
Search Ordering Heuristics for Restarts-based Constraint Solving

Margarita Razgon and Barry O’Sullivan and Gregory M. Provan
Department of Computer Science, University College Cork, Ireland

{m.razgon|b.osullivan|g.provan}@cs.ucc.ie

Abstract

Constraint Satisfaction Problems are ubiquitous in Artificial
Intelligence. Over the past decade significant advances have
been made in terms of the size of problem instance that can
be solved due to insights gained from the study of runtime
distributions of systematic backtrack search algorithms. A
particularly impressive advance has been the use of random-
ization and restarts, which are now a standard component of
state-of-the-art solvers. In this paper we propose a new class
of variable and value ordering heuristics that learn from no-
goods without storing them. The empirical analysis provides
clear evidence that the proposed ordering heuristics dramat-
ically improve the performance of restarts-based constraint
solving. We can regard our heuristics as exploiting positive
experience to improve search.

Introduction
There are essentially two approaches to solving Constraint
Satisfaction Problems: backtrack search and stochastic local
search. The advantage of the former is that it is complete,
while the latter, while incomplete, can scale to very large
problem instances. Restarts-based algorithms combine the
advantages of both these approaches. The idea of restarts is
based on the recently discovered phenomenon that the run-
time distributions for many classes of soluble problems are
heavy-tailed distributions (Gomes et al. 2000).

Inspired by heavy-tailed distributions, randomization and
rapid random restarts have proven to be extremely useful
for solving very large problem instances. When we use a
rapid random restarts approach to solving, we essentially try
to find one of the very short runs that contribute to the low
median runtime that characterize heavy-tailed runtime dis-
tributions. By setting a restart cutoff, we define an upper
bound on the number of backtracks in any run. If this cut-
off is exceeded, we simply abandon the current search and
restart. By ensuring there is a degree of randomness in our
search heuristics, we can be confident that we will search
for a solution in quite a different way, hopefully solving the
problem quickly by finding one of those short runs.

Rapid random restarts have been shown to exploit the fact
that many real world problem instances have small back-
door sets of variables (Williams, Gomes, & Selman 2003).

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

If one assigns the variables in a backdoor set correctly,
we can solve the remainder of the instance in polynomial
time. If the backdoor set of variables is small enough, and
we set an appropriate restart cutoff, we can provably solve
the problem in time exponential in the backdoor size. For
backdoors that are of logarithmic size, this implies we can
solve problems in polynomial time given a backdoor set of
variables. The restarts approach has been successfully ap-
plied to a number of search problems (Gomes et al. 2000;
Moskewicz et al. 2001; Gomes et al. 1998), with problems
involving millions of variables being within the reach of sys-
tematic solvers.

When we solve a problem instance using a restarts-based
approach, we have an opportunity to learn from each run
that must be abandoned before we restart. For example, any
failures we encountered in previous runs will also constitute
failures in any subsequent run. In this paper we present a
novel approach to learning from such failures.

In this paper we present novel variable and value order-
ing heuristics based on learning in a restarts context. The
learning component of the heuristics maintains a counter for
each assignment of a value v to a variable, which reflects the
number of times v appears in a partial solution. The coun-
ters are updated each time we backtrack during search: the
counters associated with the assignments of the discarded
partial solution are increased by one. Our proposed variable
ordering heuristic selects the variable with the smallest sum
of counters of values in its current domain. The intuition be-
hind this heuristic is that it increases the level of exploration
performed by search when restarting. The value ordering
heuristic is based on the assumption that a value appearing
frequently in many partial solutions is more likely to ap-
pear in a full solution. Therefore, the heuristic selects, for
the chosen variable, a value with the largest valued counter.
This is similar, but not equivalent, to the traditional minimize
inconsistency value ordering used in backtrack search (Frost
& Dechter 1995).

To evaluate the proposed heuristics, we performed experi-
ments on a variety of problem classes. The experiments pro-
vide clear evidence that our heuristics significantly improve
the performance of restarts, when compared to a standard
baseline algorithm.

The remainder of the paper is organized as follows. We
first present some essential background and terminology re-

quired for this paper. We then describe our new variable
and value ordering heuristics. We report on experiments
performed on Quasigroup Completion Problems, Langford’s
Number Problem and Random Graph k-Colouring Problem,
showing very positive results. A summary of the most rel-
evant related work is then presented. Finally, we draw our
conclusions and present a number of potential extensions to
our work.

Background
A Constraint Satisfaction Problem (CSP) (Dechter 2003)
is a 3-tuple Z =̂ 〈X ,D, C〉 where X is a finite set of
variables X =̂ {x1, . . . , xn}, D is a set of finite domains
D =̂ {D(x1), . . . , D(xn)} where the domain D(xi) is the
finite set of values that variable xi can take, and a set of
constraints C =̂ {c1, . . . , cm}. Each constraint ci is de-
fined by the ordered set var(ci) of the variables it involves,
and a set sol(ci) of allowed combinations of values. An
assignment of Z is a pair (xi, vi) such that xi ∈ X and
vi ∈ Dxi . A set of assignments to the variables in var(ci)
satisfies ci if it belongs to sol(ci). A set of assignments
is a partial solution of Z if it satisfies any constraint in
C. A partial solution that assigns all the variables of Z is
a solution of Z. A CSP that has no solution is insoluble.
Generally, not every partial solution can be extended to a
full solution. If a partial solution is not a subset of any
solution, it is called a nogood (Schiex & Verfaillie 1994;
Dechter 1990).

In this paper we use Forward Checking (FC) (Haralick
& Elliott 1980) as the underlying constraint solver. FC is
a backtrack search-based solver that ensures that whenever
a variable xi is assigned, the values incompatible with the
current partial solution are discarded from the domains of
all the unassigned variables constrained by xi. The values
of xi that are not discarded are called feasible and the set of
all feasible values of xi is called the current domain of xi.
If, as a result of this domain filtering the current domain of
a variable becomes empty, backtracking is initiated immedi-
ately.

Heuristics for Restarts-based Solving
As discussed in the introduction, we can use the notion of
restarts to solve a problem instance using fixed-length short
runs of a randomized backtrack (here FC) procedure. If the
number of backtracks in the current run of FC is greater than
the given cutoff but the given CSP is not solved so far, the
current run stops and the new run starts. The procedure fin-
ishes when FC solves the given CSP using a number of back-
tracks that is less than the given cutoff. If the given CSP is
not solved during a maximum number of runs, we report
failure.

The heavy-tailed phenomenon, demonstrated in (Gomes
et al. 2000), suggests that restarts use computational re-
sources more effectively than a single long run. In other
words, restarts can help us find a full solution using fewer
backtracks than required by a single long run. The simple
intuition behind this claim is that the probability of using
a sequence of assignments that lead to a big search tree is

reduced by restarting with a different sequence of assign-
ments, while the probability of finding a sequence of assign-
ments that lead to a small search tree is increased if such
sequence exists (Shlyakhter 2003). During restarts we can
accumulate information about the set of nogoods of the CSP
that can be useful to inform the choice of variable to branch
on next and the value to assign to that variable.

In constraint satisfaction there are two guiding principles
that characterize good variable and value ordering heuris-
tics in systematic search. Firstly, when choosing a variable,
we should follow the fail-first principle: choose the variable
that is most like to cause us to fail (Haralick & Elliott 1980;
Geelen 1992). This justification here is that if we make a
mistake and move away from the path to a solution, we
would like to discover this as soon as possible. Secondly,
when choosing a value for the current variable we would
like to choose one that is most promising, i.e. most likely to
lead to a solution (Geelen 1992; Frost & Dechter 1995).

The traditional requirement when using a restarts-based
search is to ensure that the choice of variable and value is
randomized. At the very least we should have a variable
ordering strategy that allows randomization. There are a va-
riety of ways in which we can ensure that we randomize
our heuristics. Firstly, we can simply choose a random vari-
able or value, but we can also simply randomize a heuristic
by regarding a proportion of the most highly ranked choices
as being of equal quality, and selecting randomly amongst
them. Our heuristics try to boost such randomization by
ranking variables more highly if they have been selected less
frequently in the past. In this way we ensure that the choice
of variable maximizes exploration of the search tree in an
attempt to find a short run to a solution. Randomization can
be used to select from amongst those variables that are re-
garded as being in the same equivalence class in terms of
quality.

The basis for our search heuristics is the cumulative num-
ber of times a variable was assigned in any run of the solver
on the current problem instance. To ensure we can extract
a value ordering, we associate counters with each domain
value of each variable. Specifically, we record the number
of times each value for each variable was assigned in a no-
good of the problem. Since the number of nogoods is ex-
ponential in their length, values that occur frequently can
be regarded as being highly consistent, i.e. they are consis-
tent with many values in the domains of their neighbouring
variables in the constraint graph. Therefore, high counters
associated with a domain value are positive information. By
selecting variables whose domain values have participated in
few nogoods, we are picking a variable that ensures that the
constraint solver explores the search space as much as pos-
sible. We discuss our variable and value ordering heuristics
in greater detail below, beginning with the value ordering.

The Value Ordering Heuristic
Our choice of value is based on the assumption that an as-
signment that occurs in many partial solutions is likely to
appear in a full solution. Based on this assumption, we pro-
pose a value ordering heuristic that assigns the given vari-
able with a value that occurred most frequently in nogoods.

To implement the heuristic, we record for each variable
xi, for each value vi ∈ D(xi), the number of times the
assignment (xi, vi) appeared in a nogood. Rather than re-
member the nogoods we have encountered, which might
exponentially increase the space and time complexity, the
algorithm maintains an array of counters A with cells cor-
responding to all possible assignments; therefore, A stores
O(nd) integers, where n is the number of variables and d
is the maximum domain size. Initially, all the elements of
A are initialized to zero. Whenever the search algorithm is
about to backtrack, for each assignment (xi, vi) in the cur-
rent partial solution, A[(xi, vi)] is incremented by 1.

The heuristic can be invoked simply. Given a variable
xi, this variable is assigned a feasible value vi ∈ D(xi)
given by A[(xi, vi)] ≥ A[(xi, v

′
i)], i.e., we assign the vi that

appeared most often in a nogood. If the variable xi has never
participated in a nogood, it is randomly assigned a feasible
value vi ∈ D(xi).

The Variable Ordering Heuristic
We also propose to use the information provided by nogoods
to guide variable ordering. In particular, we select a vari-
able that appears least frequently in nogoods. The intuition
behind this variable ordering heuristic is that we boost the
exploration of the search space that benefits restarts-based
solving.

We implement the variable ordering heuristic using the
array A described in the previous section. The proposed
heuristic selects an unassigned variable with the smallest
sum of any counter of feasible values.

To ensure that a different search tree is followed after
each restart, some randomness is introduced into this vari-
able ordering heuristic, as suggested in (Gomes, Selman, &
Kautz 1998). In particular, the variables are sorted by in-
creasing order of the sum of counters of their feasible values.
The heuristic returns a variable randomly chosen among the
first H% of variables of the resulting sequence (we chose
H = 25%).

Experiments
We present experiments to demonstrate the utility of the or-
dering heuristics we proposed in the previous section. We
employ a constraint solver based on FC. We compare four
different settings:

(1) R-WL. The baseline solver uses restarts without any
learning. In this setting variables and values are selected
randomly.

(2) R-VAR. We combine restarts with our variable ordering
heuristic based on learning from nogoods. In this setting
values are selected randomly.

(3) R-VAL. We combine restarts with our value ordering
heuristic based on learning of nogoods. In this setting
variables are selected randomly.

(4) R-VAR-VAL. We combine restarts with both our vari-
able and value ordering heuristics based on learning of
nogoods.

The problem domains studied, taken from CSPLIB1, were
Quasigroup Completion Problems, Langford’s Number
Problem and Random Graph k-Colouring Problem. In all
cases the obvious binary CSP formulation was used. We
measure search in terms of the number of backtracks; due to
the low overhead incurred by the ordering heuristics, CPU-
time was closely correlated, so we do not present it. For
every tuple of parameters of a tested instance, we report re-
sults as the average of 50 instances. We set a limit of to 100
restarts for solving any instance. The proposed algorithms
were implemented using Microsoft Visual C++ 6.0, and the
experiments were performed under Microsoft Windows XP
2002 on a 3GHz Pentium processor using 1GB RAM.

Quasigroup Completion Problem
An order m quasigroup (Barták 2005; Gomes et al. 2000)
is a Latin square of size m, that is a m by m table in which
each element occurs exactly once in each row and column.
An incomplete or partial Latin square is a partially filled
Latin square. The Quasigroup Completion Problem (QCP)
is the problem of determining whether the remaining entries
of the incomplete Latin square can be filled in such a way
that we obtain a complete Latin square.

The results of comparing the four methods for Quasigroup
Completion Problem are given in Figure 1. We considered
the 7 × 7 incomplete Latin square (a maximum of 49 vari-
ables), varying the number of pre-assigned (fixed) cells from
8 to 34. These problems were chosen so that FC could solve
them in a reasonable amount of time. The pre-assigned cells
that were selected randomly are presented along the horizon-
tal axis. The chosen cutoff for restarts was 5000 backtracks.
The actual numbers of backtracks required to solve the in-
stances are presented on the vertical axis.

It is clear that the R-VAL (3) method outperforms the
baseline R-WL (1) method in the majority of cases. We
achieve up to 3 times reduction in the number of backtracks
by using a value ordering heuristic in restarts R-VAL (3)
compared with R-WL (1).

The method R-VAR (2) outperforms both R-WL (1) and
R-VAL (3) methods for every class of QCP we considered.
Using a variable ordering heuristic with restarts R-VAR (2)
considerably reduces the number of backtracks by almost
a factor of 10 in some cases over the baseline R-WL (1)
method.

Combining both our variable and value ordering heuris-
tics with restarts (R-VAR-VAL (4) method) outperforms all
other settings methods. In particular, we achieve up to 20
times reduction in search effort compared with the baseline
R-WL (1) method.

One can observe from the empirical results that the sim-
ple form of learning that underlies our ordering heuristics
can significantly improve the performance of restarts. The
improvement can be achieved by exploring the most “suc-
cessful” assignments or by assigning the most “disregarded”
variables. These two approaches are complementary to each
other: being combined, they work better than each one sep-
arately. Furthermore, we have observed that R-VAR-VAL

1http://www.csplib.org.

Figure 1: Experiments for Quasigroup Completion Problem.

(4) method outperforms other heuristics on single runs, not
only on average. This phenomenon evidences robustness
or predictability in performance over the problems instances
studied, which is a particularly attractive characteristic.

Langford’s Number Problem
The task of Langford’s Number Problem is to arrange two
given sets of integers from 1 to n into single 2n-length se-
quence, so that each appearance of the number m is m num-
bers apart from the last, for example, the two 1’s appear one
number apart, the two 2’s appear two number apart, and so
on. The problem is soluble when a set length n divided by 4
gives remainder 0 or 3.

The constraints for Langford’s Number Problem are orga-
nized as follows. For each number m we save the pairs of
places, where the number m could appear in 2n-length se-
quence, for example the pairs of number 1 are (1, 3), (2, 4),
and so on. The pair of number i is incompatible with the pair
of number j, if these pairs contains the same place, because
it is impossible for different numbers to appear on the same
place.

The results of comparison of baseline R-WL (1) and R-
VAR-VAL (4) methods for Langford’s Number Problem are
given in Figure 2 (we have chosen two the least and the most
efficient methods for experiments).

The parameter of the problem is length n of two given
sets of integers presented along the horizontal axis. We
tested Langford’s Number Problem on soluble instances.
The restart cutoff was set at 500, and the actual numbers

Figure 2: Experiments for Langford’s Number Problem.

of backtracks are presented along the vertical axis.
Again, it is clear that the R-VAR-VAL (4) method out-

performs the baseline method R-WL (1) over all sets. The
savings in search effort are smaller in this case than for QCP,
but the improvements are nonetheless clear (we achieve up
to 4 times reduction in search effort compared with R-WL
(1)).

Random Graph k-Colouring Problem
The task of Graph k-Colouring Problem is to colour each
vertex of a given graph G = (V,E) in one of k colours such
that adjacent vertices receive different colours. We gener-
ated random Graph k-Colouring Problem by specifying the
fixed numbers of vertices and colours, and varying the den-
sity (the probability for an edge between two given vertices).
The resulting CSP has a set of variables corresponding to the
set of vertices, the domain of every variable corresponds to
the set of colours. The pairs of variables that correspond to
the pairs of adjacent vertices are constrained by the inequal-
ity constraint.

The results of comparison of baseline R-WL (1) and
R-VAR-VAL (4) methods for Random Graph k-Colouring
Problem are shown in Figure 3.

The parameter of the problem is graph density, presented
along the horizontal axis. The restart cutoff chosen here
was 5000 backtracks, with the total number of backtracks
required to solve the problem displayed on the vertical axis
of the plot.

It should be noted that for a considerable range of den-
sities, these problems are much too hard for either method.
However, the R-VAR-VAL (4) method outperforms the R-
WL method (1) for the majority of the non-phase-transition

Figure 3: Experiments for Graph k-Colouring Problem.

range. In these regions we get up to a 6 times speed-up in
search effort. Moreover, the range of phase-transition of R-
VAL-VAR method is more narrow than the range of phase-
transition of R-WL method, that is, there are points where
R-VAL-VAR succeeds to find solution which R-WL fails,
specifically when the graph density are 35% and 85%.

Summary of the Results
To summarize, we performed experiments on three dif-
ferent problems domains: Quasigroup Completion Prob-
lems, Langford’s Number Problem and Random Graph k-
Colouring Problem. In each case combining our variable
and value ordering heuristics together (R-VAR-VAL (4)
method) we obtained a heuristic that significantly improved
the performance of restarts over a a baseline approach that
chose variables and values at random (R-WL (1) method).
In addition to improved performance, we obtained robust-
ness in performance across a range of settings in each prob-
lem domain.

Related Work
The work presented in this paper contrasts with much of
the work done on search heuristics for backtrack-based con-
straint solvers (Smith & Grant 1998; Geelen 1992; Haral-
ick & Elliott 1980). These works are more concerned with
characterizing what makes a good variable or value order-
ing decision. The predominant principle at play for variable
selection is the notion of “fail-firstness”, which states that
“in order to succeed, try where you are most likely to fail.”
While recent work has cast doubt on whether such a strategy
is what characterizes good search heuristics (Smith & Grant

1998), most of the heuristics currently used are, to some ex-
tent, based on this principle. In the present work we prefer to
select variables whose current set of values have been tried
least in the past. The benefit being that restarts-based con-
straint satisfaction benefits from randomization, or simply
an exploration of the search space. Our variable ordering
heuristic is complementary to this feature of restarts.

Our approach also contrasts with the standard approaches
to handling nogoods learned during search (Schiex & Ver-
faillie 1994; Dechter 1990; Katsirelos & Bacchus 2003).
The more traditional approaches to exploiting nogoods at-
tempt to remember them in order to help the solver avoid
repeating the same mistakes in the future, while others can
modify their search ordering heuristics based on that learn-
ing (Moskewicz et al. 2001). Unlike these methods, the
algorithm proposed in this paper learns the number of no-
goods containing a particular value rather than the nogoods
themselves. This strategy is preferable from the point of
view of space complexity. According to our experiments,
the proposed learning strategy also achieves significant im-
provements in performance over pure random restarts.

Our work also contrasts with that in (Freuder & Wallace
1995). In that work the authors generalise the context in
which a nogood was found in order to leverage the experi-
ence to similar contexts. These contexts are identified by
generalising nogoods using inconsistency preserving map-
pings. In our approach we simply use the experience of en-
countering nogoods to update weights on the assignments in
the nogood.

A number of approaches that learn weights based on
failed states in search have been reported. One of the most
successful of these relates the weighted-degree family of
search heuristics (Boussemart et al. 2004). In that work,
a weight is associated with each constraint. As constraints
are propagated, if the domain of a variable is wiped out,
the weight of the constraint that was being filtered when the
wipe-out occurred is incremented. When a variable must be
selected during the search process, the weights on the con-
straints on that variable are used to compute its weighted-
degree. This value can be substituted into all the standard
variable ordering heuristics that are based on the degree of
a variable. Our approach is quite different. We maintain
weights for each value in each domain, and use this infor-
mation to guide search in an explorative manner rather than
in a fail-first manner.

Recent work has been reported that combines aspects of
weight learning with restarts to improve systematic search.
In (Refalo 2004) a probing technique is used to measure the
impact of assignments on the domains of the remaining vari-
ables. This information is then used in a traditional system-
atic search setting. In (Grimes & Wallace 2006) a two-phase
approach to exploiting learning in search is presented. In
the first phase weights on constraints are learned in a short
run, and then used in a second phase where the problem is
solved without restarts. The weights that are exploited are
essentially the same as those advocated in (Boussemart et al.
2004), but used in a restarts scenario. However, the weights
that are learned seem to be difficult to use to improve search.
Our approach is quite different in that we do not learn con-

straint weights, and use value-based weights to encourage
exploration rather than avoid failure.

Sellmann and Ansotegui (2006) present a novel combina-
tion of local search for learning value selection in a restarts-
based context. The learning scheme used in that work is dif-
ferent from ours, being quite coarse-grained in that they rep-
resent value orderings as partial solutions and update these
only when failure is encountered. Our approach is much
more dynamic, and can also drive variable selection.

Conclusions and Future Work
In this paper we applied to CSPs an algorithm combin-
ing restarts and ordering heuristics based on learning. Our
experiments supported the claim that the performance of
restarts can be improved by using these heuristics.

The proposed idea of learning is quite general, and can
be applied to other search problems, for example to vari-
ous sequencing problems like Hamiltonian Cycle, Traveling
Salesman, and scheduling problems.

The work presented in this paper is the first step in a re-
search agenda that will study the design of value weighting
schemes upon which search heuristics can be easily learned
and easily exploited. The key is to support online learning,
i.e., we do not assume a pre-processing training phase.

We plan to extend this work by looking at different ways
of updating the counters on the values that participate in a
nogood. At the moment, all assignments are treated equally,
by incrementing their weights by one. However, it seems
reasonable to believe that the weights should also depend on
the order in which the assignments were made.

Another interesting direction for future work is to ex-
tend the approach proposed here by deriving heuristics for
weighted constraint problems. Weighted problems are very
common in real world applications and deserve attention.

References
Barták, R. 2005. On generators of random quasigroup
problems. In Hnich, B.; Carlsson, M.; Fages, F.; and Rossi,
F., eds., CSCLP, volume 3978 of Lecture Notes in Com-
puter Science, 164–178. Springer.
Boussemart, F.; Hemery, F.; Lecoutre, C.; and Sais, L.
2004. Boosting systematic search by weighting constraints.
In de Mántaras, R. L., and Saitta, L., eds., ECAI, 146–150.
IOS Press.
Dechter, R. 1990. Enhancement schemes for constraint
processing: Backjumping, learning, and cutset decomposi-
tion. Artif. Intell. 41(3):273–312.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann Publishers.
Freuder, E. C., and Wallace, R. J. 1995. Generalizing in-
consistency learning for constraint satisfaction. In IJCAI,
563–571.
Frost, D., and Dechter, R. 1995. Look-ahead value or-
dering for constraint satisfaction problems. In IJCAI (1),
572–578.
Geelen, P. A. 1992. Dual viewpoint heuristics for binary
constraint satisfaction problems. In ECAI, 31–35.

Gomes, C. P.; Selman, B.; McAloon, K.; and Tretkoff,
C. 1998. Randomization in backtrack search: Exploiting
heavy-tailed profiles for solving hard scheduling problems.
In AIPS, 208–213.
Gomes, C. P.; Selman, B.; Crato, N.; and Kautz,
H. A. 2000. Heavy-tailed phenomena in satisfiability
and constraint satisfaction problems. J. Autom. Reasoning
24(1/2):67–100.
Gomes, C. P.; Selman, B.; and Kautz, H. A. 1998.
Boosting combinatorial search through randomization. In
AAAI/IAAI, 431–437.
Grimes, D., and Wallace, R. 2006. Learning from failure in
constraint satisfaction search. In Proceedings of the AAAI
Workshop on Learning for Search.
Haralick, R. M., and Elliott, G. L. 1980. Increasing tree
search efficiency for constraint satisfaction problems. Artif.
Intell. 14(3):263–313.
Katsirelos, G., and Bacchus, F. 2003. Unrestricted nogood
recording in CSP search. In Rossi, F., ed., CP, volume 2833
of Lecture Notes in Computer Science, 873–877. Springer.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an efficient sat
solver. In DAC, 530–535. ACM.
Refalo, P. 2004. Impact-based search strategies for con-
straint programming. In Wallace, M., ed., CP, volume 3258
of Lecture Notes in Computer Science, 557–571. Springer.
Schiex, T., and Verfaillie, G. 1994. Nogood Recording for
Static and Dynamic Constraint Satisfaction Problem. Inter-
national Journal of Artificial Intelligence Tools 3(2):187–
207.
Sellmann, M., and Ansótegui, C. 2006. Disco - Novo -
GoGo: Integrating local search and complete search with
restarts. In AAAI. AAAI Press.
Shlyakhter, I. 2003. Main techniques for solving real-
world SAT instances. Unpublished Mansucript.
Smith, B. M., and Grant, S. A. 1998. Trying harder to fail
first. In ECAI, 249–253.
Williams, R.; Gomes, C. P.; and Selman, B. 2003. Back-
doors to typical case complexity. In Gottlob, G., and Walsh,
T., eds., IJCAI, 1173–1178. Morgan Kaufmann.

