On Learning Compressed Diagnosis
Classifiers *

Gregory Provan *

* Department of Computer Science, University College Cork, Cork,
Ireland (Tel: 353-21-490-1816; e-mail: g.provan@ cs.ucc.ie).

Abstract:

We address the problem of embedding a model-based diagnostic system representation within
a processor with limited memory (as is typical of most real-world aerospace systems). Given a
Boolean diagnostic model f in which we have a probability distribution over fault likelihoods, we
describe a method for approximately generating an embedded representation of f by learning a
decision tree that encodes only the probabilistically most-likely diagnoses. If the set of possible
diagnoses follows a power-law distribution, we show that we can create decision trees that contain
the vast majority of the probability mass of the full decision tree, but require significantly less

memory than the full decision tree.

1. INTRODUCTION

One of the main issues in on-board diagnosis is the
development of diagnostic models. Rule-based systems
(Rowland and Jain [1993]) are compact and efficient to
evaluate, but their coverage and accuracy do not have any
associated guarantees. Model-based systems (Isermann
[2005], Reiter [1987]) provide coverage®! and accuracy
guarantees, but typically the associated models require
significant space and are complex to evaluate.

A range of other methods have been proposed, such as
automatic test-pattern generation (Sheppard and Simp-
son [1994]), fault trees (Rowland and Jain [1993]), model
compilation (Bryant [1986], Darwiche [1998], de Kleer
[1986]), and fault detection and isolation (FDI) (Isermann
[2005]). All of these methodologies face similarly high time-
or space-complexity for isolating multiple simultaneous
faults. For example, isolating multiple simultaneous faults
is NP-complete for a propositional Horn system (Bylander
et al. [1991]); further, the complexity of analogous diagnos-
tic tasks, like single-fault test-set generation, is also NP-
complete (Ibarra and Sahni [1975]), and the size of the test
set can become prohibitive for large circuits (Sheppard and
Simpson [1994]).

One alternative is to induce diagnosis classifiers. However,
building diagnosis classifiers for large systems may impose
large space requirements: if we want to classify all multiple-
fault events in an n-component Boolean system, the clas-
sifier must have 2" leaves.

To address the high time-complexity of computing diag-
noses on-line, or the space complexity of storing all system
faults (or an analogous set of tests), in this article we
study building compressed classifiers, i.e., classifiers with
size smaller than that of a standard classifier. In particular,
we generate an approximate classifier that captures the

* This work was supported by SFI grant 04/IN3/1524.
1 Coverage refers to the percentage of all diagnostic queries that can
be correctly isolated.

most-likely diagnoses, and ignores diagnoses that are ex-
tremely unlikely. We show that significant compression is
possible using this approach, given the properties of typical
diagnostic systems.

To generate the set L of learning instances, we simulate
from f the probabilistically most-likely diagnoses and
associated sensor readings. We then induce from L a
decision tree (Quinlan [1986]). Decision trees are popular
representations of Boolean functions, and form the basic
inference engine in well-known machine learning programs
such as C4.5 (Quinlan [1986, 1993]). Decision trees are
an important representation for Boolean functions because
(a) they can represent all Boolean functions, and (b) many
useful operations on Boolean functions can be performed
efficiently in time polynomial in the size of the decision
tree representation.

Our contributions are as follows:

e We show that, given a probability distribution on
prior component failure likelihood, the posterior di-
agnosis distribution follows a power-law, and hence
the majority of the probability mass is captured by a
relatively small number of diagnoses.

e We describe an algorithm for inducing a decision tree
diagnostic classifier that contains the majority of the
probability mass of the full decision tree, but requires
significantly less memory than the full decision tree.

2. RELATED WORK

This work makes contributions to model-based diagnosis,
test generation, and machine learning. In the area of
model-based diagnosis, we extend the state-of-the-art by
showing how we can sub-sample from a model to gen-
erate an approximate model, which is represented as an
embeddable diagnostic classifier. This approach is differ-
ent to an approximate version of a compiled model, e.g.,
(Bryant [1986], Darwiche [1998]), in that the combination
of stochastic sampling and decision tree representation

enable our approach to model a wider range of systems
than can BDDs and DNNF's.

In the area of test generation, the primary difference is
that, rather than generate a set of tests, we integrate the
tests into a decision tree, which can be efficiently evaluated
within an embedded setting.

In the area of machine learning, our approach is novel in
that it introduces a novel approach to decision tree in-
duction, where we generate an approximate (compressed)
classifier by sub-sampling from a known model. Most ap-
proaches assume that we start with data, rather then a
model, the generation of data from which we can control.

3. PROBLEM FRAMEWORK

This section introduces the problem that we are solving,
as well as the notation necessary for defining this problem.

3.1 Diagnosis Model

We now introduce the notion of system model and di-
agnosis that we use to specify a discrete-valued model-
based diagnosis (MBD) representation (Reiter [1987]). The
MBD models we use are applicable to arbitrary discrete-
valued systems, but in the following we assume that we are
defining the MBD problem for circuit models. In future
work we plan to define models for more general systems.

Central to MBD, a model of an artifact is represented
as a Boolean propositional function f over a set X of
variables. Distinguishing two subsets of these variables as
health (assumable) and observable? variables gives us a
diagnostic system.

Definition 1. (Diagnostic System). A diagnostic system ¥
is defined as the triple ¥ = (f, H,O), where f is a
propositional theory over a set X of variables, H C X is
the set of assumables, and O C X is the set of observables.

Throughout this paper we will assume that ON'H = @) and
FIL

Given a system theory f and an observation «, a diagnostic
query identifies if o is anomalous with respect to f, in
which case we must isolate the diagnoses. MBD computes
diagnoses in terms of assignments to the assumable vari-
ables H. By convention, h; = 0 denotes normal function-
ality, and h; = 1 denotes a fault.

Definition 2. (Health Assignment). Given a diagnostic sys-
tem ¥ = (f, H,O), an assignment Ay to all variables in H
is defined as a health assignment.

Analogous to a health assignment, a complete assignment
Ax Is an instantiation to all the variables in X. The MBD
notion of diagnosis covers multiple simultaneous faults, as
denoted below.

Definition 3. (Diagnosis). Given a diagnostic system ¥ =
(f,H,), and an observation « over some variables in O,
a health assignment is a diagnosis, w, if f AaAw FEL.

2 In the MBD literature the assumable variables are also referred to
as “component”, “failure-mode”, or “health” variables. Observable
variables are also called “measurable”, or “control” variables.

The cardinality of a diagnosis w is the number of faulty
components in w. We denote a diagnosis of cardinality k
using ¥, and the set of k-cardinality diagnoses using J.
The space of all diagnoses is given as follows:

Definition 4. (Diagnosis Space). Given a diagnostic sys-
tem U = (f,H,O), a diagnosis space 2 is the set of all
instantiations of the health variables H consistent with f.

3.2 Objectives

Our objective is to generate a space-efficient, or com-
pressed, diagnosis classifier A. A complete classifier,
A(Q, O), stores a representation of the complete diagnosis
space €2, such that for any observation « of observables O,
the “optimal” diagnosis can be returned. By selecting a
subset of diagnoses, 2’ C £, and inducing a classifier from
learning instances generated by sampling from ', we can
create a compressed classifier A’(Q’, O) which will be more
memory-efficient than A(Q, O).

In particular, our objective is to generate a classifier A
such that (a) AU« = @, (b) this new inference process
is more efficient than using A, and (c¢) A’ is much smaller
than A, |A'] < |A|.

An alternative method for creating a compressed classifier
is by sub-sampling from A(£2, O), using an approach like
importance sampling (Bucklew [2004]). This approach may
lead to a more accurate classifier than the threshold-based
pruning method, but it will also lead to a relatively larger
classifier A, since rare event still must be captured by A.

The key issue will be the loss of accuracy of the resulting
compressed classifier A’. In the threshold-based pruning
method, the error arises from three sources: (1) diagnosis-
space pruning; (2) sampling; and (3) classifier induction.
Pruning is the largest source of error, given appropriate
sampling and induction techniques. We will show that if we
use a domain in which the diagnosis space follows a power-
law distribution, then the pruning error is also small.

3.3 Example

A } C
B

Fig. 1. Diagram of half-adder circuit.

Figure 1 shows an example of a simple circuit, a half-adder.
This circuit has two inputs, I = {4, B}, two outputs,
O = {S,C}, and two components, an XOR and an AND
gate. The standard boolean function for this circuit is
defined over variables (A, B, S, C).

We define fault-modes for the XOR and AND gates,
with boolean domains { OK, failed}, together with clauses
specifying the circuit behaviour given both OK and failed
component modes.

Figure 2 shows the truth table for the half-adder fault
model. The first four rows of the table show the normal
instances, i.e., the truth table for a standard (non-fault)

Normal

Single-
fault

Double
fault

rlrlelrl=l=l==lolololo]o]o|o|e

L o o S (=) (= (e (= B [b [(=) (@] (=] (o]

LI R EE EE E RN R

L (=2 (=1 [L (=] (=] [k=) [[(=) (o) g Tl (o]

(=1 (=] B (=1 2 (=] [(=) [(=) IR (o) [(o)

Ll [(=1 (=1 G L (=] (=) B o [(o) o)) [e]) [e]

plelelelele|e
=) (52 N (30) [S 1) 1) BN 1)) (531 BN (Y [N I

Fig. 2. Truth table of half-adder fault model.

model. The next four rows show the instances for AND-
faults, the following four for XOR~faults, and the final four
rows show the instances when we have both AND- and
XOR-faults simultaneously (double faults).

4. ANALYSIS OF DIAGNOSIS SPACE

This section analyses the distribution of the diagnosis
space, under standard assumptions of high-reliability com-
plex systems. In particular, we show that the diagnosis
CDF is power-law distributed. As a consequence, we can
take advantage of the shape of this distribution to generate
compressed classifiers that are space-efficient while losing
little fault coverage.

4.1 Approximate Diagnosis Distributions

We now specify the probability distributions over the
diagnosis space. We make the following assumptions: 3

e All components fail independently of each other.
e Component ¢; has prior failure probability p;.
e For every component ¢;,i =1, .., f, p; < (1 — p;).

Let m = {p1,...,ps} be the set of prior fault probabilities
for the components. Given our assumptions above, the
probability for any diagnosis is given by

Prwy= [I » [I -p)

i:ci:failed i:c;=0K

Our diagnosis distribution is thus given by Pr(Q) =
{Pr(w)|w € Q}.

We introduce a threshold ¢ such that we prune all diag-
noses such that Pr(w;|w; € Q) < ¢. If we prune a subset
of the space of diagnoses given by 2.4, then the pruning
error of a threshold-based (compressed) classifier is given
by Pr(Q<e)/Pr(2).

We can define a probability density function (PDF) for
k-cardinality diagnoses as follows:

Further, we can define the cumulative density function
(CDF) as follows:

3 In the following we assume that a component can be either OK
or failed, but can generalise this the multiple possible normal and
failure states in a straightforward fashion.

i<k i<k

If we define the subset of k-cardinality diagnoses which

are above a threshold ¢ using 19?, then we can obtain
threshold-based PDFs and CDFs simply by substituting

19,‘? for Y in the previous equations.

X103

06

l\
A
b

4 5
Fault Cardinality

Diagnosis PDF

1 Single + -
Double
09T fault
08
L 077
o
2 o6 Single + Double
Q os + Triplefault
Foa
a
03
02
01
0
0 0.1 02 03 04 05 06 07 08 09 1
Single fault Fraction of Total Memory

Fig. 3. PDF and CDF of diagnosis distribution.

4.2 Power-Law Diagnosis Space Distributions

Power-law distributions have been observed in many nat-
ural systems, such as physical (biological or man-made)
and sociological systems (Newman [2003]).

Definition 5. (Power Law). A probability density function
(PDF) for a random variable X follows a power-law if
PrX>xz)~a P asz — o0, 0<3<2.

Two of the most important power-law distributions are the
Zipf and Pareto distribution.

Definition 6. (Zipf distribution). A discrete random vari-
able Z follows a Zipf distribution if the rt* largest
value has probability density function (PDF) p(r;3) =
Kr=8, for (,r >0, and constant K.

The simplest continuous power-law distribution is the
Pareto distribution, which has PDF and cumulative dis-
tribution function (CDF), respectively:

Definition 7. (Pareto distribution).

p(r;a, k) =ak®% ! for a,k>0, 2>k
’r} «
M = < f— —_ —
F(z;a,n)=Pr[X <z]=1 (x) ,

where 7 represents the smallest value the random variable
X can take.

The closely related exponential distribution has also been
used for modeling many natural systems (Newman [2005]).

Ezxample 1. Figure 3 shows a PDF and CDF of a typical
diagnosis problem, such as that described in Section 3.3.
Using a probabilistic preference function with Pr(z =
OK) = 0.9, the PDF and CDF are clearly Pareto-
distributed. In the CDF the z-axis denotes the fraction
of total memory required by a compilation containing
diagnoses up to cardinality k, i.e., containing up to k
broken components.

Consider a probabilistic ordering over the diagnosis space.
Given a skewed failure-mode distribution w, we assume
that 30 such that every component h; has Pr(h; = OK) >
BPr(h; = failed). Such a skewed distribution is normal in
diagnostics, and implies that normal behavior is 3 times
more likely than faulty behavior, 5 > 1. By our skewness
assumption, we know that Pr(9;) > B8Pr(d;y1).

Theorem 1. If we assume that GPr(h; = failed) = Pr(h; =
OK) for all failure modes h;, then we obtain a heavy-tailed
(Zipf) distribution for the diagnosis distribution.

Proof Sketch: We assume that SPr(h; = failed) =
Pr(h; = OK), Yh;. We further assume that each diagnosis
consists of n failure-mode variables, for which Pr(h; =
OK) = n;, and hence Pr(h; = failed) = n;/3. Hence, the
probability of a k-fault diagnosis ¥y, is given by Pr(dy) =
Bk [T, mi- According to the Zipf distribution, if we take
the ratio of the 7" and (r 4+ 1) ranked variables, we
should obtain
Kr=7
= =T

Kr—(+1)

p(r)
p(r+1)

Now, if we take the ratio of the diagnoses with r- and
(r + 1)-faults, we obtain

Pr(v,) B H:‘l:l i

Pr(9,41) B0+D [Tz m = £

This rank distribution over the diagnoses is distributed
according to Zipf’s law, with each ¥4 being 3 times less
likely than ;. O

The significance of a diagnosis distribution being power-
law is that the majority of the probability mass is concen-
trated in the low-cardinality diagnoses, and this character-
istic increases as the prior fault probabilities decrease, i.e.,
the higher the reliability of a system (the more skewed
the distribution), the more the probability mass is con-
centrated in the low-cardinality diagnoses. It has been
shown that only n + 1 assignments can cover the vast
majority of the probability mass of models for skewed
distributions (D’Ambrosio [1993]).

Theorem 2. (Skewness-Based Sampling Size). : Given a joint

distribution over n binary-valued variables such that all
distributions are skewed with a larger mass of at least
(n + 1)/n, then the largest (n + 1) terms in the joint
distribution across the variables contain a total mass of
greater than 2/e.

This result indicates that our threshold-based sampling
approach will incur low error due to pruning, as long as we
retain at least the probabilistically-largest O(n) diagnoses.

5. COMPRESSED DECISION-TREE CLASSIFIERS

This section describes our threshold-based pruning method
for decision tree induction.

5.1 Decision Trees

A decision tree T is a binary tree where the leaves are
labeled either 0 or 1, and each internal node is labeled
with a variable. Given an assignment Ax € {0,1}", T(«)
is evaluated by starting at the root and iteratively applying
the following rule, until a leaf is reached: let the variable
at the current node be x;; if the value of at position 7 is 1
then branch right; otherwise branch left. If the leaf reached
is labeled 0 (resp. 1) then T'(Ax)= 0 (resp. 1). The size of
a decision tree is its number of nodes.

We can measure the “quality” of a decision tree using two
parameters, one for accuracy and one for complexity (or
size). We can measure the complexity of a decision tree T
simply in terms of the size of the tree |T'|. For this work
we ignore the structure of the tree.

5.2 Approximation via Decision Trees

The optimal version of the decision tree minimisation
problem is: given a boolean function f :{0,1}" — {0,1},
and an assignment of [0,1] weights to the variables of
f, can we replace f with an optimally smaller boolean
function f’ representing the set {s € {0,1}" : v(f(s)) >
¢}, where ¢ € [0, 1] is a lower bound for diagnoses, and f’
is defined as a decision tree.

We know that this problem is hard, since the specific
version of it in which ¢ = 0. i.e, finding an equivalent
representation of f as a decision tree of minimal size, is
hard (Zantema and Bodlaender [2000]). Polynomial-time
solvability of this problem would imply that satisfiability of
CNF formulas can be decided in polynomial time, which
is impossible unless P=NP. Further, approximating this
problem within a fixed distance § from optimal is also hard
(Sieling [2003]).

As a consequence, we solve a simpler approximation prob-
lem, which makes no claims of optimality of the generated
Decision Tree T'. We measure the “quality” of our approx-
imation using the diagnosis space CDF, which plots the
cumulative probability mass (which specifies the coverage
of the space of possible weighted diagnoses) versus the
relative memory (which specifies the memory ratio of a
subset of the diagnosis space).

We solve the problem of computing a decision tree 1" from
a boolean function f such that, for small §, T has coverage
of 1 — ¢ with memory ratio < 1 — 4.

5.8 Machine Learning Approach

We propose an approach that uses three main steps to
generate an approximate decision tree:

(1) Health assignment sampling (to create health assign-
ment set Ay);

(2) Generating consistent complete assignments from A,
to form the training set L;

(3) Inducing a decision tree from the training set L

We now describe each of these steps.

Generation of Partial Assignments through Sampling
We enumerate Ag, those health assignments with prob-
ability over a threshold ¢, and then compute complete
assignments of each member of Ay. In essence, we generate
a health assignment lattice in breadth-first fashion, using
the assignment probability to guide the search.

We start with the assignment with the highest probability,
Amaz, 1.€., the assignment where each variable instan-
tiation has its higher probability. We then successively
create sets of assignments A’ with Hamming distance
i =1,2,3,.... from A\pqz, such that Pr()) > ¢ for every
Pr(\) € A'. We denote the j element of A using A;.

We assume a flip operation, where we flip the variable
assignment that decreases Pr()) the least to create N
if Pr(N) > ¢, we add this to the set @ of thresholded
assignments.We continue this process recursively until no
new assignments can be added to Q.

Proc Assignment-Gen (f,)
AV — Amaz; @ AO;
Doi=1ton;
Do j =1 to |A%;
Do until there are no unflipped variables;
X = flip(ASh);
If Pr(X\) > ¢, then A" + A" U N

End;

Q— QUAY
End;
Return Q;

It is easy to show that the queue @ that we output
from this algorithm will contain a ranked list of all those
assignments that have probability above ¢. Given @, we
then analyse each element for satisfiability, and return
just the subset Q' of consistent assignments of @, which
consists of the models (complete assignments) of f such
that, for every model Ax, Pr(Ax) > ¢, VAx € Q'.

The complexity of this algorithm is specified as follows.
In the worst case, if we set ¢ = 0, then we have to
enumerate all 2" assignments and test their satisfiability.
However, if ¢ > 0, then we must enumerate only O(n)
assignments to ensure that the pruning error is less than
1 —2/e (Theorem 2).

When you relax the degree of skewness to ensure that the
larger mass p is at least loglogn times the smaller mass,
i.e., p > loglogn(1l — p), then only O(n) assignments can
cover the vast majority of the probability mass of models.
We make this latter assumption.

Procedure Assignment-Gen helps to identify the positive
instances for learning a decision tree. However, we also
need to include negative instances, Hence, the three types
of assignments from f that are necessary for learning cover:

e satisfying assignments with Pr(\) > ¢: SZ¢
e satisfying assignments with Pr()\) < ¢: S<¢
e unsatisfying assignments: S

Since there are 2" possible assignments, we generate only
those assignments above or equal to the threshold ¢, and
then sample from the remaining assignments. In the worst-
case this is also O(2"), but we choose such that |SZ?| is
O(n).

We categorise two sets of instances that can be generated
from f: (1) positive: I = §2%; and (2) negative: I = S<¢U
S. We will generate all assignments in I, and then choose
a distribution to sample a set @) of instances from I such

that, for some 0 < w < 1, Zg)) > w. In other words, we
sample until we generate a set @) of assignments such that

v(Q) > wv(S).

5.4 Ezxzample: Inducing a Compressed Decision Tree Diagnosis

Classifier

In the half-adder example, given a diagnosis w, an instance
consists of an assignment to {A,B,S,C, P,w}, such as
{1,1,1,1,(XOR =failed)}, indicating that the XOR gate
is faulty for this input-output setting.

Inducing a complete decision tree entails using all 16 con-
sistent instantiations shown in Figure 2. In the following,

we show how we sub-sample from these 16 instantiations
to generate an approximate tree.

Step 1: Generating Threshold-Based Health Assignments

The step enumerates the health assignments whose prob-
ability exceeds ¢.

Pr(l 1> [Pr(l 2)> |Pr(l 2) [Pr(l 2)>
pr(l 1]Pr(l 2].001 .05 >3 |05

[1 0] o
| 2 0 0
| 3 0 0

4Normal | O 0 Jo0093] 054
| 5 0l 1
| 6 0 1
| 7 0 1
| 8 0 | 1 Joos| 008 X
| 9 1 0
| 10 1 0
|11|Single- | 1 0

12 ffault 1 0§ 0.02] 0.36)
| 13 1 1
|14 1 1
| 15 |Double- |1 1

16 ffault 1 1 0] 0.04 X X X

Fig. 4. Truth table of half-adder fault model, with proba-
bilities assigned to each line in the truth table.

Figure 4 shows an example of health assignment proba-
bilities for two distributions. Distribution 7r; is such that

Pr(AND-mode)= (0.98,0.02), and Pr(XOR-mode)=(0.95,0.05);

distribution 7o is such that Pr(AND-mode) = (0.6,0.4),
and Pr(XOR-mode) = (0.9,0.1). Hence, under 2, the
assignment to the normal mode is Pr(diagnosis=0K)=
0.6 x 0.9 = 0.54.

If we have a threshold ¢ = 0.001, then the column labeled
m1(A) > 0.001 shows that the normal, single-fault and
double-fault mode-instantiations all exceed this threshold.
In this case, we would generate full instantiations from
all these cases. If we set ¢ = 0.05, then the double-
fault instantiations do not exceed this threshold, and we

exclude these cases from the next step of generating full
instantiations for positive learning instances.

Step 2: Generating Complete Instantiations

For every health assignment exceeding the threshold ¢, we
compute the assignments for all other variables z € X \'H.
These labeled instances thus make up the full training set.

In our half-adder example, Figure 4 indicates the training
instances for four possible combinations of probability and
threshold: (1,.001), (m,.05), (w2,0.3), (w2, 0.05). Of the
16 possible instances (see column 1), the x indicates the
subset of these instance that are ruled out by a (m,¢)
setting.

The complexity of this step is bounded by the number of
input-output combinations that are physically plausible.
In the worst case, given a system with k£ inputs and
outputs, the system has the capability to be set to 2*
distinguishable states; however, in reality, physical and
practical constraints will limit the state set to a small
fraction of 2*. In this example, we have 2* = 16 possible
engine states, but only 2 of those states are physically
realisable. Almost all real-world systems operate similarly.

Consonant with this notion of physical plausibility, we
assume that a subset of the space if the number of input-
output combinations N is physically plausible, and hence
restrict the size of N' = O(k?). This restriction of the
space of possible input state assignments significantly
reduces the number of instantiations that are tested for
consistency. We also sample from the other assignments
to obtain the set @ of instances to complete the training
set.

Step 3: Generating the Decision Tree

Fig. 5. Decision trees for half-adder fault model, with
probabilities 7m; and thresholds ¢ = .002,0.001.

Figure 5 shows decision trees generated for the half-
adder fault model, with probabilities 7y and thresholds
¢ = .002,0.001. Note that reducing ¢ from 0.002 to
0.001 ends up in removing the node for diagnosing XOR.
If we introduce the tree-induction option for avoiding
overfitting, the tree will shrink further, from 19 nodes for

the case of @ = .002 to 11 nodes, with a corresponding
reduction in the ability to isolate faults.

6. SUMMARY AND CONCLUSIONS

This article has proposed an approach for generating
compressed diagnostic classifiers which trades off memory
for diagnostic coverage. We have proven that, if we have
a probability distribution 7 over a set of n component
failure-modes, the resulting distribution over system diag-
noses, Pr(Q), is power-law distributed. If the distribution
7 is skewed, then we have shown that the probabilistically-
largest O(n) diagnoses, -4, contribute the vast majority
of the probability mass within a power-law distribution.
Consequently, building a classifier T' based on sampling
from Q-4 to generate the positive learning instances re-
sults in T" having high diagnostic coverage but significantly
smaller memory than a complete classifier.

REFERENCES

R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transactions on Computers,
¢-35(8):677-691, August 1986.

J.A. Bucklew. [Introduction to Rare Event Simulation.
Springer, 2004.

T. Bylander, D. Allemang, M.C. Tanner, and J. Josephson.
The computational complexity of abduction. Artificial
Intelligence, 49:25—-60, 1991.

Bruce D’Ambrosio. Incremental probabilistic inference. In
Proc. Conf. on Uncertainty in Al 1993.

Adnan Darwiche. Model-based diagnosis using structured
system descriptions. J. Artificial Intelligence Research,
8:165-222, 1998.

J. de Kleer. An assumption-based TMS. Artif. Intell., 28
(2):127-162, 1986.

O.H. Ibarra and S.K. Sahni. Polynomially Complete Fault
Detection Problems. IEEE Trans. on Computers, C-24
(3):242-249, 1975.

R. Isermann. Model-based fault-detection and diagnosis—
status and applications. Annual Reviews in Control, 29
(1):71-85, 2005.

M. Newman. The structure and function of complex
networks. SIAM Review, 45(2):167— 256, 2003.

M E J Newman. Power laws, pareto distributions and
zipf’s law. Contemporary Physics, 46:323, 2005.

J. Ross Quinlan. Induction of decision trees. Machine
Learning, 1(1):81-106, 1986.

J. Ross Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

R. Reiter. A Theory of Diagnosis from First Principles.
Artificial Intelligence, 32:57-96, 1987.

JG Rowland and LC Jain. Knowledge based systems
for instrumentation diagnosis, system configuration and
circuit and system design. FEngineering Applications of
Artificial Intelligence, 6(5):437-46, 1993.

J.W. Sheppard and W.R. Simpson. System Test and
Diagnosis. Springer, 1994.

Detlef Sieling. Minimization of decision trees is hard
to approximate. In IEFEE Conf. on Computational
Complezity, pages 84-92, 2003.

Hans Zantema and Hans L. Bodlaender. Finding small
equivalent decision trees is hard. Intl. J. of Foundations
of Computer Science, 11(2):343-354, 2000.

