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Abstract

The Weighted Constraint Satisfaction Problem (WCSP)
is a popular formalism for encoding instances of hard
optimization problems. The common approach to solv-
ing WCSPs is Branch-and-Bound (B&B), whose efficiency
strongly depends on the method of computing a lower bound
(LB) associated with the current node of the search tree.
Two of the most important approaches for computing LB
include (1) using local inconsistency counts, such as Main-
taining Directed Arc-Consistency (MDAC), and (2) Russian
Doll Search (RDS).

In this paper we present two B&B-based algorithms. The
first algorithm extends RDS. The second algorithm com-
bines RDS and MDAC in an adaptive manner. We em-
pirically demonstrate that the WCSP solver combining the
above two algorithms outperforms both RDS and MDAC,
over all the problem domains and instances we studied. To
the best of our knowledge this is the first attempt to combine
these two methodologies of computing LB for a B&B-based
algorithm.

1 Introduction

The Weighted Constraint Satisfaction Problem (WCSP)
is a popular formalism for encoding instances of hard op-
timization problems, whose applications include resource
allocation, bioinformatics, probabilistic reasoning [8]. One
of the most popular approaches to solving WCSPs is Branch-
and-Bound (B&B). The efficiency of a B&B algorithm
strongly depends on the method of computing a lower
bound associated with the current node of the search tree.

There are two main approaches to computing lower
bounds. The first approach is based on counting local in-
consistencies of the given constraint network, e.g. [17, 6,
7, 9, 10, 4]. The other approach is based on Russian Doll
Search (RDS) [16, 11, 12, 2, 14], where instead of solving
one WCSP, the algorithm solves a sequence of nested sub-
problems, each including one more variable than the pre-
vious subproblem, until the whole problem is solved. Pro-

cessing a given subproblem in RDS is designed so that the
set of variables unassigned by the current partial solution
always constitutes the set of variables of an already solved
subproblem. The optimal solution weight of this subprob-
lem is taken into account by the procedure computing the
lower bound.

The RDS algorithm is somewhat inflexible due to the fact
that, at each iteration, only one particular solved subprob-
lem (namely, the one that includes all the unassigned vari-
ables) contributes to the lower bound evaluation. The pa-
pers [11, 12] present versions of RDS having greater flexibil-
ity, achieved by solving subproblems obtained by restricting
domains of unassigned variables to single values and select-
ing the “best” of them during the lower bound evaluation
process. However the set of variables of the subproblem se-
lected for the lower bound computation is the same as for
RDS (i.e. the set of all unassigned variables).

In this paper we present two modifications of RDS that
are more flexible in this sense. The first algorithm, called
Partially Assigned Big Doll Search (PABDS), considers the
already solved subproblems, some variables of which are
assigned by the current partial solution, and selects the one
that provides the best lower bound. From the point of view
of “pure” RDS, such subproblems are obsolete because they
were used on previous iterations and failed to cause back-
tracking. In PABDS we show that these subproblems can be
reused due to the fact that some of their variables are as-
signed, which potentially increases the lower bound on the
weight of violated constraints.

The second modification of RDS considered in this pa-
per combines RDS with counting local inconsistencies. Be-
sides the subproblem including all the unassigned variables
used by RDS, the proposed algorithm considers also smaller
subproblems involving only part of the unassigned vari-
ables. For the unassigned variables that do not belong to the
considered subproblems, the proposed algorithm counts the
number of local inconsistencies. This increases the lower
bound and may be especially helpful when the filtering
component of the algorithm has removed many values from
the domains of unassigned variables. The counting of lo-
cal inconsistencies is performed according to the method of
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Maintaining Directed Arc-Consistency (MDAC) [6, 7], and
hence the resulting algorithm is called RDS-MDAC. We can
say that RDS-MDAC is a hybrid of RDS and MDAC. To the
best of our knowledge this is the first attempt to combine
these two approaches of computing lower bounds.

We evaluate the proposed methods empirically using
randomly generated MAX-CSPs and Earth Observation
Satellite Scheduling Problems (SPOT5) [1]. In particular,
we compare PABDS and RDS-MDAC-PABDS (a hybrid of
RDS-MDAC and PABDS) with RDS and MDAC. The results of
our experiments show that RDS-MDAC-PABDS outperforms
both RDS and MDAC on the tested domains. Hence comb-
ing the RDS and local inconsistency counts is a promising
approach to lower bound evaluation.

The algorithm of [9] is the most closely related to our
approach. As in our case, the lower bound in [9] is eval-
uated by combination of local inconsistency counts and a
more global estimation on disjoint sets of unassigned vari-
ables. However [9] does not use the RDS-based measure, but
develops another method of global evaluation. It is worth
noticing that this method is not competing with ours, but
rather complements it. In particular, the RDS-MDAC algo-
rithm described in the present paper can be enhanced with
the partition-based lower bounds presented in [9].

The remainder of the paper is organized as follows. In
Section 2 we give some essential background and termi-
nology required for this paper. In Section 3 we describe
algorithms PABDS and RDS-MDAC. In Section 4 we report
experiments performed on binary random MAX-CSPs and
SPOT5 problems. Finally, in Section 5 we draw the conclu-
sion and outline possible directions of further investigation.

2 Background

In this paper we restrict our attention to binary Con-
straint Networks (CNs). Let Z be a CN with the set
{x1, . . . , xn} of variables. We denote by D(xi) the domain
of values of xi. An assignment of Z is a pair (xi, vi) such
that vi ∈ D(xi). The constraints of Z are represented by the
set of conflicting pairs of values (or conflicts) of the given
CN. A set of assignments, at most one for each variable, is
a partial solution of Z. A partial solution that assigns all
the variables of Z is a solution of Z. In the Weighted Con-
straint Satisfaction Problem (WCSP) conflicts are assigned
with importance weights, the weight of a solution is the sum
of weights of violated conflicts. The task of WCSP is to find
the optimal solution of Z, i.e. one that has the smallest
weight.

Branch-and-Bound (B&B) is a widely used approach to
WCSP solving. At every moment B&B maintains the cur-
rent partial solution P . The upper bound UB of B&B is
the smallest weight of a solution considered since the begin-
ning of the execution till the current moment. The goal of

B&B is to obtain a solution containing P and whose weight
is smaller than UB. The lower bound LB is a number
such that there is no solution having weight less than LB
and containing P . If LB ≥ UB then B&B immediately
backtracks. The efficiency of B&B strongly depends on the
method of computing LB: the greater the value of LB, the
more chances that B&B would backtrack earlier. In the rest
of the section we overview methods of computing LB, as-
suming that P has the weight F .

The most obvious value of LB is F . A more sophisti-
cated way of computing LB is employed by Partial For-
ward Checking (PFC) [5]. Let v be a variable unassigned
by P . Let val ∈ D(v). Denote by Conf(v, val, P ) the
sum of weights of conflicts of (v, val) with the values of
P . Let MinConf(v, P ) = minval∈D(v)Conf(v, val, P ).
Denote by Connect the sum of MinConf(v, P ) over all
variables v unassigned by P . Then LB = F + Connect.

This LB is further improved by Maintaining Di-
rected Arc-Consistency (MDAC) [17, 6, 7]. This tech-
nique of computing LB is based on the notion of arc-
inconsistency. A variable w is arc-inconsistent with re-
spect to a value (v, val) if each value of D(w) conflicts
with (v, val). Let Ord be a linear order over all vari-
ables unassigned by P . For an unassigned variable v
and val ∈ D(v), let dacv,val be the number of variables
that precede v by Ord and arc-inconsistent with respect
to (v, val). Let DM(v, val, P ) = Conf(v, val, P ) +
dacv,val, MinDM(v, P ) = minval∈D(v)DM(v, val, P ),
and SumDM be the sum of MinDM(v, P ) over all
the unassigned variables (the abbreviation DM stands for
DAC Measure). Then LB = F + SumDM . The order
Ord may be static, computed once at the beginning (as in
the algorithm PFC-DAC [17, 6]), or some pairs of variables
may be dynamically reversed in order to tight the lower
bound (as in the algorithm PFC-MRDAC [7]). Originally the
lower bounds of PFC-DAC and PFC-MRDAC were proposed
for MAX-CSP (the weights of all conflicts equal 1). To en-
sure their validity for WCSP, it is essential that the weight of
each conflict is ≥ 1.

The pruning power of the lower bounds of PFC and
MDAC can be enhanced by the use of a filtering procedure.
One possible filtering procedure works as follows. In addi-
tion to computing LB with respect to P , it computes LB
with respect to P ∪ {(v, val)} for each unassigned variable
v and each val ∈ D(v). If for a particular value (v, val) the
corresponding LB exceeds UB then val is discarded from
D(v). With the use of a filtering procedure, D(v) refers not
to the initial domain of v but rather to the current domain of
v containing only feasible values, i.e. the ones that have not
been discarded in the iteration corresponding to the current
node of the search tree or its ancestor.

The last algorithm considered in this section is Russian
Dolls Search (RDS) [16]. To explain how LB is computed
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Figure 1. Solving Zi and computing LB by: (a) RDS (on the left), (b) PABDS (on the right).

by RDS, consider again PFC. Let Z be a CN on the set
of variables {v1, . . . , vn}, assume that P assigns variables
v1, . . . , vi−1, and denote the projection of Z to {vi, . . . , vn}
by Zi. Let Y be the weight of an optimal solution of Zi.
Then the weight of any solution containing P is at least
LB = F + Connect + Y . This LB is larger then the
lower bound F + Connect used by PFC. Thus PFC can
perform better if in each iteration it has an oracle which
tells the value of Y . RDS achieves that by fixing an order
v1, . . . , vn and solving by PFC the WCSP first for Zn, then
for Zn−1, Zn−2, . . . , and finally, for Z1. For each iteration
RDS “knows” the weight of an optimal solution of an pro-
jection of Z to unassigned variables. The computing of LB
by RDS is schematically illustrated in Figure 1 (a) on the
left, where we assume that the current WCSP being solved
is Zi, P assigns first k variables vi, . . . , vi+k−1, and Y is
the weight of an optimal solution of Zi+k solved before.

The information obtained as a result of solving
Zi+1, . . . , Zn can be also used for obtaining a good ini-
tial value of UB for Zi. In particular, let T be an opti-
mal solution of Zi+1 obtained on the previous run of the
RDS algorithm. For each (vi, val), the algorithm computes
ConfWeight(vi, val, T ). Let T ′ = T ∪ {(vi, val)} such

that ConfWeight(vi, val, T ) is smallest possible. The
weight of T ′ serves as the initial value of UB for Zi.

3 Algorithms

3.1 Partially Assigned Big Doll Search
(PABDS)

We propose a modification of RDS, which, in addition to
LB computed by RDS, computes a number of other lower
bounds with the hope that one of them would be larger
than LB and increase the chances of earlier backtracking.
We call the algorithm Partially Assigned Big Doll Search
(PABDS).

Consider the search on Zi, assuming that Zi+1, . . . , Zn

have been already solved by PABDS (illustrated in Figure 1
(b) on the right). Let UB be the current upper bound on
the weight of an optimal solution known at the considered
moment. Assume that the current partial solution P assigns
first k variables vi, . . . , vi+k−1. Then a Partially Assigned
Big Doll (PABD) is a subproblem which includes all unas-
signed variables vi+k, . . . , vn and a part of P , i.e. some as-
signed variables from the range {vi, . . . , vi+k−1}. We can
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consider k such PABD-s consecutively increasing the size of
the subproblem by adding one assigned variable, and esti-
mate LB in each case. While RDS solves Zi having all vari-
ables of considered subproblems unassigned in the current
iteration, PABDS solves Zi having some variables of consid-
ered subproblems assigned by P . While at each moment of
pruning RDS examines only one subproblem of size equal
to the number of unassigned variables, PABDS analyzes k
subproblems consecutively, what increases the chances of
backtracking at an earlier stage.

The value of LB is computed as follows. Let Zt be some
PABD on variables vt, . . . , vi+k−1, vi+k, . . . , vn (when i ≤
t ≤ i + k − 1). Let Y be the weight of an optimal solution
of Zt obtained before. We denote by Out the part of P that
does not belong to Zt, and by OutWeight the weight of
Out. We define Conf(v, val, Out) as the sum of weights
of conflicts of (v, val) with the values of Out. We define
MinConf(v, Out) = minval∈D(v)Conf(v, val, Out), if
the variable v is unassigned. However, if some vari-
able v is assigned by value valm in P then only this
value valm is considered, that is, MinConf(v, Out) =
Conf(v, valm, Out). Finally, Connect is the sum of
MinConf(v, Out) over all variables in Zt.

We define LB = OutWeight + Connect + Y . It can
be shown that LB is a lower bound on a weight of a full
solution containing P . If LB ≥ UB, it is safe to backtrack
immediately.

Notice that for each value of t, RDS has already com-
puted a lower bound at the moment when Out was the cur-
rent partial solution and, since Out has been extended to
P , that lower bound failed to cause backtracking. Hence,
on the first glance, it may seem strange that we hope to
backtrack at the current iteration by recomputing this lower
bound. But the point is that the lower bound computed by
PABDS is not the same lower bound that was computed by
RDS. In particular, the value of MinConf(v, Out) for an
assigned variable v may be much larger than the same value
on the time when v was unassigned. In addition, the lower
bound computed by PABDS may be larger than the lower
bound computed by RDS, because the weight Y of an op-
timal solution of Zt may be larger than the weight of an
optimal solution of Zi+k. The combination of these two
factors would produce a larger lower bound which would
help us to backtrack earlier.

The PABDS algorithm applies filtering only for comput-
ing RDS lower bounds, i.e given the current partial solution
P , we compute the RDS lower bound for each P ∪ {v, val}
where val is a feasible value of an unassigned variable v
(as explained in Section 2). If none of these lower bounds
causes backtracking, the PABDS lower bounds are computed
only for P . We do not apply filtering for the PABDS lower
bounds because according to our empirical studies, filtering
only slightly reduces the number of nodes of the search tree

while considerably increases the runtime.

3.2 Combination of Russian Doll Search
and Maintaining Directed Arc-
Consistency (RDS-MDAC)

We propose an algorithm RDS-MDAC that combines RDS
and MDAC (described in Section 2) in order to increase the
value of LB and allow earlier pruning. For this algorithm
we assume that weights of all conflicts are ≥ 1.

The idea is to apply RDS-MDAC after RDS was applied
and failed to prune in the current iteration. Consider the
search on Zi, assuming that Zi+1, . . . , Zn have been al-
ready solved by RDS-MDAC. Assume that the current par-
tial solution P assigns first k variables vi, . . . , vi+k−1 and
let F be the weight of P . Let Small Russian Doll (SRD)
be a subproblem which includes only part of the unassigned
variables vi+k, . . . , vn, leaving at least one variable outside.
We consider n − (i + k) such SRD-s, from Zi+k+1 to Zn,
consecutively decreasing the size of the subproblem by re-
moving one unassigned variable.

For each SRD Zt (i + k + 1 ≤ t ≤ n), the value
of LB is computed as follows. Let Y be the weight of
an optimal solution of Zt (obtained before). Let v be an
unassigned variable and let val ∈ D(v). Analogously to
the case of RDS, we define Conf(v, val, P ) as the sum of
weights of conflicts of (v, val) with the values of P , and
MinConf(v, P ) = minval∈D(v)Conf(v, val, P ). We
denote by Connect the sum of MinConf(v, P ) over all
variables in Zt. On unassigned variables vi+k, . . . , vt−1

(which are not included in Zt) we apply MDAC. Let
Ord be a linear order over unassigned variables, where
the variables of Zt are placed before the rest of vari-
ables. For an unassigned variable v and val ∈ D(v),
let dacv,val be the number of all unassigned variables
that precede v by Ord and arc-inconsistent with respect
to (v, val), including variables involved in Zt. We de-
fine DM(v, val, P ) = Conf(v, val, P ) + dacv,val and
MinDM(v, P ) = minval∈D(v)DM(v, val, P ). Then we
compute SumDM as the sum of MinDM(v, P ) over
unassigned variables vi+k, . . . , vt−1. We define LB =
F + Y + Connect + SumDM .

Theorem 1 LB = F + Y + Connect + SumDM is a
lower bound on a weight of a solution containing P .

Proof. Let P ∗ be an full optimal solution containing
P . We can describe P ∗ as P ∗ = P + P1 + P2, where
P assigns k variables vi, . . . , vi+k−1, P1 assigns variables
vi+k, . . . , vt−1, and P2 assigns variables vt, . . . , vn (when
i + k + 1 ≤ t ≤ n). Let w(P ∗) be the weight of P ∗,
w(P ) = F be the weight of P , w(P2) be the weight of P2,
and wpred(v, val) be the weight of conflicts of assignment
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(v, val) ∈ P1 with predecessors of v in Ord. Then

w(P ∗) = w(P ) + w(P2) +
∑

(v,val)∈P2

Conf(v, val, P )+

+(
∑

(v,val)∈P1

Conf(v, val, P ) +
∑

(v,val)∈P1

wpred(v, val))

By definition of Y we get w(P2) ≥ Y .
By definition of Connect:

∑
(v,val)∈P2

Conf(v, val, P ) ≥

≥
∑

v assigned by P2

MinConf(v, P ) = Connect.

By definition of SumDM :∑
(v,val)∈P1

Conf(v, val, P ) +
∑

(v,val)∈P1

wpred(v, val) =

=
∑

(v,val)∈P1

(Conf(v, val, P ) + wpred(v, val)) ≥

≥
∑

(v,val)∈P1

(Conf(v, val, P ) + dacv,val) =

=
∑

(v,val)∈P1

DM(v, val, P ) ≥
∑

v assigned by P1

MinDM(v, P ) =

= SumDM .

The first inequality in the above calculations is
based on the following argumentation. The value
of dacv,val is a lower bound on the number of con-
flicts of (v, val) with the assignments of the pre-
decessors of v in Ord. Since the weight of each
conflict is at least 1, the sum of conflict weights can-
not be smaller than the number of these conflicts, i.e.
wpred(v, val) ≥ dacv,val. Combining the above argumen-
tation, we get w(P ∗) ≥ F +Y +Connect+SumDM . �

Similarly to PABDS, and for the same reasons, RDS-
MDAC applies filtering only for computing RDS lower
bounds.

Why is the value of LB computed by RDS-MDAC larger
then the value of LB computed by either RDS or MDAC?
First of all, observe that RDS computes an optimal solution
based on complete domains of the variables, and that the
optimal solution based on the current domains of variables
can be much larger. In this context it is desirable to estimate
a lower bound more precisely. Measuring local inconsis-
tency for a subset of unassigned variables may provide such
an opportunity. But why not apply MDAC to the whole sub-
set of unassigned variables? The answer is that, for a subset
of variables, it may be still beneficial to compute the opti-
mal solution by RDS, because none of the variables of this
subset is arc-inconsistent with its predecessors. RDS-MDAC
combines, in the adaptive manner, two ways of guessing a
lower bound, and our hope is that it succeeds to catch a way
of a good combination of these two measures.

Figure 2. Computing LB by: (a) RDS, (b) MDAC,
(c) RDS-MDAC.

In order to illustrate the above informal argumentation,
consider the example shown in Figure 2. Set Z10 to con-
sist of variables v10, . . . , v15. We assume that the values
(v10, 1), (v11, 1), (v12, 1) are removed from the domains of
their variables due to their heavy conflicts with the current
partial solution P . We assume also that P has no conflicts
with the remaining values of v10, . . . , v15, and all the con-
flicts shown in the figure have weight 1. Let us compute LB
for the optimal extension of P .

Using RDS (Figure 2 (a)) we get an optimal solu-
tion {(v10, 1), (v11, 1), (v12, 1), (v13, 1), (v14, 1), (v15, 2)}
of Z10 having weight 1. Hence RDS provides LB = F + 1.

Applying MDAC on variables v10, . . . , v15 (Figure 2 (b)),
we assume that vi is a predecessor of vj whenever i > j.
Then dacv10,2 = 3, dacv11,2 = 2, dacv12,2 = 1, and the
measure supplied by the values of the rest of variables is 0.
Hence SumDM = 6, and MDAC provides LB = F + 6.

Consider now RDS-MDAC (Figure 2 (c)). The largest
LB is obtained when Zt includes the variables v13, v14, v15.
An optimal solution {(v13, 1), (v14, 1), (v15, 2)} of Z13 ob-
tained before by RDS-MDAC has weight 1. For the rest of
variables we get SumDM = 6, arguing as in the previous
paragraph. Thus RDS-MDAC provides LB = F + 7 which
larger than the values of LB provided by RDS and MDAC
taken alone.
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4 Experiments

We present experiments to demonstrate the utility of our
algorithms proposed in Section 3. We consider four differ-
ent settings: RDS, PABDS, RDS-MDAC-PABDS, and MDAC.
RDS-MDAC-PABDS is a combination of RDS-MDAC and
PABDS applied in each pruning iteration after RDS failed
to prune in this iteration. The directed arc-inconsistency
counts were computed according to the RDS ordering. In
other words, if v1, . . . , vn is the ordering of our vari-
ables such that the sequence of subproblems solved by
RDS is Zn, . . . , Z1 then, for computing of directed arc-
inconsistency, vi is a predecessor of vj whenever i > j.
The implementation of MDAC was the algorithm PFC-DAC
[6, 7], where we used the same static ordering for comput-
ing dacv,val as in RDS-MDAC-PABDS. The reason why we
chose PFC-DAC and not PFC-MRDAC is that we wanted to
check how the hybrid of RDS and PFC-DAC performs with
respect to each of these parts. In order to do this, it is im-
portant that all the algorithms follow the same order of vari-
able instantiation. It is worth noting that we do not pro-
vide the results for RDS-MDAC because RDS-MDAC-PABDS
gives strictly better results than RDS-MDAC.

The problem domains studied were binary random MAX-
CSPs and Earth Observation Satellite Scheduling Problems
(SPOT5), as in [16]. We measured the search efforts in
terms of the number of backtracks and CPU-time. For every
tuple of parameters of a tested instance, we report results
as the average of 50 instances. The proposed algorithms
were implemented using Microsoft Visual C++ 6.0, and the
experiments were performed under Microsoft Windows XP
2002 on a 2GHz Pentium processor using 1GB RAM.

4.1 Binary Random MAX-CSPs

We generated CNs given the following four parameters:
the number of variables n, the domain size dom, density p1,
and tightness p2 [13]. Then we slightly modified the gener-
ator in order to produce problems of limited bandwidth [16].

In particular, given a graph G with n vertices, an order-
ing h is a one-to-one map from the vertices of G to the set
{1, ..., n}. The bandwidth of a vertex v under an ordering
h is the maximum value of |h(v)− h(w)| over all vertices
w connected to v. The bandwidth of a graph under an or-
dering is the maximum bandwidth of any vertex, and the
bandwidth of a graph is its minimum bandwidth under any
ordering. We generated CSPs of limited bandwidth b as fol-
lows. Given n, dom, p1, p2, b, and an ordering h. Let
K be the set of all the pairs (v, w) of variables, such that
|h(v)− h(w)| ≤ b. We randomly selected pairs of con-
strained variables from K and conflicts between these vari-
ables. This method guarantees that the bandwidth of the or-
dering h, and therefore the graph bandwidth, is lower than

Figure 3. Binary Random MAX-CSPs: den-
sity=90, unlimited bandwidth (on the left),
bandwidth=5 (on the right).

or equal to b. Let us note that a small bandwidth b implies
a maximum vertex’s degree 2b in a constraint graph, and
hence, a small connectivity in the constraint graph.

For all the tested algorithms we ordered the variables in
decreasing order of their degrees in the constraint graph.
For the RDS-based algorithms we used the static value or-
dering heuristic, first choosing the value that the variable
had in the optimal assignment found on the previous sub-
problem [16], then choosing the first available value. For
MDAC we chose the first available value.

We examined three sets of instances of unlimited
bandwidth b by fixing the former three parameters (n, dom,
density p1 ∈ [90, 50, 10]), and varying the tightness p2
over the range [50, 100], to get problems of all possible
difficulties [13]. The range of parameter p2 was chosen so
that it includes the phase transition region. A time limit was
200 seconds per every tuple of parameters. The presented
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Figure 4. Binary Random MAX-CSPs: den-
sity=50 (on the left), density=10 (on the right).

three set of instances are: 〈n = 20, dom = 5, p1 = 90〉
in Figure 3 on the left, 〈n = 20, dom = 5, p1 = 50〉
and 〈n = 28, dom = 8, p1 = 10〉 in Figure 4.
The set of instances of limited bandwidth b
〈n = 20, dom = 5, p1 = 90, b = 5〉 is given in Fig-
ure 3 on the right. The tightness p2 is presented along the
horizontal axis, the actual number of backtracks and the
CPU-time are presented on the vertical axis. The empirical
results drawn from figures are as follows.

PABDS outperforms RDS in the number of backtracks,
achieving a reduction of up to 42% for all the considered
values of density and over the whole range of tightness for
unlimited and limited bandwidth; however, it does not re-
duce the CPU-time.

RDS-MDAC-PABDS outperforms both RDS and PABDS in
the number of backtracks for all the considered values of
density and over the whole range of tightness. In some cases
the rate of improvement by RDS-MDAC-PABDS over RDS

Figure 5. Binary Random MAX-CSPs: tight-
ness=97.

is 4.4 times for density=90, 12 times for density=50, 16
times for density=10, when bandwidth is unlimited. That
is, the rate of improvement in the number of backtracks by
RDS-MDAC-PABDS over RDS is increased with decreasing
of density. The obvious reason for that is the integration of
MDAC into RDS-MDAC-PABDS. In particular, in the case of
unlimited bandwidth, for density=90 MDAC has the largest
number of backtracks; for density=50 MDAC beats RDS and
PABDS in the number of backtracks in the most cases, giv-
ing up for RDS-MDAC-PABDS; for density=10 MDAC takes
the least number of backtracks. That is, the reduction in the
number of backtracks of MDAC compared with all other al-
gorithms causes better performance of RDS-MDAC-PABDS.

The improvement in the CPU-time by RDS-MDAC-
PABDS compared with RDS in case of unlimited bandwidth
is as follows: for density=90 it is achieved for high values of
tightness starting from 97; for density=50 and density=10 it
performs over the whole range of tightness achieving up to
2−3 times reduction in some cases. Note that the CPU-time
consumed by MDAC is the highest for all types of density.
Why does RDS-MDAC-PABDS improve the runtime of RDS?
The explanation is that the number of variables, for which
SumDM is computed, is increased one by one, and fre-
quently backtracking is initiated before SumDM is com-
puted for a considerably large number of variables, which
prevents the MDAC component of RDS-MDAC-PABDS from
incurring time penalties. To summarize, in case of unlim-
ited bandwidth RDS-MDAC-PABDS outperforms all other al-
gorithms (RDS, PABDS, and MDAC) in terms of the CPU-
time as follows: in the case of high values of density for
high values of tightness, and in the case of middle and low
values of density over the whole range of tightness.
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RDS-MDAC-PABDS achieves the highest rate of improve-
ment in search efforts, given unlimited bandwidth and high
values of tightness p2 over the whole range of density
p1, outperforming all other algorithms. This conclusion is
drawn from Figures 3 and 4 and shown separately in Fig-
ure 5 for 〈n = 20, dom = 5, p2 = 97〉, when density p1 is
varied over the range [35, 98].

MDAC performs better on problems with limited band-
width (due to their lower connectivity), causing better per-
formance of RDS-MDAC-PABDS. The more we limit the
bandwidth b, the better rate of improvement in search ef-
forts we achieve. In Figure 3 on the right we show the
results for 〈n = 20, dom = 5, p1 = 90, b = 5〉. In this set
MDAC performs better compared to other algorithms than in
the case of unlimited bandwidth (Figure 3 on the left). The
rate of improvement in the number of backtracks by RDS-
MDAC-PABDS over RDS is up to 9 times. The improvement
in the CPU-time by RDS-MDAC-PABDS over RDS is per-
formed over the whole range of tightness, the reduction is
30 − 53%. Limiting the bandwidth in cases of middle and
low values of density also allows us to obtain better results
for RDS-MDAC-PABDS.

4.2 Earth Observation Satellite Schedul-
ing Problems (SPOT5)

Daily management problems for an earth observation
satellite (SPOT5) are large real scheduling problems, for
which the idea of the Russian Doll Search was originally
conceived and applied [16, 1]. The detailed description
of SPOT5 problems as CSPs with valued variables is given
in [1]. Let us just recall that given a set of photographs
S (variables) having weights denoting importance (weights
of variables), each photograph p is taken by different ways
(domain D(v) of corresponding variable v), there is the pos-
sibility of not selecting p (a special rejection value is added
to D(v)), and a set of imperative constraints (binary and
ternary) is defined. The task is to find an admissible subset
S′ of S (imperative constraints met) which maximizes the
sum of the weights of the photographs in S′. That is, we
find a partial solution that satisfies all the imperative con-
straints, whose weight (sum of weights of assigned vari-
ables) is maximum.

For all the tested algorithms we used the static vari-
able ordering heuristic choosing the first variable according
to the chronological photograph ordering, since the band-
width of this ordering is naturally small in scheduling prob-
lems [16]. For the RDS-based algorithms we used the static
value ordering heuristic, first choosing the value that the
variable had in the optimal assignment found on the previ-
ous subproblem, then choosing the first available value [16].
For MDAC we chose the first available value.

We ran our experiments on the SPOT5

Figure 6. Experiments for SPOT5 problems.

instances downloaded from the URL:
ftp://ftp.cert.fr/pub/lemaitre/LVCSP/Pbs/SPOT5/ . We translated
ternary constraints in the given instances into binary ones
using a standard transformation [15]. Because of the
distribution of the possible images along each satellite reso-
lution, some instances can be decomposed into independent
sub-instances (no constraint between them), which can be
solved separately. Figure 6 shows results for the largest
independent sub-instances, when a time limit was 1800
seconds per this sub-instance. As MDAC does not solve
most of the instances within the time limit, we omit its
graphic description in that cases. The name of the SPOT5
instance, the number of variables and the constraints in the
instance are presented along the horizontal axis. The actual
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number of backtracks and the CPU-time required to solve
the instances are shown on the vertical axis.

The empirical results drawn from Figure 6 are as fol-
lows. PABDS outperforms RDS in the number of backtracks,
achieving a reduction of up to 34%; however, it does not
reduce the CPU-time, as in case of binary random MAX-
CSPs. RDS-MDAC-PABDS outperforms all other algorithms
(RDS, PABDS, and MDAC) in the number of backtracks and
in the CPU-time. The rate of improvement by RDS-MDAC-
PABDS over RDS in number of backtracks is 2 times in some
cases. The reduction in CPU-time achieved by RDS-MDAC-
PABDS over RDS is up to 40%. That is, RDS-MDAC-PABDS
outperforms all algorithms over all studied instances. The
savings in search efforts are smaller than for binary random
MAX-CSPs, but the improvements are nonetheless clear.

5 Conclusion

In this paper we presented two new B&B-based algo-
rithms for solving the WCSP problem. These algorithms can
be considered as modifications of the well-known RDS al-
gorithm. In particular, when computing the lower bound
for the current partial solution, the proposed algorithms de-
cide which one of the already solved subproblems would
make the best contribution to the lower bound computa-
tion. The first proposed algorithm, PABDS, selects only the
“big” subproblems which include variables assigned by the
current partial solution. The second proposed algorithm,
RDS-MDAC, looks into the opposite direction and considers
the “small” subproblems, i.e. those that include only unas-
signed variables. The contribution of the unassigned vari-
ables that do not belong to the selected subproblem is eval-
uated based on directed arc-inconsistency counts according
to the MDAC method. The empirical evaluation shows that
RDS-MDAC-PABDS, the hybrid of RDS-MDAC and PABDS,
outperforms both RDS and MDAC, and hence evidences that
combining local inconsistency counts and the RDS-based
measure is a promising approach for the lower bound eval-
uation.

An interesting direction of future research is to combine
RDS with methods of soft arc-consistency [3, 4] that trans-
form the given CN into an equivalent one having tighter
efficiently computable lower bounds. Such a combination
would potentially have a better performance than the com-
bination of RDS with MDAC. However, it is not trivial to
design such a hybrid algorithm because the CN transforma-
tion may affect the lower bound provided by RDS.
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