. 5, pp. 677–687, 2003.

[59] F. Viger and M. Latapy, “Efficient and simple generation of random sim-
ple connected graphs with prescribed degree sequence.” in COCOON,
2005, pp. 440–449.

[60] J. Wang and G. M. Provan, “Generating Application-Specific Benchmark
Model for Complex Systems,” in AAAI, 2008.

[61] F. Hormozdiari, P. Berenbrink, N. Przulj, and S. C. C. Sahinalp, “Not
All Scale-Free Networks Are Born Equal: The Role of the Seed Graph
in PPI Network Evolution,” PLoS Comput Biol, vol. 3, no. 7, July 2007.

[62] J. Dambre, “Prediction of interconnect properties for digital circuit de-
sign and technology exploration,” Ph.D. dissertation: Ghent University,
Faculty of Engineering, 2003.

[63] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, Number 4598, 13 May 1983, vol. 220,
4598, pp. 671–680, 1983.

[64] W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery,
Numerical Recipes in C++. The Art of Scientific Computing, 2nd ed.
Cambridge University Press, February 2002.

[65] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
Benchmarks: A Case Study in Reverse Engineering,” IEEE Des. Test,
vol. 16, no. 3, pp. 72–80, 1999.

[66] R. Guimera and L. Amaral, “Modeling the world-wide airport network,”
The European Physical Journal B - Condensed Matter, vol. 38, no. 2,
pp. 381–385, March 2004.

[67] R. Guimera, S. Mossa, A. Turtschi, and L. A. N. Amaral, “The
worldwide air transportation network: Anomalous centrality, community
structure, and cities’ global roles,” Proc. Natl. Acad. Sci. USA, vol. 102,
p. 7794, 2005.

[68] S.-H. Yook, H. Jeong, and A.-L. Barabasi, “Modeling the internet’s
large-scale topology,” Proc. Natl. Acad. Sci. USA, vol. 99, p. 13382,
2002.

[69] D. Stroobandt, “A priori wire length distribution models with multiter-
minal nets,” IEEE Trans. Very Large Scale Integr. Syst., vol. 11, no. 1,
pp. 35–43, 2003.

[70] M. Barthlemy, “Crossover from scale-free to spatial networks,” Euro-
physics Letters, vol. 63, pp. 915–921, 2003.

[71] F. Jensen, S. Lauritzen, and K. Olesen, “Bayesian Updating in Recursive
Graphical Models by Local Computations,” Comp. Stat. Q., vol. 4, pp.
269–282, 1990.

[72] G. Lee, T. Tosukhowong, and J. Lee, “Fault Detection and Diagnosis
of Pulp Mill Process,” Computer Aided Chemical Engineering, vol. 21,
no. B, p. 1461, 2006.

[73] A. Samantaray and S. Ghoshal, “Sensitivity bond graph approach to
multiple fault isolation through parameter estimation,” Proceedings of
the Institution of Mechanical Engineers, Part I: Journal of Systems and
Control Engineering, vol. 221, no. 4, pp. 577–587, 2007.

[74] P. Torasso, “Compact diagnoses representation in diagnostic problem
solving,” Computational Intelligence, vol. 21, pp. 27–68(42), February
2005.

[75] R. Duboz and C. Cambier, “Small world properties in a dsdevs model
of ecosystem,” in Proceedings of the Open International Conference on
Modeling and Simulation (OICMS-2005), 2005, pp. 65–71.

[76] J. Keppens and Q. Shen, “Granularity And Disaggregation In Compo-
sitional Modelling With Applications To Ecological Systems,” Applied
Intelligence, vol. 25, no. 3, pp. 269–292, 2006.

[77] F. E. Cellier, H. Elmqvist, and M. Otter, “Modeling from physical
principles,” in The Control Handbook, W. S. Levine, Ed. Boca Raton,
FL: CRC Press, 1995, pp. 99–108.

[78] D. Karnopp, D. Margolis, and R. Rosenberg, Systems Dynamics: A
Unified Approach, 2nd ed. John Wiley and Sons, 1990.

[79] M. Daigle, I. Roychoudhury, G. Biswas, and X. Koutsoukos, “Efficient
Simulation of Component-Based Hybrid Models Represented as Hybrid
Bond Graphs,” Lecture Notes In Computer Science, vol. 4416, p. 680,
2007.

[80] B. Bouamama, A. Samantaray, K. Medjaher, M. Staroswiecki, and
G. Dauphin-Tanguy, “Model builder using functional and bond graph

tools for FDI design,” Control Engineering Practice, vol. 13, no. 7, pp.
875–891, 2005.

[81] B. Bouamama, “Bond Graph Approach As Analysis Tool In Thermofluid
Model Library Conception,” Journal of the Franklin Institute, vol. 340,
no. 1, pp. 1–23, 2003.

[82] G. Gossler and J. Sifakis, “Composition for Component-Based Model-
ing,” Formal Methods for Components and Objects: First International
Symposium, FMCO 2002, Leiden, The Netherlands, November 5-8,
2002: Revised Lectures, 2003.

[83] B. Denckla and P. Mosterman, “Block Diagrams as a Syntactic Exten-
sion to Haskell,” Tech. Rep., 2007.

[84] F. Cellier and R. McBride, “Object-Oriented Modeling of Complex
Physical Systems Using the Dymola Bond-Graph Library,” Proc.
ICBGM03, International Conference of Bond Graph Modeling and
Simulation, pp. 19–23, 2003.

[85] P. Fritzson, Principles of Object-oriented Modeling and Simulation with
Modelica 2.1. Wiley-IEEE, 2004.

[86] G. Gottlob, R. Pichler, and F. Wei, “Bounded Treewidth as a Key to
Tractability of Knowledge Representation and Reasoning,” Proc. AAAI,
pp. 250–256, 2006.

[87] S. Siddiqi and J. Huang, “Hierarchical diagnosis of multiple faults,”
Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 581–586, 2007.

[88] A. Feldman, G. M. Provan, and A. J. C. van Gemund, “Computing
Minimal Diagnosis by Greedy Stochastic Search,” in Proc. AAAI, 2008.


