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Abstract EDPROBE algorithm in the latter paper relies on probing
to achieve the maximal fault resolution for a fixed t&st

The author of this algorithm has a different goal in achiev-
ing maximal resolution minimizing the number of probes

Model-Based Diagnosis (MBD) typically focuses on diag-
noses, minimal under some minimality criterion, e.g., the
minimal-cardinality set of faulty components that explaim

observation. However, for differentr there may be mini- and proposes essentially a sequential algorithm. This is
mal-cardinality diagnoses of differing cardinalities desev- very different from MBD approaches, which try to solve the
eral applications (such as test pattern generation anchbenc multiple-fault problem with only one observation.

mark model analysis) need to identify theleading to the To the best of our knowledge, we are the first to formally
max-cardinality diagnosis amongst them. We denote this  state the problem and significance of finding MFMC obser-
problem as a Max-Fault Min-Cardinality (MFMC) problem. vation vectors, and then to define an algorithm that is able to

This paper considers the generation of observations thdt le

to MEMC diagnoses. We present a near-optimal, stochastic approximate such a computationally difficult problem. Our

algorithm, called MRANDA (Max-fault min-caRdinAlity ob- method is based on a greedy StOCh‘?‘StiQ search a'QO”thm’
servatioN Deduction Algorithm), that computes MFMC ob- called MIRANDA (Max-fault min-caRdinAlity observatioN
servations. Compared to optimal, deterministic appragche Deduction Algorithm), and uses an MBD oracle for comput-

such as ATPG, the algorithm has very low-cost, allowing ing minimal-cardinality diagnoses. The algorithm is greed
us to generate observations corresponding to high-caditgina in that it monotonically exploits part of the problem search
faults. Experiments show thatIMANDA delivers optimal re- space. The performance of our method is determined by
sults on the74XXX circuits, as well as good MFMC cardi- the efficiency of the underlying MBD engine; i.e., it is effi-
nality estimates on the larg€8CAS85 circuits. cient with a fast (usually incomplete) procedure for comput
ing minimal-diagnoses.
Introduction One advantage of MANDA over relatedk-fault ATPG

The problem of computing minimal-cardinality diagnoses, algorithms is that it uncovers the maximum value:of-ur-
given an observation and a system description, is central to thermore, it does not impose any limitations on the model
Model-Based Diagnosis (de Kleer & Williams 1987). In  (€.g., no stuck-at modes are required or unlimited observ-
this paper we consider the “inverse” problem of computing ability assumed). This makes our approach applicable not
an observation that simultaneously isolategaulty com- only to system testing but to MBD benchmarking and to a
ponents. These observations are useful in system testingWider range of Model-Based Reasoning (MBR) problems,
and benchmarking of multiple-fault diagnostic techniques ~such as optimal sensor placement (Console, Picardi, & Rib-
Computing observations (in particular inputs) that distin ~audo 2000), active testing, etc. In this paper the MFMC al-
guish a single failing componerit & 1) is studied by Auto- ~ gorithm is applied to MBD benchmarking (Provan & Wang
matic Test Pattern Generation (ATPG) and dates back to the 2007), but it can be applied to compute a set of MFMC test
D-algorithm (Roth 1966). The goal of ATPG is to computea Vectors covering all components in a system.

sequence of test vectors that can detect every possible single  We have evaluated the performance ofRMNDA using
fault in a device. Single-fault ATPG has been extended to the ISCAS85 benchmark extended with smaller circuits
finding observation vectors leading to double faults (Hieghe from the 74XXX family. For the74XXX circuits we have
1988) and to multiple faults (Kubiak & Fuchs 1991). These been able to exactly compute all MFMC observation vec-
approaches have several drawbacks, including: (1) they do tors. Since deterministic MBD algorithms cannot compute
not determine the maximum possible valuég®) they suf- the high fault-cardinalities associated with MFMC vectors
fer from very high computational complexity, and (3) they for the ISCASS85 circuits, we have used a stochastic MBD
severely limit the class of system abstractions by imposing oracle (Feldman, Provan, & van Gemund 2007).

various model restrictions. A summary of our contributions follows. This paper in-
Few papers have proposed algorithms computing obser- troduces the MFMC problem and an algorithm for comput-
vation vectors that distinguish tmeaximum number of fail- ing MFMC observation vectors. The algorithm is empiri-

ing components in a system (Abramovici 1981). The & cally analyzed on a number of diagnostic models from the



ISCAS85 and74XXX benchmarks. We also provide an an-
alytical method for estimating MFMC fault cardinalities.
This paper is organized as follows. The next two sections
define the basic MFMC framework and MFMC algorithm,
respectively. Finally, we show empirical results of tegtin
the MFMC algorithm on a family of combinatorial circuits.

Technical Background

This paper uses the traditional diagnostic definitions (de
Kleer, Mackworth, & Reiter 1992), except that we use
propositional logic terms (conjunctions of literals) ieatl
of sets of failing components.

Central to MBD, amodel of an artifact is represented as
a propositionaW ff over some set of variables. Discerning
two subsets of these variablesassumable andobservable!
variables gives us a diagnostic system.

Definition 1 (Diagnostic System)A diagnostic systenbsS
is defined as the tripl®S = (SD, COMPS, OBS), where
SD is a propositional theory over a set of variablgs
COMPS C V, OBS C V, COMPS is the set of assum-
ables, and)BS is the set of observables.

Throughout this paper we assume tb@S N COMPS = §)
andSD £ L. Although not necessary for MBD applications,
a partitioning ofOBS into an input seiN and an output set
OUT (OBS = INUOUT andINNOUT = {)) is convenient,
familiar from ATPG, and allows an easier presentation of the
MFMC algorithm.

A Running Example

We will use the Boolean circuit shown in Fig. 1 as a running
example for illustrating all the notions and algorithm iisth

The above propositional formulae are copied for each gate in
Fig. 1 and their variables renamed in such a way as to prop-
erly connect the circuit and disambiguate the assumables,
thus obtaining a propositional formula for the Boolean sub-
tractor, given by:

hi=lie-(y<p)

he = [de - (x <)

hs = (j < yVp)
SD = h4:>(m<:)l/\j)
hs = (bs mVEk)
he = (z < l)
hr = (ke yAp)

The assumable variables &#®MPS = {hy, ho, ..., h7},
the set of observable variablesQ8BS = {z, y, p, d, b}, the
inputs areIN = {z,y,p}, and the outputs arOUT =

(b, d}.

Diagnosis and Minimal Diagnosis

The traditional query in MBD computes terms of assumable
variables which are explanations for the system descriptio
and an observation.

Definition 2 (Health Assignment)Given a diagnostic sys-
temDS = (SD, COMPS, OBS), an assignmeriflA to all
variables inCOMPS is defined as a health assignment.

A health assignmenilA is a conjunction of propositional
literals. In some cases it is convenient to use the set of neg-
ative or positive literals itHA. These two sets are denoted
asLit~ (HA) andLit ™ (HA), respectively.

In our example, the “all nominal” assignmenthis\; =
hi A ha A --- A\ hy. The health assignmeiitA; = hy A
ha A hs A—=hg A hs A hg A —h7 means that the two and-gates
from Fig. 1 are malfunctioning. What follows is a formal

paper. The subtractor, shown there, consists of seven com-definition of consistency-based diagnosis.

ponents: an inverter, two or-gates, two xor-gates, and two
and-gates. The expressibn=- (o < —i) models the nor-
mative (healthy) behavior of an inverter, where the vagabl

i, o, andh represent input, output and health respectively.
Similarly, an and-gate is modeledas= (o < i1 A i2) and

an or-gate byh = (0 & i1 Viy). Finally, an xor-gate is
specified a® = [0 < — (i1 < i2)].
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Figure 1: A subtractor circuit

1In the MBD literature the assumable variables are alsoneder
to as “component”, “failure-mode”, or “health” variable®bserv-
able variables are also called “measurable”, or “contraliables.

Definition 3 (Diagnosis) Given a diagnostic systeiS =
(SD, COMPS, OBS), an observation over some variables
in OBS, and a health assignmentw is a diagnosis ifSD A
aNwlEL.

There is a total 006 possible diagnoses givedD and an
observatiory; = x Ay Ap A b A —d. Example diagnoses
arew; = —hy Aha Ahs A --- A hyandwy = hy A —hg A
hs ANhg A\ -+ A hr.

In the MBD literature, a range of types of “preferred” di-
agnosis has been proposed. This turns the MBD problem
into an optimization problem. In the following definition we
consider the common subset-ordering.

Definition 4 (Minimal Diagnosis) A diagnosisv is defined

as minimal, if no diagnosis’ exists such thatit™ (w') C

Lit™ (w).

Traditionally, other authors (de Kleer & Williams 1987) ar-
rive at minimal diagnosis by computing a minimal hitting
set of the minimal conflicts (broadly, minimal health assign
ments incompatible with the system description and the ob-
servation), while this paper makes no use of conflicts, hence
the equivalent direct definition above.

For the modeBD of the circuit shown in Fig. 1 and an
observatiorvy = —x A y A p A —b A d there are8 minimal



and61 non-minimal diagnoses. In this example, two of the
minimal diagnoses ares = —hy A ho A hg A hgy A =hs A

h,g A h,7 andLU4 = —=hi1 Ahy A hg A hg A h5 A _|h,6 A _‘h7.
The diagnosiSJ5 = —h1 A—=ha Ahg Ay A—=hs Ahg ARy is
non-minimal as the negative literals iy form a subset of
the negative literals iws.

Definition 5 (Cardinality of a Diagnosis) The cardinality
of a diagnosis, denoted &s|, is defined as the number of
negative literals inw.

Diagnosis cardinality gives us another partial orderindi-a
agnosis is defined asinimal-cardinality iff it minimizes its
number of negative literals.

The cardinality of a minimal cardinality diagnosis com-
puted from a system descripti@i and an observation is
denoted as\inCard (SD A «). For our example modé&D
and an observations = x Ay A p A —b A —d, it follows
that MinCard(SD A a3) = 2. Note that, in this particu-
lar case, all minimal diagnoses are also minimal-cardinali
diagnoses.

A minimal-cardinality diagnosis is a minimal diagnosis,
but the opposite does not hold. There are minimal diag-
noses which are not minimal-cardinality diagnoses. Con-
sider the example modé&D, the observationy,, and the
two resulting minimal diagnoses; andw, given earlier in
this section. From the two diagnoses, oalyis a minimal-
cardinality diagnosis.

Keeping the modebD fixed, a different observation
may lead to a differemtinCard (SD A ). This leads to our
main definition.

Definition 6 (MFMC Observation) Given a diagnostic sys-
temDS = (SD, COMPS, OBS), an observatiom is de-
fined as Max-Fault Min-Cardinality (MFMC) observation,
iff w is a minimal-cardinality diagnosis 8D A « and|w]| is
maximized.

In addition to an MFMC observation, we also refer to an
MFMC diagnosisv of a modelSD, which refers to any of
the diagnoses entailed by an MFMC observatioif he car-
dinality of this diagnosis is denoted d¢FMC(SD) and,
next to the associated MFMC observations, this is a key
model property we seek to compute.

MFMC Algorithm

A naive approach to compulé#MC(SD) is to consider an
exhaustive algorithm. Such an algorithm would enumerate
all the2!9BS! instantiations of the variables MBS (one can
easily show that only an assignmentstivariables inOBS

can be an MFMC observation vector as the MFMC problem
is monotonic in respect to partial observations). For each
full instantiationo an MBD oracle computes the associated
minimal fault cardinality.

Taking this exhaustive approach in our running example,
we compute tha/FMC(SD) = 2 and that there is a total
of 9 observation vectors discerning a minimal-cardinality di-
agnosis o® faults (2 andas from the preceding section are
examples of such observation vectors). From all3heos-
sible observation vectors, there &el6, and9 observation
vectors leading to a nominal, single-fault, and doubldtfau
minimal-cardinality diagnosis, respectively.

Of course, such an exhaustive algorithm is computation-
ally infeasible. We propose a stochastic method that trades
optimality for a huge speedup, allowing very-higlebser-
vations to be computed for very large circuits. Despite the
inherent suboptimality of the stochastic approach, we will
see in the experimental section of this paper that, for @mall
circuits from the74XXX family, using MRANDA results in
optimal observation vectors. The success of our stochastic
approach is that, as we will see in the experimental section,
landscapes of typical MFMC search problems have many
optima which are close or equal to the global optimum.

Alg. 1 assumes that an “all-healthy” mode of all assum-
able variables allows an input assignment to be propagated
to all outputs. This is typical for health-models of digital
circuits and for diagnosis problems.

Algorithm 1 A greedy stochastic algorithm for generation
of MEMC observation vectors
1: function CLiMB (DS, IN, OUT, N) returns a term
inputs: DS, a diagnostic system
DS = (SD, COMPS, OBS)
IN, OUT, variable sets
INUOUT = OBS,INNOUT = {
N, an integer, number of runs
local variables: 3,~,+',w, R, terms

n, q, integers
[, aliteral
2 n«—0
3 q—0
4 repeat
5: B < RANDOMINPUTS(IN)
6: ~ «— COMPUTEOUTPUTSDS, 3, 0UT)
7 forall I € vdo
8: ~" «— FLIPLITERAL(7,1)
9: w < FINDMCDIAGNOSIS(DS, 3 A v)
10: if |w| > ¢ then
11 q— |w|
12: y—7
13: R— BNy
14: end if
15: end for
16: n<—n+1
17: until n < N

18: return R
19: end function

Alg. 1 performsN independent attempts (restarts), each one
starting from a random observation vector that corresponds
to nominal health. This random starting point is computed
as follows. First, the RNDOMINPUTS function assigns to
each variable iHN a random value, the resulting term is
then assigned t@. These random inputs are then fed to
the CoMPUTEOQUTPUTS subroutine which assigns healthy
values to the assumable variables, and computes the values
of the variables in the output s€&tUT. This can be done

by using a suitable propagation method like Binary Con-
straint Propagation (Zabih & McAllester 1988). The result
of CoMPUTEOUTPUTSIS then assigned te.



Starting from this initial candidate observatighA -,

Alg. 1 attempts to reduce the cardinality of a minimal-di-
agnosis consistent with an observation vector by “flipping”
the values of the output variables. This is achieved by the
auxiliary function FRIPLITERAL. At each step, the cardi-
nality of the minimal-cardinality diagnosis is computed by
a call to the MBD oracle RDMCDIAGNOSIS. The obser-
vation leading to the highest-cardinality fault is storedia
returned as a result of the MFMC computation.

Our MBD oracle must be carefully designed, since com-
puting minimal cardinality diagnoses has a very high worst-
case complexity: given arbitrary propositional theories i
SD, the complexity of finding the cardinality of a minimal-
cardinality diagnosis i:¥'-hard (Eiter & Gottlob 1995).
The complexity decreases by imposing restrictions on the
class of admissible system models, e.g., models with igno-
rance of abnormal behavior (de Kleer, Mackworth, & Re-
iter 1992), Horn theories, etc. For improving the speed of

MBD in the average case, the literature has discussed a num-

ber of learning (Williams & Ragno 2004) or approximation
(Feldman, Provan, & van Gemund 2007) techniques. Al-
though our MFMC algorithm is transparent to the choice of
the minimal-diagnosis oracle, the choice can be optimized
when additional information on the specific properties ef th
system descriptions is available. In our implementation we
use \FARI (Feldman, Provan, & van Gemund 2007) as a
function for computing the minimal-diagnosis.AB\RI is

a stochastic diagnostic solver which returns minimal diag-
noses as an approximation to minimal-cardinality diagaose
but, as we will see later on, the incompleteness is compen-
sated by the superior performance of this method.

Let us illustrate the workings of the greedy algorithm on
the Boolean subtractor circuit from our running example.
We will consider only one run = 1). The RANDOM-
INPUTS function can return, for example, an input vector
6 = —x Ay A —p. After assuming the “all-healthy” assign-
mentwg = hy A ha A - -+ A hy, the subroutine GMPUTE-
OuTPuUTS computes that the values of the output variables
arey = dAb. Our greedy MFMC algorithm first changes the
literal b in v to —b. The inputs3 and the modified makes an
observationyy, = -z AyA—-pA-bAd. The HNDMCDIAG-
Nosisfunction, then, computes thafinCard (SD A ay) =
1. “Flipping” the sign of the second output variahlen ~
leads to an observatiery = —xAyA—pA—-bA—d. Diagnos-
ing SDAas results inMinCard (SDAas) = 2. In bigger cir-
cuits, of course, “flipping” the second variable does notnec
essarily increase the cardinality of the minimal-cardigal
diagnosis. Hence we need multiple attempts, caching the
best observation computed so far. At this point there are
no more output variables to “flip”, hence the run retusns
leading toMFMC(SD) = 2.

The number of minimal-cardinality diagnosesRANDA
performs is determined by the number of restéftand the
number of output variable®UT| in a systemDS (recall
that MIRANDA “flips” only output variables). The outermost
loop of Alg. 1 performsN iterations, where in each itera-
tion exactly|OUT)| literals are “flipped”, hence the worst-
case complexity i)(N |OUT|©), where® is the com-
putational complexity of a single minimal-cardinality di-

agnosis. Every time the sign of a literal is changed; M
RANDA computes a minimal-cardinality diagnosis, which
gives us the stated complexity. In particular, with an in-
complete diagnostic oracle likeaBARI (Feldman, Provan,

& van Gemund 2007) and an incomplete BCP method for
consistency checking in the diagnostic procedure, the com-
plexity of MIRANDA becomesO(N |OUT||COMPS| (),
whereC is the number of clauses in the CNF representation
of SD (Zhang & Stickel 2000). This makes our algorithm
applicable to larger models.

Experimental Results

This section discusses some results from an implementation
of the MFMC algorithm described above.

Implementation Notes and Test Set Description

We have implemented MANDA in approximatelyl 000
lines of C code (excluding the MBD oracle code) and it is
a part of the (obscured for anonymity) package. The im-
plementation can be downloaded frqrobscur ed f or
anonymty).

Traditionally, MBD algorithms have been tested on diag-
nostic models of digital circuits like the ones included in
the ISCAS85 benchmark suite (Brglez & Fujiwara 1985).
As models derived from théSCASS85 circuits are com-
putationally intensive (from a diagnostic perspectivel w
have also considered four medium-sized circuits from the
74XXX family (Hansen, Yalcin, & Hayes 1999).

‘ Name‘ Description ‘ [IN| ‘ |OUT]| ‘ H‘ V‘ C"
74182 4-bit CLA 9 5 19 47 75
741L.85| 4-bit comparator 11 3 33 77| 118
74283| 4-bit adder 9 5 36 81| 122
74181 4-bit ALU 14 8 65| 144| 228
c432 | 27-channelint. | 36 7| 160| 356| 514
c499 | 32-bit SEC 41 32| 202| 445| 714
€880 | 8-hit ALU 60 26| 383| 826(1112
c1355| 32-bit SEC 41 32| 546|1133|1610
c1908| 16-bit SEC/DEC 33 251 88017932378
€2670| 12-bit ALU 233 1401193 | 2695 | 3269
€3540| 8-bit ALU 50 2211669 | 3388|4608
c5315| 9-bit ALU 178 12312307 4792|6693
€6288| 32-bit multiplier | 32 32124164864 | 7216
c7552| 32-bit adder 207 1083512 | 7232|9656

Table 1: An overview of th&4XXX/ISCASS5 circuits (H
is the number of assumable variabl&s,denotes the total
number of variables an@ is the number of clauses)

The original74XXX/ISCASS85 circuits (cf. Table 1 for an
overview) have been translated from the Netlist format to a
representation suitable forIRANDA. Although our method

is not restricted to a certain class of models, for the exper-
imental section in this paper we have generated weak-fault
models (i.e., models with only normal behavior defined) for
each of thel4 circuits. The construction of the weak-fault
models is the same as in our running example. In general,
weak-fault models expose higher MFMC values than mod-
els of circuits where gates are allowed to be “stuck-at”.



All time measurements in this paper are performed on a
host with 1.86 GHz Pentium M CPU and 2 Gb of RAM.

Computing MFMC Numbers and Vectors

Even after supplying MRANDA with a state-of-the-art com-
plete diagnostic solver (Feldman & van Gemund 2006), the
only circuits amenable to exhaustively enumerating all pos
sible observation vectors were the ones from THEXX
family. The exact cardinalities of the minimal-cardinglit
diagnoses of 74182, 74L85, 74283, and 741815ar& 5,
and7, respectively.

Instead of configuring MRANDA with a fixed number
of restartsV, in our first experiment we show the number
of restarts necessary for computing optimal MFMC values
for the small74XXX circuits. For this experiment M
RANDA was configured with the same complete diagnostic
procedure which was used for the earlier, exhaustive exper-
iment. Our implementation of MkeANDA reached the op-
timal MFMC values after performing.1, 3.4, 207.7, and
174.3 restarts for the 74182, 74L85, 74283, and 74181 cir-
cuits, respectively (the numbers are averages tveuns).
The large value ofV for the 74283 circuit is due to the fact
that it has2 MFMC observation vectors only. Similarly, the
74181 circuit hag56 observations leading to an MFMC di-
agnosis of cardinality from a total 0f22? observations.

The running time for finding the optima@t XXX MFMC
values (averaged ovd® runs) varied from0.01 s for the
74182 circuit ta34.2 min for 74181. The long running time
for reaching the MFMC of 74181 model comes from the
poor performance of the complete diagnostic procedure we

have used (despite the fact that we have employed a state-of-

the-art solver). This is not surprising, considering thwe t
computational cost of finding &minimal-cardinality diag-
nosis increases with.

N=1 N = 256

Name | Time[s] | MFMC | MFMC | MFMC.
74182 0.005 5 5 172
74185 |  0.007 3 3 2.65
74283 |  0.011 3 5 411
74181 |  0.038 6 7 6.28
c432 0.135 3 8 5.50
c499 0.944 14 22 | 22,07
880 2.458 16 2% | 17.97
1355 |  5.069 9 21 | 22.07
c1908 |  9.622 10 21 | 17.24
c2670 | 97.332 15 32 | 37.17
3540 | 30.061 19 21 | 16.87
5315 | 315.475 41 55 | 47.12
6288 | 84.069 6 12| 1683
7552 | 594.304 22 42 | 46.19

Table 2: MFMC of the benchmark circuits and total number
of tests for multiple-fault diagnosis

To overcome the complexity of using a complete diagnostic

tic MBD oracle dramatically increases the performance of
MIRANDA at the price of overestimating the cardinality of a
minimal-cardinality diagnosis. WhileA&ARI returns mini-
mal diagnoses, they are not necessarily minimal-cardynali
diagnoses. To some extent the optimistic MFMC values
from SAFARI compensate the pessimistic effect of the lim-
ited number of MRANDA retries, but still cause MRANDA

to produce optimistic MFMC values for tHECAS85 cir-
cuits. A procedure to estimate the actual MFMC values is
presented in the next section.

Table 2 shows the MFMC data and run times using M
RANDA and S\FARI. The second and third columns mea-
sure the time for executing one ruN (= 1) and the MFMC
value reached during this run, respectively. It is visiblatf
even with one random climb, the MFMC values are in the
worst case withirb0% of the best MFMC values we have
found. These best MFMC values, shown in the fourth col-
umn of Table 2, are computed giveén6 restarts. The large
number of restarts was necessary for creating a model-based
diagnosis benchmark (which is not discussed in this paper).
Note that for ther4XXX models, the MFMC values com-
puted with MRANDA and S\FARI are the same as the global
optima whenV = 256 and within60% of the global optima
whenN = 1. The rightmost column of Table 2 is a lower
bound of the optimal MFMC value, computed by using an
alternative method which we will discuss in the next section

MFMC Error Bounds for Large Circuits

This section describes an alternative method for estimatin
the MFMC of a circuit, which overcomes the imprecision of
our MFMC vectors. MFMC imprecision arises due to two
reasons: the stochastic nature ofMNDA, and the fact that
SAFARI returns approximations to minimal-cardinality diag-
noses. Although the method described below does not find
the actual MFMC vectors, it can be very precise depending
on the circuit topology.

Given a systenDS, we denote ag(DS) the pdf of the
minimal-cardinalities of the diagnoses of all observagion
DS. FromG we can compute the MFMC value and the num-
ber of MFMC observation vectors IDS. In what follows we
will see that a normal distribution can be used as an approx-
imation toG for a large class abS.

To describe our error bounds, we focus on the partitioned
observation vectonn = IN U OUT. Given an observa-
tion « leading to a&-fault minimal diagnosis, we associate a
nominal-diagnosis observatiat, , which may differ fromo
only in the OUT sub-vector. The number©UT-values in
which« anda, differ is called thedistance of a, D(SD, «).

If n =|OUT| is the number of output variables $D, then
starting from any nominal observatien,, there are,Cj,

ways to select a distandevectora, each of which corre-
sponds to a diagnosis. In the case where each such diagnosis
is a minimum cardinality diagnosig,(SD) is binomially-
distributed. This is true given some assumptions on the
modelSD (e.g.,SD is a weak-fault model of a deterministic
Boolean circuit).

procedure, in the rest of our experiments, we have used the Although the above model is an approximation, it can lead

incomplete BFARI algorithm, which is virtually insensitive
to k£ (Feldman, Provan, & van Gemund 2007). The stochas-

to useful bounds on MFMC errors. For thdXXX and
ISCAS85 benchmarks, the fraction ofri-flips” resulting in



minimal-cardinality diagnoses of cardinality smallerrha
is relatively small and does not vary significantly for diffe
entm
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Figure 2:74XXX minimal-cardinalities pdf

Figure 2 shows a histogram of the true minimal-diagnosis
cardinalities for the four4XXX circuits for which we have
exhaustively determined(DS), fitted by a normal distri-
bution N (o, 1), denotedf(z) (x is the minimal-cardinal-
ity). From f(0) and f(1) it is possible to compute unique
values fory ando (in practice, we use a numeric method
for doing that). Knowingf, the MFMC estimate of the
model approximated by is giverf by f~1(f(0)) for which
FH(£(0)) #0.

It is possible to determing(0) analytically. For any cir-
cuit realizing a deterministic Boolean function witlBS =
IN N OUT observable variables such tiat N OUT = §,
it holds that|{c : D(a) = 0} = 2/™NI. These input values
produce exactl™N! different observations, hengd0) =
2/INI /210BS| — 9=I0UTI Finding f(1) is more difficult, and
we estimate it by taking samples ofD(DS, «) = 2, and
determining the fraction of single fault diagnoses frormthe
If this fraction is denoted as, thenf(1) = 2z |OUT| 2/™NI,

The MFMC estimates, computed with the method out-
lined above forS 1000, are shown in the rightmost
column of Table 2. We can see that for théXXX cir-
cuits the approximation is within8% and that the MFMC
lower bound values computed by combinatorial counting are
within 69% of the MFMC values returned by MANDA
for ISCASS85. This gives us an estimate of the error which
comes from using the suboptimah&RI algorithm as an
MBD oracle.

Conclusion

This paper introduced the problem of computing MFMC ob-
servation vectors and suggested a greedy stochastic algo-
rithm for computing such vectors. Our algorithm is very

2= is a multi-valued function which has two valuesfif0).

efficient given a fast subroutine for computing the cardinal
ity of a minimal-cardinality diagnosis. The MFMC of real-
world systems is an important property quantifying the di-
agnosability of a model as it shows the maximum number
of malfunctioning components that can be distinguished ob-
serving a set of variables.

The algorithm introduced in this paper has been run on a
number of 74XXX/ISCAS85 combinatorial circuits deter-
mining the MFMC of these circuits.

In future work we plan to study the computational com-
plexity of the MFMC problem and the coverage of the
MFMC observation vectors, in order to compare MFMC-
based methods to classical ATPG methods.
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