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Abstract
We address the problem of approximately compiling proposi-
tional abduction problems (PAPs). We show intractability of
compiling a PAP into a fixed-size representation, and of com-
piling a PAP to within a factor ε > 0 of the compilation of
minimal size. Although generating an approximate compila-
tion is intractable in general, we describe a preference-based
PAP for which order-of-magnitude smaller compilations can
be generated. We show that by restricting the distribution of
solutions of a boolean function f to be power-law or exponen-
tial, we can compile a representation that approximates the
solution coverage within a factor ε > 0 yet requires orders-
of-magnitude less space than that of complete compilations.
We present empirical results for the compilation languages of
DNNF and prime implicants.

1 Introduction
A broad range of compilation approaches have been pro-
posed in the literature, such as prime implicates (de Kleer
1986), DNNF (Darwiche 2002), Ordered Binary Decision
Diagrams (OBDDs) (Bryant 1992), cluster-trees (Pargamin
2003), and finite-state automata (Amilhastre, Fargier, &
Marquis 2002). The benefit of these approaches is that they
enable linear-time inference using the compiled representa-
tion; the drawback is that the size of the compiled repre-
sentation can be exponentially larger than the original func-
tion. For example, the number of prime implicants of a set
m of arbitrary clauses is O(3m) (Chandra & Markowsky
1978), and the size-complexity of compiled representations
(e.g., DNNF, OBDD) for problems in propositional logic,
Bayesian networks and constraint satisfaction is exponential
in the treewidth of their interaction graph (Darwiche 2001;
Dechter 2003; Jensen, Lauritzen, & Olesen 1990).

We focus on the size of a compilation, whereas most pre-
vious studies of compilation have focused on a variety of
other questions, such as the existence of solutions, or of rel-
evance and necessity of hypotheses (Eiter & Gottlob 1995).
For propositional abduction problems, we show some results
on the complexity of generating a compilation of fixed size,
and of approximating a compilation. In particular, we show
that the following problems are intractable.
• Generating a compilation of fixed size for a boolean func-

tion f .
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• Generating from f an approximate compilation whose
size is bounded by a fixed factor of the size of f .
To reduce the size of the compiled representation of a

propositional abduction problem (PAP) P , ζ(P), we pro-
pose to approximate ζ(P) using a valuation function to iden-
tify the most likely models (or satisfying assignments) of P .
We propose a model-based approach which generates ap-
proximate (sound but incomplete) representations that trade
off, in a pre-specified manner, solution coverage for space
and inference efficiency.

By introducing particular distributions over the solutions
of a PAP (represented as a boolean function f ), we can pro-
vide guarantees that we can compute compilations which
are orders of magnitude smaller than complete compilations.
We choose particular distributions that occur in important
abduction problems. For example, exponential and power-
law distributions occur within model-based diagnosis and
optimal control instances of abduction problems. The intu-
ition is that a small subset of the models contribute the vast
majority of the total probability mass of the full set of mod-
els. In model-based diagnosis, it is the set Λ of most-likely
diagnoses that play this role, with the vast majority of diag-
noses being significantly less likely than the diagnoses in Λ.
Hence the diagnosis distribution has a heavy tail of highly-
unlikely diagnoses, and we take advantage of this heavy-
tailed distribution. For these distributions over the solutions
of a boolean function f , we can approximate the size of a
compilation within a factor ε > 0 in polynomial time.

2 Related Work
This section reviews prior work in related areas.

Roth (1996) has addressed the problems of abductive in-
ference, and of approximating such inference. Roth focuses
on counting the number of satisfying assignments for a range
of AI problems, including some instances of PAPs. In addi-
tion, Roth shows that approximating the number of satisfy-
ing assignments for these problems is intractable.

Selman and Kautz (1996) adopt an alternative approxi-
mation approach, introducing upper and lower bounds to a
compilation, in order to simplify the compilation process.
This approach, though efficient, may in fact also generate
a compiled representation that is exponential in the size of
the original function f ; in contrast, we address a different
problem, that of compiling with size restrictions.



The complexity of compilation is typically intractable
in the worst case; average-case results may be encourag-
ing, given particular problem encodings. The complexity
of PAPs has been thoroughly studied in (Eiter & Gottlob
1995), who showed that, for simple definitions of proposi-
tional abduction, the corresponding decision problems are
complete for complexity classes at the second level of the
polynomial hierarchy; moreover, Eiter and Gottlob showed
that introducing prioritization increased the problem com-
plexity. This work has been extended in (Hermann & Pich-
ler 2007), where the complexity of counting solutions and
computing minimal solutions is addressed.

The complexity of compilation has been addressed in
many papers, including (Cadoli et al. 2002a; 1996; Liber-
atore 2001). Cadoli et al. (2002a) introduce a hierarchy
of compilation complexity classes. Ferrara et al. (2007)
have proven that for temporal logic model checking, prepro-
cessing cannot reduce complexity, given polynomial space
bounds (in the size of the input) on the output.

In the case of compiling using BDDs, the asymptotic
worst-case complexity results indicate that many important
BDD operations are NP-complete, NP-hard or tend to re-
quire unaffordable amounts of memory (Hachtel & Somenzi
2000). The size of a BDD is determined both by the func-
tion being represented and the variable ordering. There are
functions that have only exponentially sized BDDs (Bryant
1991), although this is not true for the average boolean func-
tion. Using variable ordering, one cannot guarantee that a
BDD will not be of size exponential in the number of vari-
ables, since the problem of finding the best variable ordering
is NP-hard (Bollig & Wegener 1996). Further, the approx-
imation problem is also hard, as for any constant c > 1 it
is NP-hard to compute a variable ordering resulting in an
OBDD with a size that is at most c times larger than optimal
(Sieling 2002).

In the case of other compilation targets, like DNNF, the
size of the DNNF generated for problems in propositional
logic, Bayesian networks and constraint satisfaction is expo-
nential in the treewidth of their interaction graph (Darwiche
2001; Dechter 2003; Jensen, Lauritzen, & Olesen 1990).1
Recent work (Zabiyaka & Darwiche 2006) proposes func-
tional treewidth as a better complexity bound than treewidth.

It is important to note that we focus on the size of the
compilation, which few previous papers have addressed. We
show the intractability of compiling a PAP within a fixed
size, and how a preference-based PAP allows space-bounded
approximate solutions for particular distributions.

3 Notation and Preliminaries
We adopt a simplified version of the formal framework in-
troduced in (Cadoli et al. 2002b). In particular, we adopt
the generic notion of compilation as the transformation of a
language S into another language, S′, which is the com-
piled representation of S. Using this framework, we de-

1It turns out that many real-world problems, e.g., the ISCAS
benchmark circuits (Brglez, Bryan, & Kozminski 1989), do not
have treewidths bounded by some relatively small integer, in order
to ensure compact DNNF compilations.

scribe compilation using the “language of pairs” (Cadoli et
al. 2002b): we assume that we are given as input the pair
〈f, σ〉, where f is the fixed part, and σ the varying part of
the problem. This pair 〈f, σ〉 captures problem-solving in a
variety of abductive applications. For example, in diagnosis
f consists of the model of the system to be diagnosed, and σ
corresponds to the sensor data from the system captured in
f ; the task is to compute if σ corresponds to faulty or normal
behaviour of the system.

3.1 Languages
We assume that we are dealing with languages that are gen-
erated from a finite, nontrivial alphabet Σ. We define the
length of a string f ∈ Σ∗ by |f |, and the cardinality of a set
S as ‖ S ‖. We assume that we are given as input the pair
〈f, σ〉, i.e., the problems we are interested in can be formally
defined as sets of pairs of strings:

Definition 1 (Language of pairs). A language of pairs S ⊆
Σ∗ ×Σ∗ is such that, for any pair 〈f, σ〉, f is the fixed part,
and σ the varying part of the problem.

3.2 Propositional Logic
We assume a standard propositional logic in this paper.
We use a finite alphabet of propositional symbols, Z =
{z1, z2, ..., zn}, using the usual boolean connectives∧,∨,¬,
and ⇒ for constructing well-formed formulae from Z. A
literal is a propositional symbol or its negation. A clause
z1 ∨ z2 ∨ · · · ∨ zk ∨ ¬zk+1 ∨ · · · ∨ ¬zn is a disjunction of
literals. A clause is Horn (definite Horn) if k ≤ 1 (k = 1).
A function (or formula) f is a conjunction of clauses; in this
article we assume that a formula is defined over n symbols,
unless stated otherwise. The size of a formula f is |f |, and
|f∗| is the size of the minimal formula equivalent to f . f∗1 is
the minimal function equivalent to 1 (the tautology).

An interpretation γ for Z is a mapping from Z to {true,
false}, where interpretations can be extended to boolean for-
mulae in the usual recursive way. Γ is the set of all interpre-
tations. A model of a formula f is an interpretation M that
maps f to true (written M |= true).

3.3 Propositional Abduction Problem
We adapt the notation of (Liberatore & Schaerf 2007) to
describe propositional abduction. A propositional abduc-
tion problem (PAP) can be defined using a triple 〈H,µ, f〉,
where H and µ are sets of variables, while f is a proposi-
tional formula. H is typically referred to as the hypothe-
ses, and µ as the manifestations. The set of solutions, given
manifestations µ, is defined as follows: Λ(f, µ) = {H ′ ⊆
H|H ′ ∪ f is consistent and H ′ ∪ f |= µ}.

By introducing a preference function ¹ we can define a
preference-based PAP using 〈H, µ, f ;¹〉. One can then use
an ordering ¹ over the subsets of H in order to compute the
set of preferred (“minimal”) solutions of the problem, given
manifestations µ: Λ¹(f) = min(Λ(f),¹).

As noted in (Liberatore & Schaerf 2007), the ordering ¹
captures the intuitive notion of plausibility of a solution to
〈H,µ, f ;¹〉. In other words, H ′ ¹ H ′′ holds if H ′ is more
likely to be the “real” cause of the manifestations than H ′′.



3.4 Compilability
We address abduction problems that can be expressed as the
pair 〈f, σ〉, where f is the fixed part and σ the varying part.
We assume that the fixed part, f , is compiled (preprocessed),
and the varying part, σ, is only accessible on-line. A prob-
lem S is compilable if, given an instance 〈f, σ〉, the fixed
part, f , can be preprocessed into an alternative representa-
tion, ζ(f).2

Definition 2 (Compilation). A language of pairs S ⊆ Σ∗ ×
Σ∗ denotes a compilation if and only if there exists a function
ζ and a language of pairs S′ such that for all 〈f, σ〉 ∈ Σ∗×
Σ∗, we have 〈ζ(f), σ〉 ∈ S′ if and only if 〈f, σ〉 ∈ S.

The function ζ represents the compilation of the fixed
part. It is clear from the definition that a compilation S′
of S preserves the models of S. In order to decide whether
〈f, σ〉 ∈ S, we process the fixed part f off-line, thus obtain-
ing ζ(f), and then we decide whether 〈ζ(f), σ〉 ∈ S′. Com-
pilation is worthwhile if deciding 〈ζ(f), σ〉 ∈ S′ is easier
than deciding 〈f, σ〉 ∈ S. Note that we do not restrict the
time needed to compute the function ζ.

This definition of compilation captures all of the compi-
lation approaches that have been proposed in the literature,
such as prime implicates (de Kleer 1986), DNNF (Darwiche
2002), Ordered Binary Decision Diagrams (OBDDs) (Bryant
1992), cluster-trees (Pargamin 2003), and finite-state au-
tomata (Amilhastre, Fargier, & Marquis 2002). These ap-
proaches all make space/time tradeoffs, i.e., they typically
generate compilations, from which a variety of classes of in-
ference can be done in time linear in the size of the compiled
representation, although the compilation may require signif-
icant space. However, these typical compilation approaches
are space intensive.

3.5 ε-Approximate Compilation
We define ε-equivalency of boolean functions as follows:
Definition 3. f(γ) is ε-equivalent to g(γ) if Prγ∈Γ{g(γ) 6=
f(γ)} ≤ ε, i.e., the fraction of n-bit strings γ for which
gn(γ) 6= fn(γ) is less than ε.

Using these notions, we explore an alternative compila-
tion approach, one in which we can generate all but a frac-
tion ε of the solutions. In some cases that can lead to a space-
efficient compilation. We represent this as follows:
Definition 4 (ε-Approximate Compilation). Given a param-
eter 0 < ε < 1, a language of pairs S ⊆ Σ∗ × Σ∗ denotes
an ε-approximate compilation if and only if there exists a
function ζ and a language of pairs S′ such that S(γ) is ε-
equivalent to S′(γ), i.e., for all 〈f, σ〉 ∈ Σ∗×Σ∗ there exists
at most a fraction ε of encodings ζ(f) that do not satisfy:
〈ζ(f), σ〉 ∈ S′ if and only if 〈f, σ〉 ∈ S.

4 Complexity Results
4.1 Review of Complexity Theory
We define a complexity class in terms of a set of languages.
The two best-known complexity classes are P and NP : P

2Note that this definition differs from the original definition of
(Cadoli et al. 2002b), where a compilation is assumed to be of size
polynomial in |f |.

is the set of languages possessing algorithms that run in time
that is a polynomial in the length of the input; NP is the set
of languages possessing algorithms that run in nondetermin-
istic polynomial time.

Since we will be considering problems that are harder
than those in P and NP , we define the polynomial hier-
archy as follows:

Definition 5. A language L is in the class ΣP
i iff there is

another language L′ in the class P and an integer k for
which

L = {x : (∃y1)(∀y2)(∃y3) · · · (Qyi), |yi| = |x|k
for all i, [(x, y1, y2, · · · , yi) ∈ L′]}, (1)

where the sequence of quantifiers alternates, ending with
Q = ∃ if i is odd or Q = ∀ if i is even.

According to this definition, P = ΣP
0 and P = ΣP

1 . We
can also define the complementary hierarchy ΠP

i of prob-
lems, which denote the problems defined by coL = {L :
L̄ ∈ L}, or in other words, coΣP

i = ΠP
i , for i = 0, ...,∞.

4.2 Complexity of General Problem
In this section we will show the complexity of the general
problem of compilation with a size limitation. We define
this problem as follows.

In our analysis, it suffices to consider just the fixed part
f of a PAP. This is because the size of the compiled PAP
depends only on the compilation of the fixed part. As a con-
sequence, we restrict our attention to f , which we consider
in this article to be a Boolean function. We assume that all
manifestations µ will be conjunctions of literals.

Problem 1 (EQUIV-COMPILATION). Given a boolean
function f and an integer k, does there exist a compiled rep-
resentation ζ(f) of length at most k?

It is straightforward to show that EQUIV-
COMPILATION is in ΣP

2 , which implies that generating a
fixed-length compilation is intractable. We can define a re-
duction to EQUIV-COMPILATION from the well-known
problem EQUIVALENT FORMULAS (Umans ).

Problem 2 (EQUIVALENT FORMULAS). The lan-
guage EQUIVALENT FORMULAS consists of those
pairs (k, f) where k is an integer and f is a Boolean func-
tion for which there exists an equivalent Boolean expression
f ′ of length at most k.

Further, we conjecture that EQUIV-COMPILATION is
ΣP

2 -complete, since many people believe that EQUIVA-
LENT FORMULAS is ΣP

2 -complete, although no proof
has been demonstrated as yet.

This result is more general than the ΣP
2 -hardness of decid-

ing if there exists an explanation for a set of manifestations
(Eiter & Gottlob 1995), since we are now showing equiv-
alence of languages, from which a much broader range of
decisions problems can be defined. For example, our no-
tion of compiled representation ζ(f) can be used to find an
explanation, the set of all explanations, etc.

Given that EQUIV-COMPILATION is in ΣP
2 , it is un-

likely that there exists a poly-time compilation algorithm to



generate a fixed-size ζ(f) from f . We can further extend
this result to include the definition of compilability in terms
of poly-size functions (Liberatore & Schaerf 2007); i.e., we
would have k = |ζ(f)|, where ζ is a poly-size function.

4.3 Space-Bounded Compilation Results
This section states two results concerning the existence
of poly-time compilation algorithms that achieve particular
size bounds. In particular, we state that there exists no poly-
time algorithm, unless P = NP , that can compile from f a
Boolean function f ′ = ζ(f) such that f ′ (a) is within some
function-dependent factor of the size of f , or that (b) approx-
imates f (in terms of ε-equivalency) within some function-
dependent factor of the size of f .

We first state a theorem about exact compilation.

Theorem 1. Given a Boolean function f and an integer
χ(f), there is no polynomial time algorithm, if P 6= NP ,
which compiles from f an equivalent representation f ′ such
that |f ′| = χ(f) · |f |, where χ(f) =

(
|f∗|

(|f∗1 |+1)

)
.

Our next theorem concerns an inapproximability re-
sult, defined in terms of ε-equivalent compilations. Re-
call from Definition 3 that f(γ) is ε-equivalent to g(γ) if
Prγ∈Γ{g(γ) 6= f(γ)} ≤ ε.

Theorem 2. Given a Boolean function f and an integer
χ(f), there is no polynomial time algorithm, if P 6= NP ,
which compiles from f an ε-equivalent representation f ′

such that |f ′| = χ(f) · |f |, where χ(f) =
(

|f∗|
(|f∗1 |+1)

)
,

ε = O(2−nc

), and 0 < c < 1 is a constant.

Together, these two theorems state that the task of gener-
ating a bounded-size compilation or ε-approximate compila-
tion, such as a poly-size compilation (Liberatore & Schaerf
2007), is intractable.

5 Preference-Based Compilation
This section introduces the notion of preference-based com-
pilation, and of particular distributions for preference-based
compilation.

5.1 Preference-Based Ranking
Assume that we have a full compilation ζ(f) such that we
can specify the space of solutions, Λ. We can rank-order the
solutions of Λ according to a given preference relation φ into
a set of equivalence classes, in which each equivalence class
is characterised by the same φ value.

We now consider the case where we use a preference cri-
terion φ to guide the choice of compilation target, i.e., we
aim to compile the most-preferred solutions.

Definition 6 (Preference Function). A preference function
φ defined over over the solutions Λ of f defines a partial
orderingÂ over Λ. We say that solution λ1 ∈ Λ is preferred
to solution λ2 ∈ Λ, written λ1 Â λ2, if φ(λ1) > φ(λ2).

In this article, we assign a preference function (valuation)
to variables, and then use this valuation to compute most

preferred solutions.3
We now specify three important preference-criteria that

are widely used in the literature for PAP compilation:

Subset-inclusion φ⊆: 2H → λ; λ1 Â λ2 if φ⊆(λ1) ⊆
φ⊆(λ2).

Cardinality ϑ: 2H → |λ|; λ1 Â λ2 if ϑ(λ1) < ϑ(λ2).

Probability Pr: 2H → [0, 1]; λ1 Â λ2 if Pr(λ1) >
Pr(λ2).

Preference-based compilation occurs often in abductive
inference; for example, in diagnosis, we denote cardinality
in terms of the number of faulty components in a solution,
and we are interested in computing the min-cardinality so-
lutions. In configuration, we specify a preference relation
over the attributes, such as colour, size, shape, etc., and we
want the most-preferred configurations. Consider the func-
tion f defined over variables {z1, z2, ..., zn} We represent
a valuation of a variable zi using φ(zi). Hence, we have a
weighted-pair (zi, φi) for each constraint and valuation.

The most preferred solution in a compilation can be com-
puted based on the specific preference relation, using the
composition function of the preference relation. We give
an example of a probabilistic preference relation below.

Example 1. Consider the case where we define our PAP as
a diagnosis problem for discrete circuits, using the model-
based diagnosis (MBD) framework of (Reiter 1987). Re-
call that a PAP is defined using a triple 〈H, µ, f〉, where
hypotheses H and manifestations µ are sets of variables,
and f is a propositional formula. Each circuit consists of
a set of gates (representing OR-, NOT-, AND-, or NAND-
functions); we defined the variables denoting the health of
gate i, hi, i = 1, ..., m, as the hypotheses. The manifesta-
tions µ consist of conjunctions of the input and output cir-
cuit values, and the formula f denotes the functionality of
the circuit, in terms of H,µ and a set of additional variables
denoting internal inputs and outputs. Note that we defined
only the normal functionality of each gate.

In addition, we defined a preference function over H .
This corresponds to the probability that a gate is operat-
ing normally or not. We defined the probability that gate
i is functioning, Pr(hi = 1) = p, by randomly sampling
the value for p from a uniform distribution over some range
R. The failure probability, Pr(hi = 0), is just the com-
plement, 1 − p. The solutions, or diagnoses, given a man-
ifestation µ, thus have an assigned probability, since each
diagnosis consists of a conjunction of mutually-independent
hypotheses H ′ ⊆ H , where λ =

∧
i{hi|hi ∈ H ′}, and

Pr(λ) =
∏

hi∈H′ Pr(hi).

5.2 Preferred Compilations
Definition 7 (Preference Preservation). A compilation ζ(f)
preserves a preference relation φ if, given 〈f, σ〉, for any
pair of solutions λ1, λ2 such that λ1, λ2 ∈ Λf and λ1, λ2 ∈
Λζ(f), λ1 Â λ2 is valid in ζ(f) iff λ1 Â λ2 is valid in f .

3We could define a more general form of valuation, where we
assign valuations to clauses. In the clause-based viewpoint, a vari-
able can be viewed as a unary clause.



We use a notion of preferential approximate equivalency
given a weighted boolean function. Given a threshold %, we
compile all solutions with weight greater than %.
Definition 8. f(γ)is (φ, ε)-equivalent to g(γ) if, given a val-
uation threshold φ, φγ∈Γ{g(γ) 6= f(γ)} ≤ ε, i.e., ε is the
cumulative valuation of solutions where g(γ) 6= f(γ).

In this case, we are interested in the weighted fraction of
n-bit strings γ for which gn(γ) 6= fn(γ) is less than ε.

We can now use these notions to define ε-approximate
compilations based on our preference relations.
Definition 9 (Preferred ε-Approximate Compilation). Given
a parameter 0 < ε < 1 and a preference function φ over f ,
a language of pairs S ⊆ Σ∗×Σ∗ denotes an ε-approximate
compilation if and only if there exists a function ζ and a
language of pairs S′ such that for all 〈f, σ〉 ∈ Σ∗ × Σ∗,
• there exists at most a fraction ε of encodings ζ(f) that do

not satisfy: 〈ζ(f), σ〉 ∈ S′if and only if 〈f, σ〉 ∈ S;
• there is no solution M ∈ Λf \ Λζ(f) such that M Â M ′,

where M ′ ∈ Λζ(f).

6 Approximate Compilations using Model
Distributions

So far, we have seen the intractability associated with ap-
proximating a compilation of an abduction problem. This
section shows that, if we have particular classes of prefer-
ence function, we can have stochastic guarantees on the size
of such a compilation. In particular, we show that, if we can
define particular classes of Zipf- or Pareto-distributions over
the solutions of f , then we can obtain a memory-bounded,
ε-approximate compilation for the most-preferred solutions.
It is important to note that the degree of memory savings de-
pends on the parameters of the Zipf/Pareto distribution, as
we will show.

The advantage of this approach is that, given certain prob-
lem characteristics, we can predict value of ε given µ. The
model-based diagnosis (MBD) problem is an example of an
important abduction problem that satisfies these distribution
requirements. In the following, we describe the power-law
and exponential distributions on which we focus. We then
show how such distributions lead to memory-bounded, ε-
approximate compilations that capture the majority of the
most-preferred solutions.

6.1 Power-Law Distributions
Power-law distributions have been observed in many natu-
ral systems, such as physical (biological or man-made) and
sociological systems (Newman 2003; 2005).
Definition 10 (Power Law). A probability density function
(PDF) for a random variable X follows a power-law if
Pr(X > x) ∼ x−β , as x →∞, 0 < β < 2.

Two of the most important power-law distributions are the
Zipf and Pareto distribution.
Definition 11 (Zipf distribution). A discrete random vari-
able Z follows a Zipf distribution if the rth largest
value has probability density function (PDF) p(r;β) =
Kr−β , for β, r > 0, and constant K.

The simplest continuous power-law distribution is the
Pareto distribution, which has PDF and cumulative distri-
bution function (CDF), respectively:
Definition 12 (Pareto distribution).

p(x; α, k) = αkαx−α−1, for α, k > 0, x ≥ k.

F (x; α, η) = Pr[X ≤ x] = 1−
(η

x

)α

,

where η represents the smallest value the random variable
X can take.

The closely related exponential distribution has also been
used for modeling many natural systems (Newman 2005).

6.2 Distributions for Preference-Based
Compilations

Every preference-based compilation has an associated distri-
bution function. For example, consider the cardinality pref-
erence criterion. If the number of solutions of cardinality
k is given by |ϑk(Λ)|, and the total number of solutions is
given by |Λ|, then we can define a probability density func-
tion (PDF) using this preference criterion as follows:

f(ϑ = k) =
‖ ϑk(Λ) ‖
‖ Λ ‖ .

In this case, f(ϑ) defines the distribution over solution car-
dinality.

Further, we can define the cumulative density function
(CDF) for this preference criterion as follows:

F (ϑ ≤ k) =
∑

i≤k

f(ϑi) =
∑

i≤k

‖ ϑi(Λ) ‖
‖ Λ ‖ .

In an analogous manner, we can define the PDF and CDF
for the subset-inclusion preference criterion as follows:

f(φ⊆ = k) =
‖ ϑk(Λ) ‖
‖ Λ ‖ , k = 1, ..., n.

F (φ⊆ ≤ k) =
∑

i≤k

φ⊆(ϑi) =
∑

i≤k

‖ |ϑi(Λ) ‖
‖ Λ ‖ .

Example 2. Figure 1 shows a PDF and CDF of a typical
diagnosis problem, such as that described in Example 1. Us-
ing a probabilistic preference function with Pr(z = OK) =
0.9, the PDF and CDF are clearly Pareto-distributed. In
the CDF the x-axis denotes the fraction of total memory re-
quired by a compilation containing diagnoses up to cardi-
nality k, i.e., containing up to k broken components.

In the following, we show how restricting these distribu-
tions can provide stochastic guarantees over the size of ε-
approximate compilations covering the most-preferred solu-
tions.

6.3 Restrictions on Model Distributions
This section shows how we can compile a representation that
contains the approximate solutions of f using the distribu-
tion of the solutions of f .
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Figure 1: PDF and CDF of diagnosis distribution.

Consider the case where we adopt a cardinality prefer-
ence function over solutions, ϑ(M), which is exponentially-
distributed; in this case, we know that the PDF and CDF are
given, respectively, by f(x) = ξeξx, F (x) = 1 − eξx, for
x ∈ Λ, x = 1, 2, 3, .., n, ξ > 0.

Assume that we want to find the subset of solutions such
that the weighted sum of the solutions is (1− ε) of the total
solution weight. This can be found using F (x) = 1− eξx =
(1− ε), which results in x = − 1

ξ lnε. This means that given
the parameters (ξ, ε), we can estimate the maximum cardi-
nality κ of the solutions that need to be generated; hence we
can ignore solutions with cardinality ϑ(λ) > κ, since these
solutions do not need to be generated given that we have al-
ready generated sufficient solutions to achieve our ε-bounds.

6.4 Stochastic Guarantees for Compact
Compilations

We can use f(ξ) to specify a distribution over the space of
solutions of f . Depending on the assumptions that we make
for the fi, we obtain different distributions for f(ξ).

Lemma 1. Given a preference-based Horn PAP 〈H, µ, f ;¹
〉 for which the solutions Λ(f) satisfy a power-law (or ex-
ponential) distribution under ¹, a preferred ε-approximate
compilation has size polynomially bounded in |f |.
Example 3. Assume that we have a PAP function f with
n = 100 variables and |H|=30 hypotheses, together with an
exponential distribution φ over the solutions Λ(f).

If ε ≤ 0.01, then x ≥ −1
λ ln0.01 = 4.6

λ . For n = 100 and
λ ' 1 (as is typical in real-world systems (Newman 2003)),
then x ≥ 4.6. From this, we know that we only need to

generate solutions with at most 5 hypotheses; this subset of
solutions is clearly polynomial in n. 2

Given that this approximate stochastic compilation ζ ′(f)
has polynomially-bounded space, it is simple to show that
ζ ′(f) takes only a fraction of the memory of the full com-
pilation ζ(f). The memory ratio that we are interested in
computing is Ω = |ζ ′(f)|/|ζ(f)|.
Example 4. Consider an approximate stochastic compi-
lation ζ ′(f) in which we have to generate solutions with
at most 10 hypotheses. In this case, we have Ω =
ζ′

ζ =
∑10

i=1 (n
i)

2n . For n large, |ζ ′(f)| ¿ |ζ(f)|. 2

The interesting thing to point out is that the “value” of
the approximate compilation method, measured in terms of
memory savings required to obtain 1 − ε of the probabil-
ity mass of solutions, increases as n increases. Hence, the
larger the system under analysis, the more valuable is this
approximate compilation method.

Finally, we can show that we can generate an ε-
approximate compilation for Horn formulae in polynomial
time, using a two-step process. This compilation is equiva-
lent to a set of most-likely solutions. In step one, we enu-
merate the ranked hypothesis-sets by computing the weight
of each assignment to H . Since we have shown that, given
some threshold φ guaranteeing an ε-approximation we need
only a polynomial number of subsets of H , this step can
be done in polynomial time. In step two, we extend each
partial instantiation (as defined by the assignment to H) to
a full instantiation, or solution, using a SAT oracle. Given
a Horn propositional function f , this can be done in linear
time. Hence our overall algorithm is polynomial-time.

7 Empirical Analysis
We have implemented this approximation approach, and
now show how it can be applied to generating compilations
for two target representations, DNNF and prime implicants.4

All our experiments were run with a set of formulae (ex-
pressed in CNF format) representing a suite of digital cir-
cuits. The digital circuits were generated randomly by a cir-
cuit generator program (Provan & Wang 2007), such that the
circuits have properties similar to those of the ISCAS circuit
benchmarks (Brglez, Bryan, & Kozminski 1989).

In the following we report results for the probabilistic
preference criterion. The other two criteria (subset and car-
dinality) show similar results, and we omit them for reasons
of space. Experiments were conducted on a 3MHz Pentium4
with 2GB of RAM.

All prime implicant experiments were conducted using
the algorithm by Shiny and Pujari (2002), using a trie data
structure. All DNNF experiments were conducted using the
algorithm by Darwiche (2001). All algorithms generate the
compiled representations incrementally. For example, for
prime implicants, we generate prime implicants up to those
that exceed the preference threshold φ. This guarantees that
our compilation can be used to generate solutions whose val-
uation is below φ. In addition, this incremental approach

4These results are a summary of the results from (Venturini &
Provan 2007).



Table 1: Properties of function f for circuits
Gates # Clauses # Variables # Literals in f

7 40 14 136
8 46 16 156
9 52 18 176

10 58 20 196
11 64 22 216
12 74 24 260
13 78 26 268
14 84 28 288
15 90 30 308
16 98 32 348
17 104 34 360
18 108 36 368
19 118 38 412

ensures that we never have to generate the full compilation
(which may be of exponential size), but generate only the
desired subset of the compilation.

We designed our experiments to test the compilation of
preference-based Horn PAPs on diagnosis models as de-
scribed in Example 1. We used circuits of a range of sizes,
as described in Table 1. For a circuit C with k gates (compo-
nents), this table shows the properties of the boolean func-
tion defining C.
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Figure 2: CDF of diagnosis distribution for compilation us-
ing DNNF.

The other key parameter in our experiments is the solution
threshold φ, which denotes the minimal probability of a di-
agnosis that is of interest. By compiling only diagnoses with
weights above φ, we generate a compilation that is sound but
incomplete with respect to φ.

Figure 2 shows the CDFs of diagnosis distributions for
compilation using DNNF, in the case where the range R =
[0.9, 1], for circuits with 5 to 13 gates. Figure 3 shows the
CDFs of diagnosis distributions for compilation using prime
implicants, in the case where the range R = [0.99, 1], for

circuits with 10 to 18 gates. Here we see that, as the circuits
grow in size, the approximate compilation achieves greater
memory savings for very high coverage ratio (> 99%). For
example, the 18-gate circuit achieves 4 orders of magnitude
of memory savings with > 99% coverage. Our experimental
evidence to date indicates that the memory savings increase
with larger functions f , meaning that this approach will en-
able approximate inference with systems larger than can be
handled by any existing exact compilation approach, with
little loss of query coverage.
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Figure 3: CDF of diagnosis distributions for compilation us-
ing prime implicants. This figure focuses on the upper left
quadrant of the distributions to better identify the differences
in the distributions.

8 Conclusions
We have examined the problem of compiling propositional
abduction problems (PAPs), and in particular compiling rep-
resentations that are not exponential in the PAP parameters.
We have shown that no poly-time algorithms exist that can
compile a PAP to produce a representation of fixed size, or to
approximate the PAP within a factor ε > 0 of the full com-
pilation. Given this intractability, we examined restricted
problems that occur in real-world PAPs. For example, in di-
agnosis, the diagnoses can be ranked according to a power-
law or exponential distribution, given ranking functions like
≤,⊆, or Pr. Using this motivation, we showed that by re-
stricting the distribution of solutions of a boolean Horn func-
tion f to be power-law or exponential, we can compile a rep-
resentation that approximates the solution coverage within
a factor ε > 0 yet requires orders-of-magnitude less space
than that of complete compilations. We empirically demon-
strated this space efficiency for compilation targets DNNF
and prime implicants.

9 Appendix: Proofs
This appendix presents our proofs and proof sketches.



9.1 Complexity of General Problem
This section shows that EQUIV-COMPILATION is in
ΣP

2 . We first show a mapping from EQUIVALENT FOR-
MULAS to EQUIV-COMPILATION, and then show that
EQUIVALENT FORMULAS is in ΣP

2 .
As defined in Section 3.3, compilation generates a func-

tion f ′ = ζ(f) such that f ′ |= µ iff f |= µ. Hence it is trivial
to demonstrate a mapping from EQUIVALENT FORMU-
LAS to EQUIV-COMPILATION.

EQUIVALENT FORMULAS is in ΣP
2 because we

can define a language L ∈ P as follows: L ac-
cepts those tuples ((f, k), f ′, γ) for which f and f ′
are Boolean formulas, f ′ has length of at most k,
and f agrees with f ′ on interpretation γ. We then
see that (f, k) ∈ EQUIVALENT FORMULAS ⇔
(∃f ′)(∀γ)[((f, k), f ′, γ) ∈ L], as is required by Equation 1
for i = 2.

9.2 Space-Bounded Compilation Complexity
Proof of Theorem 1

To prove this theorem, we need to identify a growth func-
tion χ(f), and show that no poly-time algorithm can com-
pile a representation satisfying this growth function. We use
Theorem 1 of (Prokopyev & Pardalos 2004)), as sketched
below, to establish both requirements.

Theorem:If P 6= NP there is no polynomial-time al-
gorithm, which for a given Boolean function f builds a
Boolean function f ′ equivalent to f with size less than
|f | · |f∗|

(|f∗1 |+1) .
Proof: Assume that there exists a polynomial-time al-

gorithm, which for a given Boolean formula f builds a
Boolean formula f ′ equivalent to f with the size less than
|f | · |f∗|

(|f∗1 |+1) . Here, |f∗1 | is the size of minimal function
equivalent to 1 and |f∗| is the size of the minimal function
equivalent to f .

We will prove this by contradiction, by using formula f
to build another formula g = f ∨ (y1 ∧ y2... ∧ yl), where
l is some natural number, which we will define later, and
y1, ..., yl are new Boolean variables, which do not appear in
formula f . We can apply our algorithm (which exists due to
our assumption) to the formula g. It is easy to notice that if f
is a tautology, then as the output of the algorithm we get the
formula with size at most (|f |+l)·|f∗1 |

(|f∗1 |+1) . If f is not a tautology
then all variables y1, ..., yl must appear in the result formula.
So the size of the result formula is not less than l. Hence we
can distinguish the two cases, whether f is a tautology or
not, if

(|f |+ l)/(|f∗1 |+ 1)|f∗1 | < l (2)
|f ||f∗1 |+ l|f∗1 | < l|f∗1 |+ l (3)

|f ||f∗1 | < l. (4)

Therefore, according to equation 4, we can choose l equal
to |f |·|f∗1 |+1 to find out if f is a non-tautology or not (Prob-
lem 3 below). Notice that our transformation is polynomial
(the size of g is polynomial in the size of f ). As a result, we
can use our algorithm to solve, in polynomial time, the Non-
tautology problem. However, this problem is known to be

NP -complete (Garey & Johnson 1978), so our assumption
that the algorithm exists is false. 2

Problem 3 (NON-TAUTOLOGY). Given a Boolean expres-
sion f over a set Z of variables, using the connectives
¬,∨,∧,⇒, is f not a tautology, i.e., is there a truth assign-
ment for Z that makes f false?

Proof Sketch of Theorem 2
The proof for this theorem follows a similar structure to

that of theorem 1, so we provide just a sketch here. We again
need to identify a growth function χ(f), and show that no
poly-time algorithm can compile a representation satisfying
this growth function. However, in this case we admit com-
piled functions f ′ which are ε-equivalent to f .

We use [Theorem 3 (Prokopyev & Pardalos 2004)], as
sketched below, to establish both requirements.

Theorem:Given ε = O(2−nc

), where 0 < c < 1 is a
constant, there is no polynomial-time algorithm, which for
a given Boolean function f builds a Boolean function f ′ ε-
equivalent to f with the size less than |f |

(|f∗1 |+1)·|f∗| , if P 6=
NP .

Proof: As in the previous proof, we assume that there
exists a polynomial-time algorithm A, but which admits ε-
equivalency. Hence, for a given Boolean formula f , A builds
a Boolean formula f ′ ε-equivalent to f with size less than
|f∗| · |f |

(|f∗1 |+1) , where ε = O(2−nc

) and c is some constant
such that 0 < c < 1. We prove this result using this algo-
rithm to solve the ε-TAUTOLOGY problem in polynomial
time.

Problem 4 (ε-TAUTOLOGY). Given a Boolean expres-
sion f , such that f is equivalent to 1, or at least a fraction ε
of n-bit interpretations γ are such that f(γ) is equal to 0, is
f not a tautology, i.e., is there a truth assignment for Z that
makes f false?

As before, we use proof by contradiction, using formula
f to build another formula g = f ∨ (y1⊕y2...⊕yl), where l
is some natural number, which we will define later, y1, ..., yl

are new Boolean variables, which do not appear in f .
By showing that the algorithm solves the ε-

TAUTOLOGY in polynomial time, a contradiction
arises, since ε-TAUTOLOGY is NP-complete. Hence our
assumption that such an algorithm exists is false. 2

9.3 Preference-Based Compilation
Lemma 2. Given a preference-based Horn PAP 〈H,µ, f ;¹
〉 for which the solutions Λ(f) satisfy a power-law (or ex-
ponential) distribution under ¹, a preferred ε-approximate
compilation has size polynomially bounded in |f |.

Proof Sketch: We sketch this proof for the Pareto and
exponential distributions.

Pareto distribution: Assume a Pareto distribution φ over
the solutions Λ. We want to identify the parameters of the
CDF F such that F ≥ 1− ε, i.e., the cumulative probability
mass is at least 1− ε of the total probability mass.

The Pareto distribution has cumulative distribution func-
tion F (x; α, η) = Pr[X ≤ x] = 1 − (

η
x

)α
, where η rep-

resents the smallest value the random variable X can take.



If we set δ = η
x , then we must have 1 − δα = 1 − ε, from

which we obtain δ = ε
1
α . For ε small and α taking on real-

world values (' 2), it is straightforward to show that under
ordering≤,⊆, P r only a number of solutions polynomial in
n is needed.

Exponential distribution: Assume that we have an expo-
nential distribution φ over the solutions Λ, i.e. F (x) =
1 − e−λx. We can compute the required fraction of ε-
approximate solutions for approximate compilation θ′ as fol-
lows: If we set F (x) = 1 − e−λx equal to 1 − ε, then
we obtain x = −1

λ lnε. In a similar fashion to the Pareto
distribution, it is straightforward to show that under order-
ing ≤,⊆, P r only a number of solutions polynomial in n is
needed. 2
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