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Abstract

Automated generators for synthetic models and data can
play a crucial role in designing new algorithms/model-
frameworks, given the sparsity of benchmark models
for empirical analysis and the cost of generating mod-
els by hand. We describe an automated generator for
benchmark models that is based on using a composi-
tional modeling framework and employs random-graph
models for the system topology. We choose the sys-
tem topology that best matches the topology of the real-
world system using a domain-analysis algorithm. To
show the range of models for which this approach is ap-
plicable, we demonstrate our model-generation process
using two examples of model generation optimized for
a specific domain: (1) model-based diagnosis for dis-
crete Boolean circuits, and (2) E.coli TRN networks for
simulating gene expression.

Introduction
Creating benchmark model suites is becoming increasingly
important, as such models are needed to validate a va-
riety of algorithms, in domains including VLSI design
(where models are intended to meet particular specifica-
tions) (Stroobandt 2001), the Internet (Mahadevanet al.
2006), model-based diagnosis (Provan & Wang 2007), and
bioinformatics (Van den Bulckeet al. 2006; Mendes, Sha,
& Ye 2003). Given the sparsity of benchmark models and
the cost of generating models by hand, it is critical to design
an automated generator for synthetic models and data.

To satisfy this need, we describe adomain-independent
automated generator for benchmark models that is based
on using a compositional modeling framework and employs
random-graph models for the system topology. Composi-
tional modeling (Keppens & Shen 2001) is the predominant
knowledge-based approach to automated model construc-
tion. It assumes that a system can be decomposed into a
collection of components, each of which can be defined us-
ing a functional model. These component models are then
integrated into the full system model using a system topol-
ogy graph, which describes the component interactions. Al-
though there aredomain-specificsynthetic generators for
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certain domains, e.g., (Stroobandt 2001; Van den Bulckeet
al. 2006; Mahadevanet al. 2006), this is the firstdomain-
independentgenerator that enables users to adopt particular
topology-generation algorithms best suited to the particular
application.

In this article, we assume we have a library of functional
component models for the domain in question, so the main
focus of benchmark generation is on creating ensembles of
random but “realistic” topologies. A range of methods ex-
ist to generate system topologies, each of which has a set
of specific input parameters that must be optimized to cre-
ate a model that accurately depicts a domain-specific topol-
ogy. As we will show, the different generation methodolo-
gies produce quite different models, with different topolog-
ical properties, such as degree distribution, etc. Since each
application domain requires different topological properties,
the key to generating good benchmark models is to match
the generation methodology to the domain requirements.

Our contributions are as follows.

1. We describe a domain-independent synthetic model gen-
erator that can tailor high-fidelity models to arbitrary do-
mains based on domain properties.

2. We describe the domain-analysis process, specifying the
setΠ of parameters and the setΦ of metrics that must be
computed and howΠ andΦ are used to select the best
topology-generation algorithm.

3. We illustrate the domain-analysis and model-generation
procedure on two quite different domains: (1) model-
based diagnosis of discrete Boolean circuits (where we
compare the topological fidelity of the generated models
to that of real circuit models), and (2) simulation of tran-
scriptional regulatory networks based on synthetic gene
expression data.

Related Work
The topology-generation method we adopt was originally
developed based on the theory of random graphs and com-
plex networks–see (Boccalettiet al. 2006) for background.
However, this method focuses solely on the system structure
(as captured by the graph), and ignores the system function-
ality. We extend this approach by adopting the system struc-
ture based on the random-graph generators, and then encod-
ing system functionality using a component library.



This work is most closely related to domain-specific
model generators, which exist for circuits (Stroobandt 2001)
and biological interaction kinetics models (Van den Bulcke
et al. 2006). Our approach is different from either of these
approaches, in that we make no prior assumptions about do-
main properties, but rather compute the domain properties
necessary for model generation. Our model generation ap-
proach differs from related work in VLSI auto-generation,
e.g., (Stroobandt 2001), in several ways. The VLSI ap-
proach emphasizes circuit design for circuit optimization
and simulation after placement and routing; in contrast, our
approach focuses on topological and organizational princi-
ples of circuits, and can be used for a wider variety of ap-
plications, including the diagnostics applications we report.
Existing biological network generators, e.g., (Van den Bul-
cke et al. 2006; Mendes, Sha, & Ye 2003) use random-
graph models that have unsuccessfully reflected the under-
lying structure of biological networks (Chunget al. 2003;
Hormozdiariet al. 2007). Van den Bulcke et al.(2006) pro-
posed an alternative topology generation approach for tran-
scriptional regulatory networks (TRNs) by selecting sub-
graphs from previously described TRNs. Although this ap-
proach captures some topological characteristics of TRNs,
it is not scalable and depends on the availability of accurate
data of existing TRNs. We improve the topology generator
with more biologically plausible models.

This paper improves upon the model generation approach
of (Provan & Wang 2007) in several ways. First, it explicitly
defines a domain-analysis phase. Second, it extends and im-
proves upon the topology generation algorithms for creating
the underlying system structure, and examines a wider range
of metrics for empirically evaluating synthetic networks.

Compositional modelling uses a set of functional compo-
nent models, together with a specification of component in-
teractions (called a “scenario” in (Keppens & Shen 2001)) to
generate useful (mathematical) models. Our approach dif-
fers from that of (Keppens & Shen 2001) in that we cre-
ate the system structure, or scenario using model genera-
tors instead of manual work. Further, although the model-
generation (or compositional modeling) approach has pri-
marily been applied to physical systems, it can be ap-
plied to other domains, such as socio-economic, ecologi-
cal and biological systems (Van den Bulckeet al. 2006;
Mendes, Sha, & Ye 2003).

Modeling Framework

This section describes our approach for generating bench-
mark models for compositional domains. A domainD is
compositionalif a system model fromD can be composed
from model components, each of which is defined by a com-
ponent functional model. Our approach is applicable to any
compositional domain, since (a) the underlying topologi-
cal models can be optimized using appropriate parameters
to approximate virtually the structure of real-world com-
plex systems (Boccalettiet al. 2006), and (b) functionality
is incorporated into the system model using a component-
library, where components can be developed for any domain
in which the system models are decomposable.

We assume that a model can be generated from the tuple
(G,B), whereG denotes the topology graph, andB denotes
the functionality descriptions for components. The topology
graphG = (V, E) consists of verticesV and edgesE and
specifies the topological relations among the system com-
ponents. Each nodev ∈ V corresponds to a component or
input in the system, and each edge(vi, vj) ∈ E corresponds
to a functional relation betweenvi andvj . Our component
library specifies a functional descriptionBi for each compo-
nentvi in the system being modeled.
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Figure 1: Automated model generation framework.

As shown in Figure 1, we generate benchmark models in
a three-step process.

1. analyze existing domain models to extract important
model properties;

2. generate the (topology) grapĥG underlying each syn-
thetic model;

3. assign components to each node in̂G, to create the
system-level functional model̂Ψ;

For example, electronic circuits can be viewed as graphs
in which nodes are electronic components (such as logic
gates in digital circuits) and edges are wires in a broad
sense (Cancho, Janssen, & Solé 2001). In gene TRNs, nodes
represent genes and edges correspond to regulatory inter-
actions at transcriptional level between the genes (Van den
Bulckeet al. 2006; Mendes, Sha, & Ye 2003).

As another example, in auto-generating TRN models,
each node in̂G is instantiated as a gene, and the interaction
kinetics between the genes are quantitatively modeled us-
ing a set of ordinary differential equations (ODEs) (Van den
Bulcke et al. 2006; Mendes, Sha, & Ye 2003). For each
combination of a gene and its regulators, a proper enzyme
kinetic equation is selected, depending on the number of ac-
tivators and repressors and on settings that control the frac-
tion of complex interactions (Van den Bulckeet al. 2006).

Topological Model Selection and Generation
To generate a synthetic network̂G using an algorithmA, we
provide toA a setΠ of input parameters, and then measure
the properties of̂G (e.g., degree distribution) using a setΦ of
graph metrics (Mahadevanet al. 2006) to compare the prop-
erties of the real and synthetic networks. For example, the
preferential attachment (PA) (Boccalettiet al. 2006) algo-
rithm requires the number of nodes and edges ofĜ as input
parameters.

There is a wide range of generation algorithms available,
e.g., (Boccalettiet al. 2006; Chunget al. 2003). Ta-
ble 1 classifies the space of topology-generation approaches



that our model-generation tool supports in terms of the key
properties of the approaches, together with their correspond-
ing parameters, recommended applications, and associated
model-generation computational costs. We classify the gen-
erator models into two main groups, as shown in column 1
of Table 1: explanatorymodels, which attempt to capture
the underlying generation process of the complex system in
the resulting model, ordescriptivemodels, which capture
the topology alone. For example, the Preferential Attach-
ment model is designed to capture the growth process of
complex systems, in which new network structure preferen-
tially forms around existing sub-structures (Boccalettiet al.
2006). In contrast, the descriptivedK-series Model (Ma-
hadevanet al. 2006) just captures higher-order degree cor-
relation distributions, independent of any complex system
growth process. Another dimension in model selection en-
compasses trade-offs between: (1) complexity of a model
and the number of metrics it tries to reproduce, and (2) its
explanatory power and associated generality. The process
of generating high-fidelity synthetic models differs based on
this basic classification. In the following, we summarize our
model selection process (using these two classes), and then
review the different generation approaches.

Model Selection using Explanatory Models

To select an explanatory model, we must analyse the do-
mainD to (1) select the most appropriate topology genera-
tion algorithmA from a setA of candidate algorithms, and
(2) provide parameters forA that are best suited to generat-
ing high-fidelity networks. We select an explanatory model
from a setA of possible generators (see Table 1) as follows:

1. analyze real-world networkG, together with key proper-
ties in domainD, to specify a topological metric setΦ
according to domain-specific requirements;

2. generate potential algorithm setA′ ⊆ A based on analyt-
ical results in step 1;

3. optimize parametersΠi of each algorithmAi ∈ A′ to
matchG in terms of specified topological metricsΦ, and
put theAi into the result setÂ if it can matchG with
appropriate values ofΠi;

4. if Â contains multiple algorithms, we compute additional
metricsΦ′, according to further requirements inD, and
continue to evaluate and select algorithms in terms ofΦ′.

When using an explanatory model, we first restrict the
possible algorithms based onModel Focus(cf. column 2
of Table 1), i.e., whether the domainD provides informa-
tion to to generate a model from topological parameters, or
using an optimization approach given the system’s global
objective function.

Topology-Based Generators:Given the wide range of
graph generators defined in the literature, e.g., (Boccaletti
et al. 2006; Chunget al. 2003), we have selected four of
the most important approaches, i.e., the small-world graph
(SWG), Preferential Attachment (PA), Spatial Preferential
Attachment (SPA) and Partial Duplication (PD) models.
Each approach has particular properties, which lend them-
selves to modeling particular domains with differing fidelity.

Optimization-Based Generators:Rather than explicitly
replicate of statistical properties, theOptimization approach
(OPT) use an optimization framework to model the mech-
anisms driving network growth. This approach gives rise
to power-laws in graph degree distributions (D’Souzaet al.
2007; Mathias & Gopal 2001). The OPT model formulates a
weighted objective function over conflicting system proper-
tiesξi and weightsλi, e.g.,f =

∑n
i=1 ξi · λi, and trades off

the properties using the weightsλi. For example, in circuit
design we may trade off wire-lengthWL and logic-depth
LD, wheref = λLD + (1 − λ)WL. We have used simu-
lated annealing to search for the cost minimum of the objec-
tive function (Kirkpatrick, Gelatt, & Vecchi 1983).

An explanatory model with parsimonious parameters can
capture the general principles or structures of real-world sys-
tems but is hard to match all topological metrics simultane-
ously and perfectly, so we need to identify and understand
the essential metrics that are responsible for certain behav-
iors of certain applications, and focus on specified metrics
according to domain-specific requirements in different ap-
plications. For instance, if we generate a model for evalu-
ating the complexity of discrete MBD algorithms, and we
need to firstly focus on domain-specific (join-tree metrics)
(Provan & Wang 2007), which are more important than reg-
ular metrics.

In steps 3 and 4, after a plausible model is selected, we
further optimize its topology by searching over appropriate
values of input parameters to minimize the difference in the
specified metrics betweenG andĜ. We automatically scan
appropriate values in a specific range (within a reasonable
interval); if the topological metrics are monotonic functions
of input parameters (such asα in the SPA model andpr in
the SWG model), we can speed up the search process using
strategies like the binary search.

Model Selection using Descriptive Models

The dK-series Modelgenerator (Mahadevanet al. 2006)
has as its primary input parameter an integerd, which al-
lows one to specify all degree correlations withind-size sub-
graphs of a given graphG1. 1K captures the degree dis-
tribution Pk and is equal to the generalized random graph
(GRG) (Boccalettiet al. 2006). 2K-graphs reproduce the
joint degree distribution, and3K-graphs consider intercon-
nectivity among triples of nodes.

Given a descriptivedK-series algorithm, we generate a
synthetic model̂G by increasing the input parameter (d) un-
til the generated grapĥG matches the properties of the real-
world graphG with sufficient fidelity. Increasing values of
d capture progressively more properties ofG, at the cost of
more complex representation of the probability distribution
and dramatically increasing computational complexity.

Although thedK-series model generally can capture reg-
ular topological metrics better than explanatory models due
to the number of constraints imposed, the model doesn’t pro-
vide insights into the driving force shaping the network, and

1Actually, a large number parameters are needed for every value
of d in real implementations, butd is the governing parameter.



Table 1: Topology Generation Approaches. Input parameters for generation algorithms are as follows:n—node number;m—edge number;
pr—rewiring probability;α—spatial factor;gs—seed network;pd—duplication probability;λi—trade-off weight;d—subgraph size

Model
Class

Model
Focus

Generation
Algorithm

Key
Properties Parameters Recommended

Applications
Computational
Cost

Explanatory
Topological
Properties

Small-world Graph
(SWG)

Exponential degree dis-
tribution

n, m, pr Technological systems Low

Preferential Attach-
ment (PA)

Power law degree distri-
bution

n, m WWW, social and cita-
tion networks

Low

Spatial Preferential
Attachment (SPA)

Power law degree distri-
bution with cutoff

n, m, α Spatial technological
systems

Medium

Partial Duplication
(PD)

Power law degree distri-
bution

n, m, gs, pd Biological systems Low

Functional
Optimization Multi-constraint

Optimization
(OPT)

Power law degree distri-
bution with cutoff

λi Technological and trans-
portation systems

High

Descriptive Topological
properties

dK-series All degree correlations in
d-sized subgraphs

d Technological and bio-
logical systems

High

it lacks predictive and rescaling power for explaining net-
work growth. Our experiments on diagnosis model gener-
ation also showed that thedK-series model is not flexible
enough for fitting more complicated joint-tree metrics.

Summary of Topological Metrics
We assume that we have a correct set of functional compo-
nentsB, meaning that it is the system topologyG which
is the source of model fidelity. In this case, we need
to identify metrics for topology comparison, i.e., meth-
ods to define some topological distance measureδ(G, Ĝ).
There are many metrics used to analyze and compare a
system’s topological structures (Boccalettiet al. 2006;
Mahadevanet al. 2006). The following list is not complete,
but we believe it is sufficiently diverse and representative to
be used as good examples of topological similarity.

Standard Metrics: Most research on topological analy-
sis of complex systems focuses on a subset of graph prop-
erties, in particular on the characteristic path lengthL̄, aver-
age clustering coefficient̄C and degree distributionPk (Boc-
caletti et al. 2006). TheL̄ measures the typical separation
between two nodes in the network is given by the average
shortest path length. The clustering coefficientC character-
izes the degree of cliquishness of a typical neighborhood (a
node’s immediately connected neighbors), and the mean co-
efficient C̄ is the average overC for all nodes inG. The
degree distributionPk specifies the probability of a node
having degreek.

Extended Topology Metrics:We focus on the following
extended metrics.

s-Metric: The s-Metric of graph G is defined ass(G) =∑
edge(vi,vj)

didj , where(vi, vj) is the edges in the graph,
and di and dj are the degrees of the nodevi and vj re-
spectively. Thes-Metric is closely related to betweenness,
degree correlation and graph assortativity(Mahadevanet al.
2006).

Subgraph Frequency Distribution:P (Fx(G)) defines that
probability of subgraph of typex occurring in graphG. The
distributionP (Fx(G)) enables us to analyze the frequencies

of all sub-graphs with specified sizes.
Join-tree Metrics: In many applications involving in-

ference over systemsΨ, e.g., probabilistic inference and
model-based diagnosis, the inference complexity has been
found to be dependent on parameters of the join-treeT of
the graphG of Ψ (Darwiche 1998).2 As a consequence, for
applications involving system inference, we use appropriate
join-tree metrics, such as the largest clique sizeµ(T )(Dar-
wiche 1998; Kanazawa 1992), which can be used to repre-
sent the inference complexity of the system.

Examples of High-Fidelity Model-Generation
To demonstrate the range of models for which this approach
is applicable, we describe model-generation for two radi-
cally different domains, E.coli TRN networks for simulating
gene expression, and MBD inference of discrete circuits.

TRN Inference Benchmark

The validation of algorithms used to infer the structure of
gene regulatory networks, based on expression data from
high throughput microarrays, requires benchmark data sets
for which the underlying network is known. Since experi-
mental data sets of the appropriate size and design are usu-
ally not available, there is a clear need to generate well-
characterized synthetic data sets that allow thorough test-
ing of learning algorithms in a fast and reproducible man-
ner (Mendes, Sha, & Ye 2003; Van den Bulckeet al. 2006).
So we need a network generator that creates synthetic TRNs
and produces simulated gene expression data that approxi-
mates experimental data. TRN model generation provides a
good example to demonstrate the applicability of our general
model generator to biological domains, and we use the well-
known TRN of E. coli collected by Shen-Orr et al. (Van den
Bulckeet al. 2006) as the targeted domain model.

2Roughly speaking, the join-treeT of a graphG is a topological
transformation ofG into a tree of cliques, where a clique is a fully-
connected subgraph (Darwiche 1998).



Explanatory Model Approach We generated the syn-
thetic TRN model based on the first three steps in the process
of model selection, as discussed in the previous section.

Step 1:we analyzed the E.coli TRN model and found that
it displays a clear power law degree distribution as shown in
Figure 2. Since the synthetic TRN models are used to gener-
ate gene expression data (on which the accuracy of reverse-
engineering algorithms is evaluated), we only need to mea-
sure the model fidelity in terms of regular topological met-
rics. For this task, we use the degree distributionPk, which
is the most fundamental and widely-used metric.Pk can be
simplified as an exponentβ when following a power law;
theβ of the E.coli TRN model is about2.5.

Step 2: according to key properties of the potential al-
gorithms listed in Table 1, both the PA and PD model can
generate the power law degree distribution, and thus are se-
lected as candidate algorithms.

Step 3: the parameters in thePA(n,m) andPD(n,m,
gs, pd) algorithms are optimized in terms ofβ; n andm are
assigned as the numbers of nodes and edges in the actual
TRN model respectively. We carefully sampled an appro-
priate subgraph of the TRN of E. coli using the method in
(Van den Bulckeet al. 2006) as the seed graphgs. Chunget
al. (2003) showed that in the PD model,β is a monotonically
decreasing function ofpd, so we can approximate the degree
distribution of the TRN of E. coli by adjustingpd. The PA
model’s value ofβ is fixed at about3, but the PD model can
generateβ in a wide range(1 ∼ 3), consistent with vari-
ous real biological networks(Chunget al. 2003). Figure 2
shows that the PD model (pd = 0.2) closely matches the
actual TRN, much better than can the PA model.
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Figure 2: The cumulative degree distribution of E. coli and the
corresponding graphs generated by the PD and PA model (averaged
over 100 runs).

dK-series Approach Table 2 shows that the graphs gen-
erated by thedK-series model perfectly match common
graph metrics of the E. coli TRN, includingPk whend =
3.The experimental results show that thedK-series is a good
model for TRN benchmark generation. However, compared
with the parsimonious PD model, thedK-series model is
more computationally expensive and less flexible, since it
requires as input parameters multiple degree correlations
within d-sized subgraphs of an existing TRN.

Table 2: The statistics on the average clustering coefficientC̄, char-
acteristic path length̄L, ands-Metric of E. coli and the graphs gen-
erated by the 3K-series model (averaged over 100 graphs).

Model L̄ C̄ s-Metric
E. coli 4.83371 0.11018 26621
3K 4.64722 0.11018 26621

Model-Based Diagnosis Benchmark
The Model-based diagnosis (MBD) problem determines
whether an assignment of failure status to a set of mode-
variables is consistent with a system description and an ob-
servation (e.g., of sensor values). For the target domain of
ISCAS85 benchmark circuits (Harlow 2000), we synthe-
sized topological models having the identical numbers of
nodes and edges, and tried to characterize average-case di-
agnosis inference complexity in real circuits.

Explanatory Model Approach We generated MBD mod-
els using the four steps shown below.

Step 1: we used as our primary metric the maximum
clique sizeµ(T ) in the compiled join-tree structure, which
is a typical complexity measure for this type of model (Dar-
wiche 1998), and is correlated to the tail length of degree
distributionPk (Provan & Wang 2007). As shown in Fig-
ure 3, the tail ofPk must be modeled well, since it defines
the high-degree nodes that contribute to large cliques in the
join-tree, and hence high complexities using join-tree met-
rics. We have empirically showed that most of the ISCAS85
circuits have power law degree distributions with sharp cut-
offs, which can be well characterized by the SPA and OPT
models in Table 1. The SWG model naturally has a sharp
cutoff in its exponential degree distribution, and can vary
the tail length of its degree distribution in a limited range.

Step 2: based on the above analysis, the SPA, OPT, and
SWG model can be selected as potential candidates.

Step 3: we automatically optimized parameters in each
model to match theµ(T ) of real circuits. Experiments
showed that all selected models can match real circuits
with appropriate parameters. For example, the typical cir-
cuit C432 can be matched by the SWG model withpr '
0.28 (Provan & Wang 2007), the SPA model withα '
3.7 (as shown in Figure 3). We, along with Barthelemy
(2003) have found that, under appropriate parameters, the
SPA model can generate structures similar to that of the
OPT model. However, the computational cost of model-
generation using the OPT model is significantly higher than
that of using the SPA model, so we use the SPA model as an
efficient alternative of the OPT model.

Step 4: since both the SPA and SWG model fit the real
circuits well in terms ofµ(T ), we can further refine the
model selection by other topological metrics, such as degree
distributionPk. Based onPk, the SPA model’s power-law
distribution can match real circuits better than can the SWG
model’s exponential distribution.

dK-series Approach Whend = 3, thedK-series model
can match almost all common circuit topological metrics
perfectly, as also occurs in the case of the TRN and Internet
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Table 3: The inference complexity of C432 and correspondingdK-
series Models (d = 1, 2, 3). All values of three models are aver-
aged over 100 graphs respectively.

Model C432 1K 2K 3K
max clique size 1.4e14 8.9e17 3.3e16 1.8e16

modeling (Mahadevanet al. 2006). Table 3 shows, however,
thatd = 3 provides insufficient fidelity to matchµ(T ) met-
rics for MBD benchmark generation; it also shows that in-
creasingd can generate random graphs with increasing lev-
els of fidelity of inference complexity. Ford > 3 the com-
putational complexity increases dramatically, and the size of
the generated random-graph ensemble decreases exponen-
tially as well. In this case, thedK-series model is unsuitable
for diagnosis benchmark generation, compared with the SPA
and the SWG model.

Conclusions
We have described a model-generation tool that can be used
for compositional systems in which we use a component
library B, together with a system topologyG, to generate
benchmark models for a wide range of systems. We assumed
a libraryB, and focused on the problem of topology gener-
ation. We described a domain-analysis algorithm that com-
putes model properties for selecting the topological model
generator best suited to creating high-fidelity networks.

We applied model-generation to two radically different
domains, E.coli TRN networks for simulating gene expres-
sion, and MBD inference of discrete circuits, to demonstrate
the range of models for which this approach is applicable.
For each domain we showed how the topological properties,
together with the functional requirements (e.g., simulation,
diagnostic inference), enabled us to tune the generated net-
work topology to the application.

Much work remains to be done in automated model gener-
ation. First, more component libraries need to be created to
take advantage of this approach. Second, the domain analy-
sis approach could be further improved through adoption of
machine learning techniques. Third, further improvements

in topology-generators are necessary to increase the fidelity
of the synthetic models.
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