
Incremental Algorithms for Approximate Compilation

AAAI-08 ID: 605

Abstract

Compilation is an important approach to a range of inference
problems, since it enables linear-time inference in the size
S of the compiled representation. However, the main draw-
back is that S can be exponentially larger than the size of the
original function. To address this issue, we propose an incre-
mental, approximate compilation technique that guarantees a
sound and space-bounded compilation for weighted boolean
functions, at the expense of query completeness. In particu-
lar, our approach selectively compiles all solutions exceeding
a particular threshold, given a range of weighting functions,
without having to perform inference over the full solution-
space. We describe incremental, approximate algorithms for
the prime implicant and DNNF compilation languages, and
provide empirical evidence that these algorithms enable space
reductions of several orders-of-magnitude over the full com-
pilation, while losing relatively little query completeness.

Introduction
A broad range of compilation approaches have been pro-
posed in the literature, such as prime implicants (de Kleer
1986), DNNF (Darwiche 2001), Ordered Binary Decision
Diagrams (OBDDs) (Bryant 1992), cluster-trees (Pargamin
2003), and finite-state automata (Amilhastre, Fargier, &
Marquis 2002). The benefit of these approaches is that they
enable inference that is linear in the size of the compiled
representation; the drawback is that the size of the compiled
representation can be exponentially larger than that of the
original function. For example, the number of prime impli-
cants of a set m of arbitrary clauses is O(3m) (Chandra &
Markowsky 1978), and the size-complexity of compiled rep-
resentations (e.g., DNNF, OBDD) for problems in proposi-
tional logic, Bayesian networks and constraint satisfaction is
exponential in the treewidth of their interaction graph (Dar-
wiche 2001; Jensen, Lauritzen, & Olesen 1990).

In this article we propose a sound but incomplete in-
cremental approximation technique that enables us to trade
off the size of the compilation for coverage of the most-
preferred solutions. We assume that we have a valuation
function that identifies the most likely solutions (or satisfy-
ing assignments) of f . Such functions are well-known in

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the literature for a range of applications; for example, in di-
agnosis we may choose the probabilistically most-likely di-
agnoses, and in configuration we may choose a cardinality-
minimal configuration.

Given a preference relation φ over f , we approximate
ζ(f) using a valuation function to compile the most likely
solutions (or satisfying assignments) of f by pruning solu-
tions below a threshold %. Hence, given a threshold valua-
tion %, our approach guarantees the preservation of all solu-
tions exceeding %, given a range of preference relations φ.

We empirically validate this approach for two impor-
tant compilation targets, prime implicants and DNNF. For
each target language, we propose incremental algorithms
that generate approximate (sound but incomplete) represen-
tations that trade off solution coverage for space and infer-
ence efficiency, without having to compute the full compi-
lation (which may be of size exponential in certain parame-
ters of f). We provide empirical evidence that incremental
compilation achieves space reductions of several orders-of-
magnitude over the full compilation, while losing relatively
little query completeness.

Related Work
This section reviews prior work in related areas. It is im-
portant to note that we focus on the size of the compilation,
which few previous papers have addressed. Most previous
studies of compilation have focused on a variety of other
questions, such as the existence of solutions, or of relevance
and necessity of hypotheses (Eiter & Gottlob 1995). Fur-
ther, to our knowledge, this is the first proposal of incremen-
tal, approximate compilation algorithms based on solution
preference relations.

The complexity of compilation has been addressed in
many papers, including (Cadoli et al. 2002; 1996; Liber-
atore 2001). Cadoli et al. (2002) introduce a hierarchy
of compilation complexity classes. Ferrara et al. (2007)
have proven that for temporal logic model checking, prepro-
cessing cannot reduce complexity, given polynomial space
bounds (in the size of the input) on the output.

In the case of compiling using BDDs, the asymptotic
worst-case complexity results indicate that many important
BDD operations are NP-complete, NP-hard or tend to re-
quire unaffordable amounts of memory (Hachtel & Somenzi
2000). The size of a BDD is determined both by the func-

tion being represented and the variable ordering. There are
functions that have only exponentially sized BDDs (Bryant
1991), although this is not true for the average boolean func-
tion. Using variable ordering, one cannot guarantee that a
BDD will not be of size exponential in the number of vari-
ables, since the problem of finding the best variable ordering
is NP-hard (Bollig & Wegener 1996). Further, the approx-
imation problem is also hard, as for any constant c > 1 it
is NP-hard to compute a variable ordering resulting in an
OBDD with a size that is at most c times larger than optimal
(Sieling 2002).

In the case of other compilation targets, like DNNF, the
size of the DNNF generated for problems in propositional
logic, Bayesian networks and constraint satisfaction is expo-
nential in the treewidth of their interaction graph (Darwiche
2001; Jensen, Lauritzen, & Olesen 1990).1

Notation and Preliminaries
Propositional Logic
We assume a standard propositional logic in this paper.
We use a finite alphabet of propositional symbols, Σ =
{z1, z2, ..., zn}, using the usual boolean connectives∧,∨,¬,
and ⇒ for constructing well-formed formulae from Σ. A
literal is a propositional symbol or its negation. A clause
z1 ∨ z2 ∨ · · · ∨ zk ∨ ¬zk+1 ∨ · · · ∨ ¬zn is a disjunction of
literals. A clause is Horn (definite Horn) if k ≤ 1 (k = 1).
A function (or formula) f is a conjunction of clauses; in this
article we assume that a formula is defined over n symbols,
unless stated otherwise. The size of a formula f is |f |.

A (partial) interpretation γ for Σ is a mapping from (a
subset of) Σ to {true, false}, where interpretations can be
extended to boolean formulae in the usual recursive way. Γ
is the set of all interpretations. A model of a formula f is
an interpretation γ that maps f to true(written γ |= true).
B is the set of all boolean formulae over Σ. The function
atoms : B → 2Σ maps a formula f to the set of proposi-
tional symbols occurring in f .

Prime implicants An implicant I of a formula f is a con-
junction of literals such that I ⇒ f . An implicant I is a
prime implicant if, for every conjunct J obtained by remov-
ing one or more literals from I , J 6⇒ f . In other words, a
prime implicant is a minimal implicant of f . The disjunction
∆ of all prime implicants of a formula f is equivalent to f ,
i.e. ∆ preserves the models of f . The size of ∆ is the sum
of the size of all prime implicants.

Decomposable Negation Normal Form A formula f is in
Negation Normal Form (NNF) if its literals are joined using
only the operators ∨ and ∧. The Decomposable Negation
Normal Form (DNNF) is a subclass of NNF satisfying the
decomposability property, which states that the elements of
a conjunction do not share atoms. In other words, for every
conjunction α = α1∧α2∧ . . .∧αn in a DNNF, it holds that
atoms(αi) ∩ atoms(αj) = ∅ for i 6= j. A DNNF can be

1It turns out that many real-world problems, e.g., the ISCAS
benchmark circuits (Brglez, Bryan, & Kozminski 1989), do not
have treewidths bounded by some relatively small integer, in order
to ensure compact DNNF compilations.

represented by a rooted directed acyclic graph, where each
leaf node is associated with a literal or truth value, and each
intermediate node corresponds to either ∨ or ∧. Given this
representation, the size of a DNNF is the number of edges
in the graph.

Compilability
We address abduction problems whose instances can be ex-
pressed as the pair 〈f, σ〉, where f is the fixed part (instance-
independent) and σ is the varying part (instance-dependent).
Given a problem P , an instance 〈f, σ〉 of P with f ∈ B and
σ ∈ Σ∗ and a query function QP : B×Σ∗ → {yes, no}, we
are interested in finding the value QP (f, σ).
Definition 1 (Compilation). Given a problem P , an instance
〈f, σ〉 of P and a query function QP , we define a compila-
tion function of f , ζ(f), such that there exists a query func-
tion Q′

P : ζ(B)× Σ∗ → {yes, no} and ∀〈f, σ〉 ∈ B × Σ∗ it
holds that Q′

P (ζ(f), σ) = QP (f, σ).2

It is clear from the definition that a compilation ζ(f) pre-
serves the models of f . In order to find the value Q(f, σ),
we process the fixed part f off-line, thus obtaining ζ(f),
and then we find the value Q′

P (ζ(f), σ). Compilation is
worthwhile if answering the query Q′

P (ζ(f), σ) is easier
than answering Q(f, σ). Note that we do not restrict the
time needed to compute the function ζ.

This definition of compilation captures all of the compi-
lation approaches that have been proposed in the literature,
such as prime implicants (de Kleer 1986), DNNF (Darwiche
2001), Ordered Binary Decision Diagrams (OBDDs) (Bryant
1992), cluster-trees (Pargamin 2003), and finite-state au-
tomata (Amilhastre, Fargier, & Marquis 2002). These ap-
proaches all make space/time tradeoffs, i.e., they typically
generate compilations, from which a variety of classes of in-
ference can be done in time linear in the size of the compiled
representation, although the compilation may require signif-
icant space. However, these typical compilation approaches
are space intensive.

Preference-Based Compilation
This section introduces the notion of a preference function
φ over f , and of compiling f with respect to φ.

Preference-Based Ranking
Assume that we have a full compilation ζ(f) such that we
can specify the space of solutions, Λ. We can rank-order the
solutions of Λ according to a given preference relation φ into
a set of equivalence classes, in which each equivalence class
is characterised by the same φ value.

We now consider the case where we use a preference cri-
terion φ to guide the choice of compilation target, i.e., we
aim to compile the most-preferred solutions.
Definition 2 (Preference Function). A preference function φ
defined over the solutions Λ of f defines a partial ordering�

2Note that this definition differs from the original definition of
(Cadoli et al. 2002), where a compilation is assumed to be of size
polynomial in |f | and answering the query Q′

P is assumed to re-
quire a time polynomial in |σ|+ |ζ(f)|.

over Λ. We say that solution λ1 ∈ Λ is preferred to solution
λ2 ∈ Λ, written λ1 � λ2, if φ(λ1) > φ(λ2).

In this article, we assign a preference function (valuation)
to variables, and then use this valuation to compute the most
preferred solutions.

We now restrict ourselves to the domain of propositional
abduction. A propositional abduction problem (PAP) can be
defined using a triple 〈H,µ, f〉 where H and µ are sets of
variables, while f is a propositional formula. H is typically
referred to as the hypotheses, and µ as the manifestations.
Some important preference-criteria that are widely used in
the literature for PAP compilation include:
Subset-inclusion φ⊆: 2H → λ; λ1 � λ2 if φ⊆(λ1) ⊆

φ⊆(λ2).

Cardinality ϑ: 2H → |λ|; λ1 � λ2 if ϑ(λ1) < ϑ(λ2).
Probability Pr: 2H → [0, 1]; λ1 � λ2 if Pr(λ1) >

Pr(λ2).
The most preferred solution in a compilation can be com-

puted based on the specific preference relation, using the
composition function of the preference relation. One key
criterion is that the compilation preserves the preference re-
lations, which is guaranteed for the well-known compilation
languages (since they preserve the models of f).
Definition 3 (Preference Preservation). A compilation ζ(f)
preserves a preference relation φ if, given 〈f, σ〉, for any
pair of solutions λ1, λ2 such that λ1, λ2 ∈ Λf and λ1, λ2 ∈
Λζ(f), λ1 � λ2 is valid in ζ(f) iff λ1 � λ2 is valid in f .

Preferred Approximate Compilation
Since we are interested in compiling only the most-preferred
solutions, we define preferred approximate compilations as
compilations including only a subset of most-preferred so-
lutions:
Definition 4 (Preferred Approximate Compilation). Given
a compilation ζ(f) with space of solutions Λζ(f), ζ(f)
denotes a preferred approximate compilation of f if: (1)
Λζ(f) ⊆ Λf ; and (2) ∀λ1 ∈ Λζ(f),∀λ2 ∈ Λf \ Λζ(f), it
holds that λ1 � λ2.

To focus on the most-preferred solutions, we assign a val-
uation threshold %. We aim to compile all solutions with
valuations at least as preferred as %, denoted Λ%; solutions
with valuations less-preferred than % are denoted Λ%̄.
Definition 5 (%-sound compilation). Given a preference
function φ over f and a threshold %, the preferred approxi-
mate compilation ζ(f) denotes a %-sound compilation of f
if: (1) ζ(f) preserves the preference relation φ; and (2) ζ(f)
contains every solution λ ∈ Λ%, i.e. Λζ(f) ⊇ Λ%.

In the following, we describe algorithms that incremen-
tally compile based on a threshold %. The algorithms gen-
erate partial solutions, i.e., partial interpretations consistent
with f , incrementally extending these partial solutions to
representations corresponding to complete solutions only if
the partial solution at each step is more preferred than %.
We call this approach partial-solution extension (PSE). We
prove the following result for the set φ∗ of preference func-
tions φ⊆, ϑ, Pr.

Theorem 1. Given a preference function φ ∈ φ∗ over f and
a threshold %, partial-solution extension (PSE) is guaran-
teed to generate a %-sound compilation of f .

Proof: First, it is trivial to show that, given two partial so-
lutions λ1 and λ2 which agree on truth-assignments except
that λ2 makes one more assignment than λ1, λ1 � λ2.3 Us-
ing this, we can now show that we never exclude a solution
λ ∈ Λ%. Assume that partial solution λ1 is less preferred
than %; by pruning λ1, there can be no more-preferred ex-
tension λ′ to λ1, since for any extension λ′′ of λ1, λ1 � λ′′.
Hence, we never include any solutions which are extensions
of λ1. Using an inductive argument, for any partial solution
we never omit any solution λ ∈ Λ% through PSE. 2

In the next section, we will show PSE algorithms for
prime implicants and DNNF; we omit proofs of the correct-
ness of these algorithms due to space limitations, but note
that they are special cases of the above theorem. Our notion
of preference-based compilation is different to the use of
cost functions for DNNF minimal-diagnosis extraction (Dar-
wiche 1998). The cost-function approach aims to compute
the most-preferred diagnosis given a complete DNNF and an
observation; in our case we are incrementally compiling all
solutions which are more preferred than a given threshold %.
One outcome of this difference is that, whereas using proba-
bilistic cost-functions can prune a complete DNNF such that
valid solutions may be lost (Darwiche 1998), the threshold-
based incremental compilation guarantees that no solutions
λ ∈ Λ% will fail to be included in the approximate compila-
tion, as shown in Theorem 1.

Incremental Prime Implicant Generation
In this section we present an algorithm that incremen-
tally generates %-sound compilations of a formula f , using
prime implicants as target representation. The algorithm is
based on the PRIME algorithm, proposed by Shiny and Pu-
jari (Shiny & Pujari 2002); we modified the original algo-
rithm in order to generate approximate compilations. The
algorithm employs a matrix representation of a formula f ,
i.e., a binary matrix M whose columns correspond to clauses
and rows correspond to literals. The generic input of the al-
gorithm is the submatrix M(S, T), which is obtained from
M considering only a subset S of the clauses and ignoring a
subset T of the literals. In order to compute the prime impli-
cants of M(S, T), the matrix is split into two submatrices,
and the prime implicants of the submatrices are computed
recursively and merged together, yielding the set of prime
implicants of the original matrix.

The algorithm is presented in figure 1. Lines 2–7 repre-
sent the recursion base cases. The rest of the algorithm con-
tains the recursive calls and the merging of prime implicants.
This is carried out according to the theorems presented by
Shiny and Pujari. Note that not all prime implicants are
added to the set P : the procedure ADD-IMPLICANT ensures
that only those prime implicants with valuation exceeding
the threshold % are included in P , and discards partial solu-
tions less preferred than %.

3We call λ2 an extension of λ1.

PRIME-APPROX(M(S, T), %)

1 if T = ∅
2 then return ∅
3 if M(S, T) has only one column
4 then return SINGLE-COLUMN(M)
5 if M(S, T) has only one row
6 then return SINGLE-ROW(M)
7 r ← most frequent literal in T
8 Sr ← clauses of S containing r
9 P1 ← PRIME-APPROX(M(S − Sr, T ∪ {r}), %)

10 P2 ← PRIME-APPROX(M(Sr, T ∪ {r}), %)
11 for all p ∈ P1

12 do if E(p, Sr) = Sr

13 then ADD-IMPLICANT(P, p, %)
14 else ADD-IMPLICANT(P, p ∪ {r}, %)
15 for all q ∈ P2

16 do if E(q, S − Sr) = S − Sr

17 then ADD-IMPLICANT(P, q, %)
18 P2 ← P2 − {q}
19 else for all p ∈ P1, q ∈ P2

20 do ADD-IMPLICANT(P, p ∪ q, %)
21 Remove all subsumed paths in P
22 return P

ADD-IMPLICANT(P, p, %)

1 if φ(p) ≥ %
2 then P ← P + {p}

Figure 1: PRIME algorithm adapted to approximate compilation.

Incremental DNNF Generation
We present here a PSE algorithm to generate %-sound DNNF
compilations of a formula f , based on the algorithm pro-
posed by Darwiche (2001).

The DNNF algorithm, shown in figure 2, takes as inputs a
node T in the decomposition tree (i.e. a binary tree whose
leaves correspond to the clauses in the formula), and an in-
stantiation of variables α and a threshold %. The DNNF rep-
resentation is computed recursively, with each recursive call
carried out only if the instantiation exceeds the threshold %;
therefore, the algorithm does not compute portions of the
DNNF containing solutions less preferred than %.

The algorithm can be made more efficient by associat-
ing a cache structure to the nodes of the decomposition tree.
This improved version of the algorithm is reported in figure
3. Note that in this case instantiations with different valua-
tions can be associated with the same cache entry; in gen-
eral, this might lead to a non %-sound approach, because the
algorithm might return the same DNNF structure for instan-
tiations with different valuations.

In order to preserve %-soundness, we order instantiations
by their valuation. Thus, we calculate and store in the cache
the DNNF relative to the most preferred instantiation α; we
then return the same DNNF for all subsequent (less pre-
ferred) instantiations that match with α. Therefore, the re-
sulting DNNF is always a superset of the DNNF that would
result using the non-caching algorithm.

Another refinement consists in pruning the DNNF with

DNNF(T, α, %)

1 if T is a leaf node with clause ϕ
2 then γ ← CONDITION(ϕ, α)
3 else A← atoms(Tl) ∩ atoms(Tr)− atoms(α)
4 for β ∈ {instantiations ofA such that φ(α ∧ β) ≥ %}
5 do γ ← γ ∨ (DNNF(Tl, α ∧ β, %)∧

DNNF(Tr, α ∧ β, %) ∧ β)
6 return γ

Figure 2: DNNF algorithm adapted to approximate compilation.
CONDITION replaces literals in ϕ with true(false) if they are con-
sistent (inconsistent) with α. Tl and Tr respectively denote the left
and right children of T .

DNNF2(T, α, %)

1 ψ ← subinst(α, atoms(T))
2 if cacheT (ψ) 6= NIL
3 then return DNNF-PRUNE(cacheT (ψ), %/φ(α))
4 if T is a leaf node with clause ϕ
5 then γ ← CONDITION(ϕ, α)
6 else A← atoms(Tl) ∩ atoms(Tr)− atoms(α)
7 I ← {instantiations ofA ordered by their valuation}
8 for β ∈ I such that φ(α ∧ β) ≥ %
9 do γ ← γ ∨ (DNNF2(Tl, α ∧ β, %)∧

DNNF2(Tr, α ∧ β, %) ∧ β)
10 cacheT (ψ)← γ
11 return γ

Figure 3: Improved DNNF algorithm using caching and pruning.
subinst(α, atoms(T)) is the subset of α pertaining to atoms(T).

the procedure DNNF-PRUNE. This procedure takes a DNNF
γ and a threshold % as inputs, and removes solutions less
preferred than %. Nodes of γ are removed according to their
valuations, where the valuation of an and-node is calculated
using the composition function of the preference relation,
while the valuation of an or-node is equal to the valuation
of its most-preferred child. In case the root of γ is an or-
node, the procedure removes children less preferred than
the threshold. In case the root of γ is an and-node, the
procedure removes children that never occur in above-the-
threshold combinations, where each combination t contains
all the leaf-node children of the root, as well as one child of
each or-node-child of the root, and φ(t) is calculated using
the composition function of the preference relation.

Note that the algorithm DNNF-PRUNE removes only
a subset of solutions less preferred than %. Therefore,
DNNFs computed with algorithm DNNF2 include more so-
lutions than those computed with algorithm DNNF; however,
DNNF2 is significantly more efficient than the non-caching,
non-pruning algorithm.

Empirical Results
We have implemented the above algorithms and carried out
experiments that compare the prime implicant and DNNF
approaches, measuring the size and coverage trade-off of

DNNF-PRUNE(γ, %)

1 if γ is not a leaf
2 then for each child c of γ
3 do DNNF-PRUNE(c, %)
4 if γ is an or–node
5 then for each children c of γ
6 do if φ(c) < %
7 then remove c
8 elseif γ is an and–node
9 then N ← ∅

10 for each child c of γ
11 do if c is an or-node
12 then N ← N + {children of c}
13 else N ← N + {c}
14 for each node j in N
15 do remove[j]← TRUE
16 S ← { all combinations of nodes in N }
17 for each combination t in S such that φ(t) ≥ %
18 do for each node j in t
19 do remove[j]← FALSE
20 for each node j in N such that remove[j] = TRUE
21 do remove j
22 return γ

Figure 4: Pruning a DNNF to remove solutions below %.

compilations. All our experiments were run with a set of
formulae representing a suite of digital circuits. The dig-
ital circuits were generated randomly by a circuit genera-
tor program (Provan & Wang 2007), such that the circuits
have properties similar to those of the ISCAS circuit bench-
marks (Brglez, Bryan, & Kozminski 1989). Each circuit is
represented by a formula f defined over a set of boolean
variables V = H ∪ K, where a variable hi ∈ H denotes
the health of gate i, and variables in K denote input/output
signals. To each variable hi ∈ H we assign a probability
valuation. We defined the probability that gate i is function-
ing, Pr(hi = 1) = p, by randomly sampling the value for
p from a uniform distribution over ranges R = [i, 1], with
0 ≤ i < 1. The failure probability, Pr(hi = 0), is the
complement 1− p.

Figure 5 shows how the number of solutions varies with
different thresholds and weight ranges. Depending on the
range R we obtain distributions that decrease more or less
gradually to 0. The number of preferred prime implicants
decreases as i → 1 for all threshold values % > 0. We can
control the number of solutions (and thus the size and cov-
erage of the approximate compilation) by selecting appro-
priate (i, %) combinations. In the following experiments we
used a range R = [0.99, 1]; however, our experimental data
indicate that we obtain similar results using different ranges.

Figure 6 shows the size of DNNF compilations for in-
put formulae with 28 to 64 clauses, using various valuation
thresholds. The size of compilations grows exponentially
in the size of input; however, approximate compilations can
save a significant amount of space when compared to full
compilations. We obtain similar results with prime impli-
cant compilations.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 1e-20 1e-18 1e-16 1e-14 1e-12 1e-10 1e-08 1e-06 0.0001 0.01 1

P
ri
m

e
 i
m

p
lic

a
n
ts

Threshold

R = [0, 1]
R = [0.8, 1]

R = [0.95, 1]
R = [0.99, 1]

Figure 5: Number of prime impicants of a formula f encoding a
16-gate circuit; each graph refers to a different probability range.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 10 20 30 40 50 60 70

C
o
m

p
ila

ti
o
n
 s

iz
e

Input size (number of clauses)

th = 0
th = 10

-14

th = 10
-12

th = 10
-10

th = 10
-8

th = 10
-6

th = 10
-4

th = 10
-2

Figure 6: Size of DNNF compilations using various threshold val-
ues. Compilations were obtained using the caching and pruning
algorithm.

Figure 7 compares the size of prime implicant and DNNF
compilations for input formulae with 10 to 74 clauses, using
threshold % = 10−10. We can see that DNNF compilations
are more succint than prime implicants, achieving in some
cases a memory saving of 50%.

Figure 8 shows the Cumulative Distribution Functions
(CDFs) of solution distributions for circuits with 10 to 18
gates, encoded in formulae with 58 to 108 clauses. These
graphs refer to prime implicant compilations; we obtain sim-
ilar results using DNNF. Here we see that, using approx-
imate compilations, we obtain significant solution cover-
age yet require just a fraction of the memory of the full
compilation. In particular, we obtain up to 5 orders-of-
magnitude space savings, while maintaining > 90% query-
coverage; moreover, for all circuits very high coverage ra-
tio (> 99%) is possible with 3-4 orders-of-magnitude space
savings. Note that the space savings increase with circuit (or
formula) size, meaning that this approach scales well with
the size of f .

 0

 2000

 4000

 6000

 8000

 10000

 12000

 10 20 30 40 50 60 70 80

C
o
m

p
ila

ti
o
n
 s

iz
e

Input size (number of clauses)

Dnnf with caching and pruning
Dnnf

Prime Implicants

Figure 7: Comparing the size of prime implicant and DNNF com-
pilations using threshold % = 10−10.

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

C
o
v
e
ra

g
e
 r

a
ti
o

Memory ratio

10 gates
11 gates
12 gates
13 gates
14 gates
15 gates
16 gates
17 gates
18 gates

Figure 8: CDFs of solution distributions for prime implicant com-
pilations.

Summary and Conclusions
We have proposed a Partial-Solution Extension approach
for incrementally compiling the most-preferred solutions of
boolean formulae. The approach focuses on the size and
solution coverage of approximate compilations, as well as
on the memory required to compute them. We have pro-
vided a theoretical analysis and presented PSE algorithms
for prime implicants and DNNF target languages. All the al-
gorithms are %-sound, i.e. they compute approximate compi-
lations that include all solutions more preferred than the val-
uation threshold %. Experimental results have been reported
that empirically demonstrate the space efficiency of approx-
imate compilations, showing that we can achieve orders-of-
magnitude space savings while covering the majority of so-
lutions.

References
Amilhastre, J.; Fargier, H.; and Marquis, P. 2002. Consis-
tency restoration and explanations in dynamic CSPs Appli-
cation to configuration. Artif. Intell. 135(1-2):199–234.

Bollig, B., and Wegener, I. 1996. Improving the variable
ordering of OBDDs is NP-complete. IEEE Transactions
on Computers 45(9):993–1002.
Brglez, F.; Bryan, D.; and Kozminski, K. 1989. Com-
binational profiles of sequential benchmark circuits. In
IEEE International Symposium on Circuits and Systems,
volume 3, 1929–1934.
Bryant, R. E. 1991. On the complexity of vlsi implementa-
tions and graph representations of boolean functions with
application to integer multiplication. IEEE Trans. Comput.
40(2):205–213.
Bryant, R. 1992. Symbolic boolean manipulation with
ordered binary-decision diagrams. volume 24. 293–318.
Cadoli, M.; Donini, F.; Liberatore, P.; and Schaerf, M.
1996. Feasibility and unfeasibility of off-line processing.
Proceedings of the Fourth Israeli Symposium on Theory of
Computing and Systems (ISTCS96) 100–109.
Cadoli, M.; Donini, F.; Liberatore, P.; and Schaerf, M.
2002. Preprocessing of Intractable Problems. Information
and Computation 176(2):89–120.
Chandra, A., and Markowsky, G. 1978. On the number of
prime implicants. Discrete Mathematics 24:7–11.
Darwiche, A. 1998. Model-Based Diagnosis using Struc-
tured System Descriptions. Journal of Artificial Intelli-
gence Research 8:165–222.
Darwiche, A. 2001. Decomposable negation normal form.
Journal of the ACM (JACM) 48(4):608–647.
de Kleer, J. 1986. An assumption-based TMS. Artif. Intell.
28(2):127–162.
Eiter, T., and Gottlob, G. 1995. The complexity of logic-
based abduction. Journal of the ACM (JACM) 42(1):3–42.
Ferrara, A.; Liberatore, P.; and Schaerf, M. 2007.
Model Checking and Preprocessing. In Proc. AI*IA 2007:
Artificial Intelligence and Human-Oriented Computing.
Springer.
Hachtel, G. D., and Somenzi, F. 2000. Logic Synthesis
and Verification Algorithms. Norwell, MA, USA: Kluwer
Academic Publishers.
Jensen, F.; Lauritzen, S.; and Olesen, K. 1990. Bayesian
updating in causal probabilistic networks by local compu-
tations. Computational Statistics Quarterly 4:269–282.
Liberatore, P. 2001. Monotonic reductions, representa-
tive equivalence, and compilation of intractable problems.
Journal of the ACM (JACM) 48(6):1091–1125.
Pargamin, B. 2003. Extending cluster tree compilation
with non-boolean variables in product configuration. In
Proceedings of the IJCAI-03 Workshop on Configuration.
Provan, G., and Wang, J. 2007. Evaluating the adequacy of
automated benchmark model generators for model-based
diagnostic inference. In Proceedings of IJCAI-07.
Shiny, A., and Pujari, A. 2002. Computation of Prime
Implicants using Matrix and Paths. Journal of Logic and
Computation 8(2):135–145.
Sieling, D. 2002. The nonapproximability of obdd mini-
mization. Inf. Comput. 172(2):103–138.

