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ABSTRACT
It is critical to use automated generators for synthetic mod-
els and data, given the sparsity of benchmark models for
empirical analysis and the cost of generating models by
hand. We describe an automated generator for benchmark
models that is based on using a compositional modeling
framework and employs graphical models for the system
topology. We propose two novel topological models, and
demonstrate their advantages, over existing graphical mod-
els, in better capturing the topological and functional prop-
erties of a class of real system, discrete circuits. We com-
pare generated models to real systems (drawn from the
ISCAS benchmark suite) according to two criteria: topo-
logical fidelity and diagnostics efficiency. Based on this
comparison we identify parameters necessary for the auto-
generated models to generate benchmark diagnosis circuit
models with realistic properties.

KEY WORDS:
Modeling (Model Development, Automated Model Gener-
ation, Diagnostics).

1 Introduction

Creating benchmark model suites is becoming increasingly
important for validating a variety of inference algorithms,
in domains including VLSI design [9], process control [4],
and bioinformatics [12]. Given the sparsity of benchmark
models and the cost of generating models by hand, it is crit-
ical to design an automated generator for synthetic models
and data to analyse the models.

To satisfy this need, we describe a Complex Systems
Model Generator (CoSyMGen), which is based on using
a compositional modeling framework and employs graph-
ical models for the system topology. Compositional mod-
eling [8] is the predominant knowledge-based approach to
automated model construction. It assumes that a system
can be decomposed into a collection of components, each
of which can be defined using a functional model. These
component models are then integrated into the full system
model using a system topology graph, which describes the
component interactions.

Our use of automated topology generators overcomes
the drawback of hand-generated topologies typical of com-
positional modeling [8]. We base our automated topology
generation on the recent discovery that the topology of vir-

tually all real-world systems, from domains as diverse as
World Wide Web, social networks, biological systems and
technological systems [2, 6] can be modeled using a graph
framework [10]. A range of graph models have been pro-
posed, e.g., [1, 10, 13], which are significant improvements
over the random graph models traditionally used for empir-
ical analysis of algorithms, in that they capture the topolog-
ical properties of realistic systems much better than do ran-
dom graphs [2]. Until now, most analyses of such models
have been confined to the models’ global statistical prop-
erties (e.g. degree distribution, average shortest connecting
paths and clustering coefficients) or the statistics of specific
local connectivity patterns (motif)[2]. In contrast, little re-
search has focused on the functionality and corresponding
complexity of generated graphs in practical applications.

Further, existing models have been inherently inac-
curate, due to discrepancies between the graphical param-
eters of the real systems and those of the auto-generated
graphs. For example, the well-known Watts-Stogatz (WS)
[13] model requires an integral mean degree, whereas the
mean degree of many systems is non-integral [11].

We address the validity of models generated not only
in terms of their topological properties, but also in terms
of their functional properties. The functional property that
we examine in this article is diagnostics, specifically the
inference efficiency of model-based diagnosis (MBD). The
MBD problem focuses on isolating the root faults given an
observation (e.g., of sensor values).

Our contributions are as follows.

1. We propose a model-generation system, CoSyMGen,
which can create models whose parameters can be op-
timised to conform to a range of different criteria.
This tool uses two novel topology-generation algo-
rithms to develop models more accurate than existing
approaches.

2. We demonstrate this model generator in the domain of
discrete circuits, as an example of real structures that
can be investigated using our extended network mod-
els, and compare the topological fidelity of the gener-
ated models to that of real circuit models.

We organize the remainder of the document as fol-
lows. Section 2 compares our contributions to previous re-
sults in the literature. Section 3 describes the process we
adopt for generating diagnostic models. Section 4 presents
the experimental results, and Section 5 summarises our
contributions.



2 Related Work

The topology-generation method we adopt was originally
developed based on the theory of random graphs–see [2,
10] for background in this area. However, this method fo-
cuses solely on the system structure (as captured by the
graph), and ignores the system functionality. We extend
this approach by adopting the system structure based on the
random-graph generators, and then encoding system func-
tionality using a component library.

Compositional modelling uses a set of functional
component models, together with a specification of com-
ponent interactions (called a “scenario” in [8]) to generate
useful (mathematical) models. Our approach differs from
that of [8] in that we use model generators to create the
system structure, or scenario. Further, although the model-
generation (or compositional modeling) approach has pri-
marily been applied to physical systems, it can be applied
to other domains, such as eco- and bio-systems.

Our model generation approach differs from related
work in VLSI auto-generation, e.g., [9], in several ways.
The VLSI approach focuses on circuit design for circuit
optimisation and simulation; in contrast, our approach can
be used for a wider variety of applications, including the
diagnostics applications we report. In addition, we adopt
random-graph generators for circuit topologies, rather than
using optimisation algorithms for defining topologies.

This paper extends the model generation approaches
of [11, 12] by using improved topology generation algo-
rithms empirically evaluated over a wider range of circuits.

3 Benchmark Diagnostic Model Generation

This section describes our algorithm for generating bench-
mark diagnostic models for compositional domains. A do-
main D is compositional if a system model from D can be
composed from model components, each of which is de-
fined by a component functional model. CoSyMGen is ap-
plicable to any compositional domain for which structural
models and component libraries exist.

3.1 Modeling Framework

We assume that a model can be generated from the tuple
(G,F), where G denotes the topology graph, and F de-
notes the system functionality. The topology graph G =
(V, E) consists of vertices V and edges E and specifies the
topological relations among the system components. Each
node v ∈ V corresponds to a component or input in the
system, and each edge (vi, vj) ∈ E corresponds to a func-
tional relation between vi and vj . Our component library
specifies a functional description Fi for each component vi

in the system being modeled.
Generation Algorithm: We generate diagnostic

(benchmark) models in a three-step process.

1. generate the (topology) graph G underlying each
model;

2. assign components to each node in G for system SD,
to create an MBD-graph G′;

3. generate the system-level functional model.

We now describe this process using an example, and
then describe each step of the process.

Example 1. To demonstrate this approach, we study a
suite of auto-generated electronic combinational circuits,
which are constructed from simple gates. The inputs to
the generation process consist of: (a) a component library
of gates (e.g., AND, OR, NOT) together with their func-
tionality (e.g., truth tables, logic equations, probability dis-
tributions); (b) parameters defining the system properties,
such as the number n of components; and (c) domain-
dependent parameters, such as the well-known engineer-
ing parameter for determining input/output variables for a
circuit, the Rent parameter ξ [3]. Given a desired system
with n components, we generate the required topology, as
shown in Figure 1(a). The topology of Figure 1(a) depicts
the schematic of a simple circuit with arbitrary components
A, B, C, D and E. The circuit has two inputs, I1 and I2,
with the output of component i denoted by Oi. Figure 1(b)
shows the circuit with instantiated components. Finally we
generate the system functionality in terms of the union of
the component functions.
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Figure 1. Schematic of simple electronic circuit.

3.2 Graph Topology Generators

We propose two extended topological models that capture
the features of real circuits better than existing models: the
extended WS model and the extended spatial BA model.

3.2.1 Extended WS model
The WS approach [13] generates a graph G with a degree
of randomness that is controlled by a probability p ∈ [0, 1].
p ' 0 corresponds to a regular graph, and p ' 1 corre-
sponds to a random graph; graphs with real-world struc-
ture occur in between these extremes, as this methodology
has been shown to generate graphs with average shortest
path length and clustering coefficient that closely match



real-world systems. Figure 2 depicts the graph generation
process, where we control the proportion of random edges
using a rewiring probability p. Standard WS generation
takes a regular graph (a ring lattice of n nodes), where each
node is connected to its k nearest neighbors, and randomly
“rewires” an edge by moving one of its ends to a new posi-
tion chosen at random (with probability p) from the rest of
the lattice. We have modified the WS framework to enable
us to match the mean degree of the graph for the real sys-
tem with that of the generated graph, since the mean degree
is a critical parameter in this framework. The original WS
model requires the mean degree k to be an even number;
however, the mean degree in real circuits is typically not
an integer. Our enhanced WS generator first creates a ring
lattice with the mean degree k, where k is any positive real
number, by setting k′ = dk

2 e, and connecting every node to
its nearest k′

2 neighbours on both sides, just as in the classic
WS model. Next it connects every node to its two k′

2 + 1
nearest nodes on both sides, with probability (k−k′)

2 . Our
numerical simulations show that the extended WS model
maintains the properties of the classic WS model.

p=0 0 < p < 1 p=1

Regularity Randomness

Figure 2. Generating a small-world graph from a regular
ring lattice with rewiring probability p.

3.2.2 Extended Spatial BA model
In the standard BA model [1], models are constructed by
connecting a new node to m existing nodes in every prefer-
ential attachment step, where m is an integer. Our proposed
approach is motivated by the observation that networks that
occupy 2D space, e.g., road-networks, city-networks, cir-
cuits, have inter-node distances governed by a power law
[2, 3]. We use a parameter α to impose such a constraint on
a standard BA model, to specify a spatial BA model (SBA).
We further extend this approach by tuning the mean degree
to correspond to that of real systems.

In the SBA model, node position is chosen randomly
in 2D space with coordinates in the [0,1] 2D plane. Con-
nections of a new node u with each existing node v are
established with probability P (u, v) ∝ kvl(u, v)−α, where
l(u, v) is the spatial (Euclidean) distance between the node
positions, and α ≥ 0 is a tunable parameter used to adjust
spatial constraints and shape the connection probability in
the preferential attachment process. When α = 0 the model
corresponds to the standard BA model.

Similar to the extended WS model, we also extend the
preferential attachment process in order to match the mean
degree k of the real circuit. In the revised model, a new

node is first connected to m′ = dk
2 e existing nodes by pref-

erential attachment, and we then select the (m′+1)st node
by preferential attachment, connecting it with probability
k
2 −m′. Figure 3 displays the spatial BA graph generation
by adjusting the geometric constraint.

Enhancing spatial constraint by increasing α

Figure 3. Generating a spatial BA graph by enhancing the
spatial constraint.

By continually increasing α, the modularity and clus-
tering of the generated graph will keep increasing, and
fewer long-range links will appear. Finally the degree dis-
tribution will degrade from the power-law distribution to
the exponential or normal distribution.

3.3 Assign Components to graph G

Given a topology graph G, we associate with each node
in G a component, based on the number of incoming
arcs for the node. Hence, given a node v ∈ G with
i inputs and o outputs, we assign a component, denoted
SDZ(i, o, τ,FZ , w) where τ denotes the type (e.g., AND-
gate, OR-gate), FZ defines the functionality (behavioural
equations) of component Z, and w the weights assigned
to variables, e.g., probabilities assigned to the component
failure modes of Z.

Example 2. For our experiments, we use a set of m-input
gates. Given a node v ∈ G that has q possible components
that are suitable, we randomly assign to v a suitable com-
ponent with probability 1

q . For example, the single-input
nodes correspond to single-input gates (NOT, buffer), and
the dual-input nodes correspond to dual-input gates (AND,
OR, NAND, NOR, XOR).

3.4 Generate the System Functional Model

In the final step we generate the system functionality in
terms of the union of the component functions, such that
we match corresponding inputs and outputs. As an example
of input/output matching, consider the following: if output
1 of component X , denoted OX,1, is the second input to
component Y , denoted OY,2, then we set OX,1 = OY,2.

Example 3. For our diagnostic application, given a se-
lected component Ci, we generate the functional descrip-
tion as the union of its normal-mode equations (and poten-
tially its failure-mode equations). We used a probabilistic
functional model, structured as a Bayesian Network (BN)
[7]. Hence, given the graph G, we assign to each node



v ∈ G a probability distribution (CPT) Pr(v|π(v)), where
π(v) are the parents of v in G.

We randomly select the mode type (of the s possi-
ble failure modes) for any component-model with prob-
ability 1

s . We assign a distribution to failure-mode val-
ues by assuming that normal behaviour is highly-likely,
i.e., Pr{Ci = OK} ' 0.99, and faulty behaviour is un-
likely, i.e., Pr{Ci 6= OK} ' 0.01. Figure 1(b) shows a
randomly-generated circuit based on the schematic of Fig-
ure 1(a). Here, we instantiate components A, D and E to
NOT gates, component C to an AND gate, and compo-
nent B to a buffer. This figure also depicts the instantiated
failure-mode for the components in shaded boxes: Com-
ponents B, C and E have SA1 fault-modes1, component A
has a SA0 fault-mode, and component D has a INVERT
fault-mode. Given this information, we can generate a
system description with distributions corresponding to the
component-types and fault-mode types as just described.
For example, the distributions for gates A and C are, re-
spectively, Pr(OA|I1,MA) and Pr(OC |I2, OA,MC).

3.5 Functionality Parameter Comparison

Given an ISCAS circuit SD with n components, we auto-
matically generate a topology graph underlying the diag-
nostic model SD, which has the same node number n and
the same mean degree k, by varying the parameter, e.g. the
rewiring probability p in the WS model or the geometric
constraint α in the SBA model, in order to match the de-
sired property of the real circuit best. We focus on the rela-
tive efficiency of MBD inference algorithms on real-world
models used to match electronic circuits.

MBD Auto-Generation Task: The objective of
MBD auto-generation is to create a model SD that min-
imizes |γA(SD,OBS) − γA(SD,OBS)|, where SD is
an MBD model, and A is an MBD inference algorithm
that has complexity γA(SD,OBS) when computing a
probability-minimal diagnosis given model SD and obser-
vations OBS.2

Given the BN approach [7] for our experiments, we
used as our measure of inference complexity the largest
clique-table in the compiled BN model, which is a typ-
ical complexity measure for this type of model. From a
theoretical perspective, the complexity of BN inference is
expressed in terms of the graph topology: it is exponential
in the largest clique of the graph (or the graph width) [7].

4 Experimental Comparison of Generated
and ISCAS-Benchmark Circuits

This section summarises experimental results comparing
the structure and diagnostic inference complexity prop-

1A component with a stuck-at-1(stuck-at-0) fault outputs t(f) (resp.)
independent of the input(s).

2We assume that γ(·) returns a complexity parameter such as CPU-
time or number of nodes searched.

erties of auto-generated models with ISCAS benchmark
models, which are an established benchmark for circuit
optimisation [5]. The benchmark suites consist of multi-
ple sets of circuits, which include the ISCAS85, ISCAS89
and ISCAS99 circuits. We have run experiments for the
full suite of ISCAS85 benchmarks. We present only a few
demonstrative results here, due to space limitations.

4.1 Comparison of Graph Parameters

This section compares the graph parameters of ISCAS85
circuits with those of models generated by the extended
WS and SBA models. The key parameter that we focus
on in this article is the degree distribution. To specify this,
we first need to define node degree in a graph G = (V,E).
The degree ki of a node vi ∈ V specifies the number of
edges connecting vi to other nodes in V \ vi. The degree
distribution p(k) of a graph G = (V,E), is a function
describing the total number of vertices in a graph with a
given degree. The cumulative degree distribution is given
by P (κ) =

∑∞
k=κ p(k). Note that the degree distribution

of an Erdos-Renyi random graph follows a Poisson distri-
bution, whereas the models that we are considering have
power-law distributions.
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Figure 4. Comparison of circuit degree distribution of
C2670 and auto-generated circuits by the extended WS
model at various values of p.

The extended WS model is a simple and efficient ap-
proach; however, its degree distribution is similar to an ex-
ponential distribution, i.e., lacking a long tail. This model
is suitable for systems having degree distributions without
long tails. Figure 4 compares the degree distributions of
ISCAS85 benchmark C2670 and distributions of WS mod-
els which have the same node number and mean degree, at
various values of rewiring probability p. In general, small
circuits can be matched well, since their largest degrees are
limited and can be captured accurately by this model.

Compared with the WS model, the spatial BA model
has a degree distribution with a longer tail, and better
matches real-world degree distributions. This is demon-



strated in Figure 5, which compares the log-log scale cumu-
lative degree distributions of the ISCAS99 circuit B12 and
with those of auto-generated circuits with the same number
of nodes and mean degree, which were generated by the
extended SBA model at different values of α.
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Figure 5. Comparison of circuit cumulative degree distri-
bution of B12 and auto-generated circuits by the extended
SBA model at various values of α.

4.2 Diagnosis Complexity of Extended WS model
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Figure 6. The inference complexity and average maxi-
mal degree distributions of a WS model corresponding to
benchmark C432.

We ran experiments to explore the complexity of auto-
generated WS models corresponding to all ISCAS85 cir-
cuits over the entire range of the rewiring parameter p. The
data presented is based on an average of 300 runs. Fig-
ure 6 shows the average maximal degree of the generated
graph G (corresponding to C432) compared with the log10

of the inference complexity of G. The figure shows that
both curves have the same trend, rising from the relatively
efficient regular graph (p = 0) to the range of small-world
graphs (0 < p < 1). As the shown in Figure 4, increas-
ing p flattens the degree distribution of WS model but in-
creases the length of tails and the degree of the hub nodes

(and hence increases the inference complexity). We experi-
mentally selected the rewiring probability p that minimised
|γA(SD) − γA(SD)| over a broad range of observations.
For example, empirical comparisons showed that the WS
model with p ' 0.28 produced a model with inference
complexity closest to that of C432—see Figure 6. In our
experiments we found that the ISCAS85 circuits all had
corresponding WS models with 0.01 < p < 0.3.3 Note that
0.01 < p < 0.3 corresponds to WS models of relatively
low complexity, i.e., we can generate models of signifi-
cantly higher complexity than the ISCAS85 circuits, thus
providing a range of difficulty of auto-generated models.
Analysis of all ISCAS85 benchmark circuits shows simi-
lar results,; also, note that the WS model can only vary the
length of the tail of degree distribution in a limited range.

If we use the classic WS model, which requires k to
be even, the closest k for matching C432 is 4, causing the
degree distribution, and hence the diagnosis complexity of
the generated graph to be quite different from that of the
real circuit.
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4.3 Diagnosis Complexity of Extended SBA model

Another set of experiments explored the complexity of
auto-generated SBA models corresponding to all ISCAS85
circuits over a broad range of the parameter α, which is
used to tune the spatial constraint. Since the complexity
of generating the SBA model is much higher than that of
the WS model, to ensure the problems were of manageable
size for the current inference algorithm, the data in this set
of experiments are based on an average of 100 runs.

Figure 8 shows the average maximal degree of the
generated graph G (corresponding to C432) compared with
a log10-scaled curve of the inference complexity of G. The
figure shows that both curves decline with increase in α, as
do all ISCAS85 circuits.

3It is interesting to note that our auto-generated circuits had an effec-
tive Rent parameter similar to that of the original circuits, indicating the
correctness of the approach.
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Figure 8. The inference complexity and average maximal
degree distributions of a spatial BA graph corresponding to
benchmark C432.

The results also show that the hub nodes with high de-
gree affect the diagnosis complexity. Since increasing the
spatial constraint results in sharper cutoffs in the tails of the
degree distributions, as shown in figure 5, increasing α will
limit the tail length in the degree distribution, as well as the
degree of the hub nodes (and hence reduce the inference
complexity). We again experimentally selected the param-
eter α that minimised |γA(SD)−γA(SD)|. Figure 8 shows
that the generated graph with α ' 3.7 produced a model
with inference complexity closest to that of C432. Simi-
lar to the WS model, we can generate benchmark models
with a broad range of complexity by tuning the parameter,
but the SBA model can adjust the length of the tail of the
degree distribution in a much wider range.

The standard BA model cannot match the real cir-
cuit with non-integral mean degree, so we extended it by
a method similar to that used to extend the standard WS
model, while maintaining the same properties of the BA
model. When we generated a model with α = 0, which
corresponds to the BA model without the spatial constraint
and contains a very long tail in its degree distribution, and
therefore its inference complexity will be too high to match
that of the real circuit. Hence, additional parameter tuning
was necessary to identify auto-generated models that match
both topological graph parameters and inference complex-
ity of the real models; the tendency was for the inference
complexity of the auto-generated models to be higher than
that of the real models.

5 Conclusion

This article has described a tool, CoSyMGen, for generat-
ing functional models that have real-world topology. We
have demonstrated CoSyMGen on the domain of diagnos-
tics for circuits. This approach can be used for any domain
where systems can be composed from a library of compo-
nents. For example, if we use a library of pump/engine
components, CoSyMGen could build systems from fluid-
flow or engine domains. This method circumvents the
problems with using random graphs for experiments, and

provides an alternative to manually developing suites of
benchmark models.
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