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Abstract

Model-Based Diagnosis (MBD) typically focuses on diag-
noses, minimal under some minimality criterion, e.g., the
minimal-cardinality set of faulty components that explainan
observationα. However, for differentα there may be mini-
mal-cardinality diagnoses of differing cardinalities, and sev-
eral applications (such as test pattern generation and bench-
mark model analysis) need to identify theα leading to the
max-cardinality diagnosis amongst them. We denote this
problem as a Max-Fault Min-Cardinality (MFMC) problem.
This paper considers the generation of observations that lead
to MFMC diagnoses. We present a near-optimal, stochastic
algorithm, called MIRANDA (Max-fault mIn-caRdinAlity ob-
servatioN Deduction Algorithm), that computes MFMC ob-
servations. Compared to optimal, deterministic approaches
such as ATPG, the algorithm has very low-cost, allowing
us to generate observations corresponding to high-cardinality
faults. Experiments show that MIRANDA delivers optimal re-
sults on the74XXX circuits, as well as good MFMC cardi-
nality estimates on the largerISCAS85 circuits.

Introduction
The problem of computing minimal-cardinality diagnoses,
given an observation and a system description, is central to
Model-Based Diagnosis (de Kleer & Williams 1987). In
this paper we consider the “inverse” problem of computing
an observation that simultaneously isolatesk faulty com-
ponents. These observations are useful in system testing
and benchmarking of multiple-fault diagnostic techniques.
Computing observations (in particular inputs) that distin-
guish a single failing component (k = 1) is studied by Auto-
matic Test Pattern Generation (ATPG) and dates back to the
D-algorithm (Roth 1966). The goal of ATPG is to compute a
sequence of test vectors that can detect every possible single
fault in a device. Single-fault ATPG has been extended to
finding observation vectors leading to double faults (Hughes
1988) and to multiple faults (Kubiak & Fuchs 1991). These
approaches have several drawbacks, including: (1) they do
not determine the maximum possible value ofk (2) they suf-
fer from very high computational complexity, and (3) they
severely limit the class of system abstractions by imposing
various model restrictions.

Few papers have proposed algorithms computing obser-
vation vectors that distinguish themaximum number of fail-
ing components in a system (Abramovici 1981). The GUID-

EDPROBE algorithm in the latter paper relies on probing
to achieve the maximal fault resolution for a fixed testT .
The author of this algorithm has a different goal in achiev-
ing maximal resolution minimizing the number of probes
and proposes essentially a sequential algorithm. This is
very different from MBD approaches, which try to solve the
multiple-fault problem with only one observation.

To the best of our knowledge, we are the first to formally
state the problem and significance of finding MFMC obser-
vation vectors, and then to define an algorithm that is able to
approximate such a computationally difficult problem. Our
method is based on a greedy stochastic search algorithm,
called MIRANDA (Max-fault mIn-caRdinAlity observatioN
Deduction Algorithm), and uses an MBD oracle for comput-
ing minimal-cardinality diagnoses. The algorithm is greedy
in that it monotonically exploits part of the problem search
space. The performance of our method is determined by
the efficiency of the underlying MBD engine; i.e., it is effi-
cient with a fast (usually incomplete) procedure for comput-
ing minimal-diagnoses.

One advantage of MIRANDA over relatedk-fault ATPG
algorithms is that it uncovers the maximum value ofk. Fur-
thermore, it does not impose any limitations on the model
(e.g., no stuck-at modes are required or unlimited observ-
ability assumed). This makes our approach applicable not
only to system testing but to MBD benchmarking and to a
wider range of Model-Based Reasoning (MBR) problems,
such as optimal sensor placement (Console, Picardi, & Rib-
audo 2000), active testing, etc. In this paper the MFMC al-
gorithm is applied to MBD benchmarking (Provan & Wang
2007), but it can be applied to compute a set of MFMC test
vectors covering all components in a system.

We have evaluated the performance of MIRANDA using
the ISCAS85 benchmark extended with4 smaller circuits
from the74XXX family. For the74XXX circuits we have
been able to exactly compute all MFMC observation vec-
tors. Since deterministic MBD algorithms cannot compute
the high fault-cardinalities associated with MFMC vectors
for the ISCAS85 circuits, we have used a stochastic MBD
oracle (Feldman, Provan, & van Gemund 2007).

A summary of our contributions follows. This paper in-
troduces the MFMC problem and an algorithm for comput-
ing MFMC observation vectors. The algorithm is empiri-
cally analyzed on a number of diagnostic models from the



ISCAS85 and74XXX benchmarks. We also provide an an-
alytical method for estimating MFMC fault cardinalities.

This paper is organized as follows. The next two sections
define the basic MFMC framework and MFMC algorithm,
respectively. Finally, we show empirical results of testing
the MFMC algorithm on a family of combinatorial circuits.

Technical Background
This paper uses the traditional diagnostic definitions (de
Kleer, Mackworth, & Reiter 1992), except that we use
propositional logic terms (conjunctions of literals) instead
of sets of failing components.

Central to MBD, amodel of an artifact is represented as
a propositionalWff over some set of variables. Discerning
two subsets of these variables asassumable andobservable1

variables gives us a diagnostic system.

Definition 1 (Diagnostic System). A diagnostic systemDS
is defined as the tripleDS = 〈SD, COMPS, OBS〉, where
SD is a propositional theory over a set of variablesV ,
COMPS ⊆ V , OBS ⊆ V , COMPS is the set of assum-
ables, andOBS is the set of observables.

Throughout this paper we assume thatOBS∩COMPS = ∅
andSD 6|=⊥. Although not necessary for MBD applications,
a partitioning ofOBS into an input setIN and an output set
OUT (OBS = IN∪OUT andIN∩OUT = ∅) is convenient,
familiar from ATPG, and allows an easier presentation of the
MFMC algorithm.

A Running Example

We will use the Boolean circuit shown in Fig. 1 as a running
example for illustrating all the notions and algorithm in this
paper. The subtractor, shown there, consists of seven com-
ponents: an inverter, two or-gates, two xor-gates, and two
and-gates. The expressionh ⇒ (o⇔ ¬i) models the nor-
mative (healthy) behavior of an inverter, where the variables
i, o, andh represent input, output and health respectively.
Similarly, an and-gate is modeled ash⇒ (o⇔ i1 ∧ i2) and
an or-gate byh ⇒ (o⇔ i1 ∨ i2). Finally, an xor-gate is
specified ash⇒ [o⇔ ¬ (i1 ⇔ i2)].
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Figure 1: A subtractor circuit

1In the MBD literature the assumable variables are also referred
to as “component”, “failure-mode”, or “health” variables.Observ-
able variables are also called “measurable”, or “control” variables.

The above propositional formulae are copied for each gate in
Fig. 1 and their variables renamed in such a way as to prop-
erly connect the circuit and disambiguate the assumables,
thus obtaining a propositional formula for the Boolean sub-
tractor, given by:

SD =































h1 ⇒ [i⇔ ¬ (y ⇔ p)]
h2 ⇒ [d⇔ ¬ (x⇔ i)]
h3 ⇒ (j ⇔ y ∨ p)
h4 ⇒ (m⇔ l ∧ j)
h5 ⇒ (b⇔ m ∨ k)
h6 ⇒ (x⇔ ¬l)
h7 ⇒ (k ⇔ y ∧ p)

The assumable variables areCOMPS = {h1, h2, . . . , h7},
the set of observable variables isOBS = {x, y, p, d, b}, the
inputs areIN = {x, y, p}, and the outputs areOUT =
{b, d}.

Diagnosis and Minimal Diagnosis
The traditional query in MBD computes terms of assumable
variables which are explanations for the system description
and an observation.

Definition 2 (Health Assignment). Given a diagnostic sys-
temDS = 〈SD, COMPS, OBS〉, an assignmentHA to all
variables inCOMPS is defined as a health assignment.

A health assignmentHA is a conjunction of propositional
literals. In some cases it is convenient to use the set of neg-
ative or positive literals inHA. These two sets are denoted
asLit

−(HA) andLit
+(HA), respectively.

In our example, the “all nominal” assignment isHA1 =
h1 ∧ h2 ∧ · · · ∧ h7. The health assignmentHA2 = h1 ∧
h2∧h3∧¬h4∧h5∧h6∧¬h7 means that the two and-gates
from Fig. 1 are malfunctioning. What follows is a formal
definition of consistency-based diagnosis.

Definition 3 (Diagnosis). Given a diagnostic systemDS =
〈SD, COMPS, OBS〉, an observationα over some variables
in OBS, and a health assignmentω, ω is a diagnosis iffSD∧
α ∧ ω 6|=⊥.

There is a total of96 possible diagnoses givenSD and an
observationα1 = x ∧ y ∧ p ∧ b ∧ ¬d. Example diagnoses
areω1 = ¬h1 ∧ h2 ∧ h3 ∧ · · · ∧ h7 andω2 = h1 ∧ ¬h2 ∧
h3 ∧ h4 ∧ · · · ∧ h7.

In the MBD literature, a range of types of “preferred” di-
agnosis has been proposed. This turns the MBD problem
into an optimization problem. In the following definition we
consider the common subset-ordering.

Definition 4 (Minimal Diagnosis). A diagnosisω is defined
as minimal, if no diagnosisω′ exists such thatLit

−(ω′) ⊂
Lit

−(ω).

Traditionally, other authors (de Kleer & Williams 1987) ar-
rive at minimal diagnosis by computing a minimal hitting
set of the minimal conflicts (broadly, minimal health assign-
ments incompatible with the system description and the ob-
servation), while this paper makes no use of conflicts, hence
the equivalent direct definition above.

For the modelSD of the circuit shown in Fig. 1 and an
observationα2 = ¬x ∧ y ∧ p ∧ ¬b ∧ d there are8 minimal



and61 non-minimal diagnoses. In this example, two of the
minimal diagnoses areω3 = ¬h1 ∧ h2 ∧ h3 ∧ h4 ∧ ¬h5 ∧
h6 ∧ h7 andω4 = ¬h1 ∧ h2 ∧ h3 ∧ h4 ∧ h5 ∧ ¬h6 ∧ ¬h7.
The diagnosisω5 = ¬h1∧¬h2∧h3∧h4∧¬h5∧h6∧h7 is
non-minimal as the negative literals inω3 form a subset of
the negative literals inω5.
Definition 5 (Cardinality of a Diagnosis). The cardinality
of a diagnosis, denoted as|ω|, is defined as the number of
negative literals inω.
Diagnosis cardinality gives us another partial ordering: adi-
agnosis is defined asminimal-cardinality iff it minimizes its
number of negative literals.

The cardinality of a minimal cardinality diagnosis com-
puted from a system descriptionSD and an observationα is
denoted asMinCard(SD ∧ α). For our example modelSD
and an observationα3 = x ∧ y ∧ p ∧ ¬b ∧ ¬d , it follows
that MinCard(SD ∧ α3) = 2. Note that, in this particu-
lar case, all minimal diagnoses are also minimal-cardinality
diagnoses.

A minimal-cardinality diagnosis is a minimal diagnosis,
but the opposite does not hold. There are minimal diag-
noses which are not minimal-cardinality diagnoses. Con-
sider the example modelSD, the observationα2, and the
two resulting minimal diagnosesω3 andω4 given earlier in
this section. From the two diagnoses, onlyω3 is a minimal-
cardinality diagnosis.

Keeping the modelSD fixed, a different observationα
may lead to a differentMinCard(SD∧α). This leads to our
main definition.
Definition 6 (MFMC Observation). Given a diagnostic sys-
tem DS = 〈SD, COMPS, OBS〉, an observationα is de-
fined as Max-Fault Min-Cardinality (MFMC) observation,
iff ω is a minimal-cardinality diagnosis ofSD∧α and|ω| is
maximized.
In addition to an MFMC observation, we also refer to an
MFMC diagnosisω of a modelSD, which refers to any of
the diagnoses entailed by an MFMC observationα. The car-
dinality of this diagnosis is denoted asMFMC (SD) and,
next to the associated MFMC observations, this is a key
model property we seek to compute.

MFMC Algorithm
A naı̈ve approach to computeMFMC (SD) is to consider an
exhaustive algorithm. Such an algorithm would enumerate
all the2|OBS| instantiations of the variables inOBS (one can
easily show that only an assignments toall variables inOBS
can be an MFMC observation vector as the MFMC problem
is monotonic in respect to partial observations). For each
full instantiationα an MBD oracle computes the associated
minimal fault cardinality.

Taking this exhaustive approach in our running example,
we compute thatMFMC (SD) = 2 and that there is a total
of 9 observation vectors discerning a minimal-cardinality di-
agnosis of2 faults (α2 andα3 from the preceding section are
examples of such observation vectors). From all the32 pos-
sible observation vectors, there are7, 16, and9 observation
vectors leading to a nominal, single-fault, and double-fault
minimal-cardinality diagnosis, respectively.

Of course, such an exhaustive algorithm is computation-
ally infeasible. We propose a stochastic method that trades
optimality for a huge speedup, allowing very-high-k obser-
vations to be computed for very large circuits. Despite the
inherent suboptimality of the stochastic approach, we will
see in the experimental section of this paper that, for smaller
circuits from the74XXX family, using MIRANDA results in
optimal observation vectors. The success of our stochastic
approach is that, as we will see in the experimental section,
landscapes of typical MFMC search problems have many
optima which are close or equal to the global optimum.

Alg. 1 assumes that an “all-healthy” mode of all assum-
able variables allows an input assignment to be propagated
to all outputs. This is typical for health-models of digital
circuits and for diagnosis problems.

Algorithm 1 A greedy stochastic algorithm for generation
of MFMC observation vectors
1: function CLIMB (DS, IN, OUT, N ) returns a term

inputs: DS, a diagnostic system
DS = 〈SD, COMPS, OBS〉
IN, OUT, variable sets
IN ∪OUT = OBS, IN ∩OUT = ∅
N , an integer, number of runs

local variables: β, γ, γ′, ω, R, terms
n, q, integers
l, a literal

2: n← 0
3: q ← 0
4: repeat
5: β ← RANDOM INPUTS(IN)
6: γ ← COMPUTEOUTPUTS(DS, β, OUT)
7: for all l ∈ γ do
8: γ′ ← FLIPL ITERAL(γ, l)
9: ω ← FINDMCDIAGNOSIS(DS, β ∧ γ′)

10: if |ω| > q then
11: q ← |ω|
12: γ ← γ′

13: R← β ∧ γ′

14: end if
15: end for
16: n← n + 1
17: until n < N
18: return R
19: end function

Alg. 1 performsN independent attempts (restarts), each one
starting from a random observation vector that corresponds
to nominal health. This random starting point is computed
as follows. First, the RANDOM INPUTS function assigns to
each variable inIN a random value, the resulting term is
then assigned toβ. These random inputs are then fed to
the COMPUTEOUTPUTS subroutine which assigns healthy
values to the assumable variables, and computes the values
of the variables in the output setOUT. This can be done
by using a suitable propagation method like Binary Con-
straint Propagation (Zabih & McAllester 1988). The result
of COMPUTEOUTPUTS is then assigned toγ.



Starting from this initial candidate observationβ ∧ γ,
Alg. 1 attempts to reduce the cardinality of a minimal-di-
agnosis consistent with an observation vector by “flipping”
the values of the output variables. This is achieved by the
auxiliary function FLIPL ITERAL. At each step, the cardi-
nality of the minimal-cardinality diagnosis is computed by
a call to the MBD oracle FINDMCDIAGNOSIS. The obser-
vation leading to the highest-cardinality fault is stored and
returned as a result of the MFMC computation.

Our MBD oracle must be carefully designed, since com-
puting minimal cardinality diagnoses has a very high worst-
case complexity: given arbitrary propositional theories in
SD, the complexity of finding the cardinality of a minimal-
cardinality diagnosis isΣP

2 -hard (Eiter & Gottlob 1995).
The complexity decreases by imposing restrictions on the
class of admissible system models, e.g., models with igno-
rance of abnormal behavior (de Kleer, Mackworth, & Re-
iter 1992), Horn theories, etc. For improving the speed of
MBD in the average case, the literature has discussed a num-
ber of learning (Williams & Ragno 2004) or approximation
(Feldman, Provan, & van Gemund 2007) techniques. Al-
though our MFMC algorithm is transparent to the choice of
the minimal-diagnosis oracle, the choice can be optimized
when additional information on the specific properties of the
system descriptions is available. In our implementation we
use SAFARI (Feldman, Provan, & van Gemund 2007) as a
function for computing the minimal-diagnosis. SAFARI is
a stochastic diagnostic solver which returns minimal diag-
noses as an approximation to minimal-cardinality diagnoses
but, as we will see later on, the incompleteness is compen-
sated by the superior performance of this method.

Let us illustrate the workings of the greedy algorithm on
the Boolean subtractor circuit from our running example.
We will consider only one run (N = 1). The RANDOM-
INPUTS function can return, for example, an input vector
β = ¬x ∧ y ∧ ¬p. After assuming the “all-healthy” assign-
mentω6 = h1 ∧ h2 ∧ · · · ∧ h7, the subroutine COMPUTE-
OUTPUTS computes that the values of the output variables
areγ = d∧b. Our greedy MFMC algorithm first changes the
literal b in γ to¬b. The inputsβ and the modifiedγ makes an
observationα4 = ¬x∧y∧¬p∧¬b∧d. The FINDMCDIAG-
NOSIS function, then, computes thatMinCard (SD∧α4) =
1. “Flipping” the sign of the second output variabled in γ
leads to an observationα5 = ¬x∧y∧¬p∧¬b∧¬d. Diagnos-
ingSD∧α5 results inMinCard(SD∧α5) = 2. In bigger cir-
cuits, of course, “flipping” the second variable does not nec-
essarily increase the cardinality of the minimal-cardinality
diagnosis. Hence we need multiple attempts, caching the
best observation computed so far. At this point there are
no more output variables to “flip”, hence the run returnsα5

leading toMFMC (SD) = 2.
The number of minimal-cardinality diagnoses MIRANDA

performs is determined by the number of restartsN and the
number of output variables|OUT| in a systemDS (recall
that MIRANDA “flips” only output variables). The outermost
loop of Alg. 1 performsN iterations, where in each itera-
tion exactly|OUT | literals are “flipped”, hence the worst-
case complexity isO(N |OUT|Θ), whereΘ is the com-
putational complexity of a single minimal-cardinality di-

agnosis. Every time the sign of a literal is changed, MI-
RANDA computes a minimal-cardinality diagnosis, which
gives us the stated complexity. In particular, with an in-
complete diagnostic oracle like SAFARI (Feldman, Provan,
& van Gemund 2007) and an incomplete BCP method for
consistency checking in the diagnostic procedure, the com-
plexity of MIRANDA becomesO(N |OUT| |COMPS|C),
whereC is the number of clauses in the CNF representation
of SD (Zhang & Stickel 2000). This makes our algorithm
applicable to larger models.

Experimental Results
This section discusses some results from an implementation
of the MFMC algorithm described above.

Implementation Notes and Test Set Description
We have implemented MIRANDA in approximately1 000
lines of C code (excluding the MBD oracle code) and it is
a part of the (obscured for anonymity) package. The im-
plementation can be downloaded from(obscured for
anonymity).

Traditionally, MBD algorithms have been tested on diag-
nostic models of digital circuits like the ones included in
the ISCAS85 benchmark suite (Brglez & Fujiwara 1985).
As models derived from theISCAS85 circuits are com-
putationally intensive (from a diagnostic perspective), we
have also considered four medium-sized circuits from the
74XXX family (Hansen, Yalcin, & Hayes 1999).

Name Description |IN| |OUT| H V C

74182 4-bit CLA 9 5 19 47 75
74L85 4-bit comparator 11 3 33 77 118
74283 4-bit adder 9 5 36 81 122
74181 4-bit ALU 14 8 65 144 228
c432 27-channel int. 36 7 160 356 514
c499 32-bit SEC 41 32 202 445 714
c880 8-bit ALU 60 26 383 826 1 112
c1355 32-bit SEC 41 32 546 1 133 1 610
c1908 16-bit SEC/DEC 33 25 880 1 793 2 378
c2670 12-bit ALU 233 140 1 193 2 695 3 269
c3540 8-bit ALU 50 22 1 669 3 388 4 608
c5315 9-bit ALU 178 123 2 307 4 792 6 693
c6288 32-bit multiplier 32 32 2 416 4 864 7 216
c7552 32-bit adder 207 108 3 512 7 232 9 656

Table 1: An overview of the74XXX/ISCAS85 circuits (H
is the number of assumable variables,V denotes the total
number of variables andC is the number of clauses)

The original74XXX/ISCAS85 circuits (cf. Table 1 for an
overview) have been translated from the Netlist format to a
representation suitable for MIRANDA . Although our method
is not restricted to a certain class of models, for the exper-
imental section in this paper we have generated weak-fault
models (i.e., models with only normal behavior defined) for
each of the14 circuits. The construction of the weak-fault
models is the same as in our running example. In general,
weak-fault models expose higher MFMC values than mod-
els of circuits where gates are allowed to be “stuck-at”.



All time measurements in this paper are performed on a
host with 1.86 GHz Pentium M CPU and 2 Gb of RAM.

Computing MFMC Numbers and Vectors
Even after supplying MIRANDA with a state-of-the-art com-
plete diagnostic solver (Feldman & van Gemund 2006), the
only circuits amenable to exhaustively enumerating all pos-
sible observation vectors were the ones from the74XXX
family. The exact cardinalities of the minimal-cardinality
diagnoses of 74182, 74L85, 74283, and 74181 are5, 3, 5,
and7, respectively.

Instead of configuring MIRANDA with a fixed number
of restartsN , in our first experiment we show the number
of restarts necessary for computing optimal MFMC values
for the small74XXX circuits. For this experiment MI-
RANDA was configured with the same complete diagnostic
procedure which was used for the earlier, exhaustive exper-
iment. Our implementation of MIRANDA reached the op-
timal MFMC values after performing1.1, 3.4, 207.7, and
174.3 restarts for the 74182, 74L85, 74283, and 74181 cir-
cuits, respectively (the numbers are averages over10 runs).
The large value ofN for the 74283 circuit is due to the fact
that it has2 MFMC observation vectors only. Similarly, the
74181 circuit has456 observations leading to an MFMC di-
agnosis of cardinality7 from a total of222 observations.

The running time for finding the optimal74XXX MFMC
values (averaged over10 runs) varied from0.01 s for the
74182 circuit to34.2 min for 74181. The long running time
for reaching the MFMC of 74181 model comes from the
poor performance of the complete diagnostic procedure we
have used (despite the fact that we have employed a state-of-
the-art solver). This is not surprising, considering that the
computational cost of finding ak-minimal-cardinality diag-
nosis increases withk.

N = 1 N = 256

Name Time [s] MFMC MFMC MFMCe

74182 0.005 5 5 4.72
74L85 0.007 3 3 2.65
74283 0.011 3 5 4.11
74181 0.038 6 7 6.28
c432 0.135 3 8 5.59
c499 0.944 14 22 22.07
c880 2.458 16 26 17.97
c1355 5.069 9 21 22.07
c1908 9.622 10 21 17.24
c2670 97.332 15 32 37.17
c3540 30.061 19 21 16.87
c5315 315.475 41 55 47.12
c6288 84.069 6 12 16.83
c7552 594.304 22 42 46.19

Table 2: MFMC of the benchmark circuits and total number
of tests for multiple-fault diagnosis

To overcome the complexity of using a complete diagnostic
procedure, in the rest of our experiments, we have used the
incomplete SAFARI algorithm, which is virtually insensitive
to k (Feldman, Provan, & van Gemund 2007). The stochas-

tic MBD oracle dramatically increases the performance of
M IRANDA at the price of overestimating the cardinality of a
minimal-cardinality diagnosis. While SAFARI returns mini-
mal diagnoses, they are not necessarily minimal-cardinality
diagnoses. To some extent the optimistic MFMC values
from SAFARI compensate the pessimistic effect of the lim-
ited number of MIRANDA retries, but still cause MIRANDA
to produce optimistic MFMC values for theISCAS85 cir-
cuits. A procedure to estimate the actual MFMC values is
presented in the next section.

Table 2 shows the MFMC data and run times using MI-
RANDA and SAFARI. The second and third columns mea-
sure the time for executing one run (N = 1) and the MFMC
value reached during this run, respectively. It is visible that,
even with one random climb, the MFMC values are in the
worst case within50% of the best MFMC values we have
found. These best MFMC values, shown in the fourth col-
umn of Table 2, are computed given256 restarts. The large
number of restarts was necessary for creating a model-based
diagnosis benchmark (which is not discussed in this paper).
Note that for the74XXX models, the MFMC values com-
puted with MIRANDA and SAFARI are the same as the global
optima whenN = 256 and within60% of the global optima
whenN = 1. The rightmost column of Table 2 is a lower
bound of the optimal MFMC value, computed by using an
alternative method which we will discuss in the next section.

MFMC Error Bounds for Large Circuits
This section describes an alternative method for estimating
the MFMC of a circuit, which overcomes the imprecision of
our MFMC vectors. MFMC imprecision arises due to two
reasons: the stochastic nature of MIRANDA , and the fact that
SAFARI returns approximations to minimal-cardinality diag-
noses. Although the method described below does not find
the actual MFMC vectors, it can be very precise depending
on the circuit topology.

Given a systemDS, we denote asg(DS) the pdf of the
minimal-cardinalities of the diagnoses of all observations in
DS. FromG we can compute the MFMC value and the num-
ber of MFMC observation vectors inDS. In what follows we
will see that a normal distribution can be used as an approx-
imation toG for a large class ofDS.

To describe our error bounds, we focus on the partitioned
observation vectorα = IN ∪ OUT. Given an observa-
tion α leading to ak-fault minimal diagnosis, we associate a
nominal-diagnosis observationαn, which may differ fromα
only in the OUT sub-vector. The number ofOUT-values in
whichα andαn differ is called thedistance of α, D(SD, α).
If n = |OUT| is the number of output variables inSD, then
starting from any nominal observationαn, there arenCk

ways to select a distance-k vectorα, each of which corre-
sponds to a diagnosis. In the case where each such diagnosis
is a minimum cardinality diagnosis,g(SD) is binomially-
distributed. This is true given some assumptions on the
modelSD (e.g.,SD is a weak-fault model of a deterministic
Boolean circuit).

Although the above model is an approximation, it can lead
to useful bounds on MFMC errors. For the74XXX and
ISCAS85 benchmarks, the fraction of “m-flips” resulting in



minimal-cardinality diagnoses of cardinality smaller than m
is relatively small and does not vary significantly for differ-
entm.
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Figure 2:74XXX minimal-cardinalities pdf

Figure 2 shows a histogram of the true minimal-diagnosis
cardinalities for the four74XXX circuits for which we have
exhaustively determinedg(DS), fitted by a normal distri-
bution N(σ, µ), denotedf(x) (x is the minimal-cardinal-
ity). From f(0) andf(1) it is possible to compute unique
values forµ andσ (in practice, we use a numeric method
for doing that). Knowingf , the MFMC estimate of the
model approximated byf is given2 by f−1(f(0)) for which
f−1(f(0)) 6= 0.

It is possible to determinef(0) analytically. For any cir-
cuit realizing a deterministic Boolean function withOBS =
IN ∩ OUT observable variables such thatIN ∩ OUT = ∅,
it holds that|{α : D(α) = 0}| = 2|IN|. These input values
produce exactly2|IN| different observations, hencef(0) =
2|IN|/2|OBS| = 2−|OUT|. Findingf(1) is more difficult, and
we estimate it by takingS samples ofD(DS, α) = 2, and
determining the fraction of single fault diagnoses from them.
If this fraction is denoted asz, thenf(1) = z |OUT| 2|IN|.

The MFMC estimates, computed with the method out-
lined above forS = 1000, are shown in the rightmost
column of Table 2. We can see that for the74XXX cir-
cuits the approximation is within18% and that the MFMC
lower bound values computed by combinatorial counting are
within 69% of the MFMC values returned by MIRANDA
for ISCAS85. This gives us an estimate of the error which
comes from using the suboptimal SAFARI algorithm as an
MBD oracle.

Conclusion
This paper introduced the problem of computing MFMC ob-
servation vectors and suggested a greedy stochastic algo-
rithm for computing such vectors. Our algorithm is very

2f−1 is a multi-valued function which has two values inf(0).

efficient given a fast subroutine for computing the cardinal-
ity of a minimal-cardinality diagnosis. The MFMC of real-
world systems is an important property quantifying the di-
agnosability of a model as it shows the maximum number
of malfunctioning components that can be distinguished ob-
serving a set of variables.

The algorithm introduced in this paper has been run on a
number of74XXX/ISCAS85 combinatorial circuits deter-
mining the MFMC of these circuits.

In future work we plan to study the computational com-
plexity of the MFMC problem and the coverage of the
MFMC observation vectors, in order to compare MFMC-
based methods to classical ATPG methods.
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