
A Greedy Stochastic Search Algorithm for Model-Based Diagnosis

Alexander Feldman1 and Gregory Provan2 and Arjan van Gemund1

1Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Mekelweg 4, 2628 CD, Delft, The Netherlands
Tel.: +31 15 2781935, Fax: +31 15 2786632, e-mail: {a.b.feldman,a.j.c.vangemund}@tudelft.nl

2University College Cork, Department of Computer Science, College Road, Cork, Ireland
Tel: +353 21 4901816, Fax: +353 21 4274390, e-mail: g.provan@cs.ucc.ie

Abstract

To date, all algorithms for computing diagnoses within a
model-based diagnosis framework have been deterministic.
However, in SAT significant speedups have been achieved
through a variety of randomized algorithms, such as random-
ized local search and random restarts. We design an algorithm
inspired by randomized satisfiability algorithms to comput-
ing diagnoses within a model-based diagnosis framework.
We have applied this algorithm to the 74XXX and ISCAS-
85 suites of benchmark combinatorial circuits, demonstrating
order-of-magnitude speedup over a well-known deterministic
algorithm, CDA∗, for multiple-fault diagnoses.

Introduction
While model-based diagnosis provides a sound and com-
plete approach to enumerating multiple-fault diagnoses, the
biggest challenge (and impediment to industrial deploy-
ment) is the computational complexity of the problem.
The Model-Based Diagnosis (MBD) problem of isolating
multiple-fault diagnoses is known to be NP-complete (By-
lander et al. 1991; Friedrich, Gottlob, & Nejdl 1990); fur-
ther, the task of finding a kernel diagnosis of minimal cardi-
nality is ΠP

2 -complete (Eiter & Gottlob 1995). While heuris-
tic methods have been successful in improving the diagnos-
tic search performance, the complexity problem remains a
major challenge to MBD.

To overcome this complexity problem, we focus on a
novel approach, stochastic algorithms for multiple-fault di-
agnosis. Local search methods have been successful in solv-
ing an important class of satisfiability (SAT) problems and
the MBD algorithm we propose in this paper uses a simi-
lar approach. The MBD problem, however, is different than
SAT in that it is an optimization problem, i.e., one typically
wants to find a minimal diagnosis, using some minimal-
ity criterion such as minimal-cardinality diagnosis. Hence,
there is no one-to-one mapping from diagnosis to SAT.

This paper introduces a randomized restarts algorithm for
computing diagnoses within a model-based diagnosis frame-
work, which was inspired by randomized satisfiability al-
gorithms. We have shown the theoretical justification for a
randomized restarts algorithm, i.e., that weak fault models
have a heavy-tailed distribution, and hence are amenable to
this class of algorithm. We have applied this algorithm to
a suite of benchmark combinatorial circuits, demonstrating

order-of-magnitude speedup over a well-known determinis-
tic algorithm, CDA∗, for multiple-fault diagnoses. More-
over, whereas the search complexity for the deterministic
algorithms tested increases exponentially with fault cardi-
nality, the search complexity for this stochastic algorithm
appears to be independent of fault cardinality.

The rest of this paper is organized as follows. In the next
section we discuss related work. A section formalizing some
theoretical notions in MBD follows. The fourth section dis-
cusses the probability distribution of diagnoses which is an
important motivation for the algorithm shown in the fifth
section. A section with experimental results follow before
the conclusions and future work.

Related Work
This section reviews related work in SAT and MBD.

SAT Algorithms
The past several years has seen dramatic improvements
in algorithms for solving the SAT problem. Most mod-
ern SAT solvers are based on one of two approaches:
(a) the Davis-Putnam-Logemann-Loveland (DPLL) algo-
rithm (Prasad, Biere, & Gupta 2005), which is based on
a branching search with backtracking; or (b) stochastic lo-
cal search (Hoos & Tsang 2006). The advantage of DPLL
methods is that they are sound and complete; however,
DPLL-based tree-search algorithms are intractable in the
worst case, and, although they perform well on problem in-
stances that are critically-constrained and over-constrained,
they perform worst than local search algorithms on under-
constrained problems. Stochastic local search algorithms,
while incomplete, can scale to very large problem instances;
however, they work best on random SAT instances, and
in practice work less well on structured instances obtained
from real problems, e.g., verification or planning problems.

Restarts-based algorithms (Gomes, Selman, & Kautz
1998) combine the advantages of both these approaches.
The idea of restarts is based on the recently discovered phe-
nomenon that the runtime distributions for many classes of
soluble problems are heavy-tailed distributions (Gomes, Sel-
man, & Crato 1997; Gomes et al. 2000).

Inspired by heavy-tailed distributions, randomization and
rapid random restarts have proven to be extremely use-
ful for solving very large problem instances (Sellmann &

Ansótegui 2006). The rapid random restarts approach to
solving aims to find one of the short runs that contribute to
the low median runtime that characterize heavy-tailed run-
time distributions. By setting a restart cutoff, we define an
upper bound on the number of backtracks in any run. If this
cutoff is exceeded, we simply abandon the current search
and restart from a random instantiation. By ensuring there is
a degree of randomness in our search heuristics, we can be
confident that we will search for a solution in quite a differ-
ent way, hopefully solving the problem quickly by finding
one of those short runs.

Model-Based Diagnosis Algorithms

We can classify MBD algorithms into two main groups: (a)
algorithms that find solutions one at a time, e.g. (Venkata-
subramanian, Rengaswamy, & Kavuri 2003); and (b) algo-
rithms that find all solutions simultaneously, e.g., ATMS (de
Kleer 1986) and causal-network (Darwiche 1998; Marquis
2000) algorithms.

While most advanced MBD algorithms make use of pref-
erences, e.g., fault-mode probabilities, to improve search ef-
ficiency, the algorithms themselves are deterministic, and
use the preferences to identify the most-preferred solutions.
This contrasts with stochastic SAT algorithms, which rather
than backtracking may randomly flip variable assignments
to determine a satisfying assignment.

Vatan et al. (2003) have mapped the diagnosis problem
into the monotone SAT problem, and then propose to use
efficient SAT algorithms for computing diagnoses. This ap-
proach has shown speedups in comparison with other diag-
nosis algorithms; the main drawback is the number of extra
variables and clauses that must be added in the SAT encod-
ing, which is even more significant for strong fault models
and multi-valued variables. In contrast, our approach works
directly on the given diagnosis model and requires no con-
version to another representation.

The MBD problem is different than SAT in that it is an
optimization problem, i.e., one typically wants to find a
minimal diagnosis, using some minimality criterion such as
minimal-cardinality diagnosis. Hence one cannot map the
diagnosis problem directly to SAT. We can show an encod-
ing whereby one can use cardinality constraints (Bailleux &
Boufkhad 2003) to encode a notion of minimal diagnosis.

Stochastic algorithms have been discussed in the frame-
work of constraint satisfaction (Freuder et al. 1995) and
Bayesian network inference (Kask & Dechter). The latter
two approaches can be used for solving suitably translated
MBD problems. It is often the case, though, that these new
encodings are more difficult for search than more special-
ized ones.

Inspired by the success of stochastic SAT and stochastic
constraint solving we show that, under certain conditions,
the diagnosis inference complexity distribution is heavy-
tailed and may benefit from random restarts. As finding a
minimal-cardinality diagnosis is an optimization problem,
we apply a greedy approach, the latter allowing us to find
local optima very close to the global optimum. Combining
the stochastic approach and greedy search specific to a wide

class of MBD problems allows us to construct the algorithm
which we present in this paper.

Technical Background
The discussion starts by formalizing some basic notions in
MBD (de Kleer, Mackworth, & Reiter 1992). A qualitative
model of an artifact is represented as a propositional Wff
over some set of variables V . Discerning a subset of them
as assumable or observable gives us a diagnostic system.

Definition 1 (Diagnostic System). A diagnostic system DS
is defined as the triple DS = 〈SD, COMPS, OBS〉, where
SD is a propositional theory describing the behavior of the
system, COMPS is a set of assumable variables in SD, and
OBS is a set of “measurable” variables in SD.

Let α be any (possibly partial) instantiation of the variables
in OBS. The traditional diagnostic query in MBD results in
finding terms of assumable variables which are explanations
for SD ∧ α. These implicants of SD ∧ α do not necessar-
ily instantiate all the assumable variables in SD, i.e., “don’t
cares” are allowed.

Definition 2 (Partial Diagnosis). A term ω over a set of
assumable variables h ∈ COMPS is a partial diagnosis of
SD ∧ α iff ω |= SD ∧ α.

Under lex parsimoniae we are interested in computing these
partial diagnoses only, which are not contained in other im-
plicants of SD ∧ α. These partial diagnoses, minimal under
subsumption, are the prime implicants of SD ∧ α.

Definition 3 (Kernel Diagnosis). A partial diagnosis ω is a
kernel diagnosis iff no ω ′ |= SD ∧ α exists, such that ω′ is
the conjunction of a proper subset of the literals in ω.

It is possible for a kernel diagnosis ω to contain both posi-
tive and negative literals. This is different from the notion
of minimal diagnosis as defined in (de Kleer & Williams
1987). The advantage is the lack of restrictions on SD, i.e.,
SD can be any propositional theory. Computing all kernel
diagnoses, however, is strictly more difficult than comput-
ing the set of all minimal diagnoses.

Given a kernel diagnosis ω, we are often interested in the
subset of these literals in ω which have the same (e.g., nega-
tive) polarity. Loosely speaking, each negative literal would
manifest a single malfunctioning component. Simply count-
ing the number of these negative literals in ω gives us diag-
nosis cardinality.

Definition 4 (Min-Cardinality). Let ω |= SD ∧ α, ω be
a term and Card(ω) denote the number of negative literals
in ω. The minimum cardinality of SD ∧ α is defined as
minω|=SD∧α Card(ω).
The aforementioned notion of cardinality can be slightly
generalized by introducing a cardinality function f : B

n →
Z

+ from the space of all possible diagnoses. For the pur-
pose of this paper, however, it suffices to count the negative
literals. The number of negative literals in the minimum car-
dinality diagnosis of SD ∧ α is denoted as MinCard(α).

We discover interesting properties in a class of theories of-
ten seen in MBD, these are the models which define norma-
tive behavior of their components only, i.e., models which

specify no fault-modes. These models are sometimes re-
ferred to as weak-fault models.

Definition 5 (Implicit Fault System). A diagnostic system
DS belongs to the class IFS iff SD is in the form (h1 ⇒
F1) ∧ . . . ∧ (hn ⇒ Fn) such that for 1 ≤ i, j ≤ n, {hi} ⊆
COMPS, Fj ∈ Wff , and none of hi appears in Fj .

In the next section we show that diagnosis distribution for a
system DS ∈ IFS is heavy-tailed.

Diagnosis Distribution is Heavy-Tailed
This section shows that, under the assumption of computing
maximum-probability diagnoses, the distribution of faults is
heavy-tailed.1 This is the theoretical underpinning for why
the approach should work.

Heavy-Tailed Distributions
Heavy-tailed distributions (also known as power-law distri-
butions) have been observed in many natural systems, such
as physical (biological or man-made) and sociological sys-
tems.

Definition 6 (Heavy Tail). A probability density function
(pdf) for a random variable X is said to have a heavy-tail if:

Pr(X > x) ∼ x−α, as x → ∞, 0 < α < 2.

This means that, regardless of the distribution, for small val-
ues of the random variable X , the distribution is heavy-tailed
if its asymptotic shape is hyperbolic (Wikipedia 2007). The
simplest heavy-tailed distribution is the Pareto distribution,
which is hyperbolic over its entire range and has probability
density function:

p(x; α, k) = αkαx−α−1, for α, k > 0, x ≥ k.

The Pareto distribution has cumulative distribution function:

F (x; α, η) = Pr[X ≤ x] = 1 −
(η

x

)α

,

where η represents the smallest value the random variable
X can take. Heavy-tailed distributions have properties that
are qualitatively different to commonly-used (memoryless)
distributions such as the exponential, normal or Poisson dis-
tribution.

Heavy-tailed and long-tailed distributions can be distin-
guished by examining the log-log plot of the pdf. In long-
tailed distributions, the log-log plot of the tail is approxi-
mately linear over many orders of magnitude. If the loga-
rithm of the range of an exponential distribution is found,
the resulting plot is linear; in contrast, that of the heavy-tail
distribution is still curvilinear (Wikipedia 2007).

Diagnosis Distributions
Consider a probabilistic ordering over the diagnoses. To
compute this, we use a valuation function Pr : COMPS →
[0, 1]. In practice, Pr assigns a priori probabilities to the sys-
tem failure modes. Under the assumption that all variables

1This analysis can be extended to other orderings over diag-
noses.

in SD are conditionally independent, we define the valuation
of an assignment α to be Pr(α) = Πx∈α∪COMPSPr(x).

We assume that the failure-mode distribution Pr is
skewed. i.e., there exists asymmetry in the probability distri-
bution of Pr . In other words, we assume that every variable
xi has Pr(xi = OK) ≥ βPr(xi = bad). Such a skewed
distribution is normal in diagnostics, and implies that normal
behavior is β times more likely than faulty behavior, β ≥ 1.

We take one of the most common definitions of diag-
nosis ranking, i.e., a ranking imposed by the probability
of the diagnosis. Let ωi be a diagnosis with i broken
components. By our skewness assumption, we know that
Pr(ωi) ≥ βPr(ωi+1).

Theorem 1. If we assume that βPr(Xi = bad) =
Pr(Xi = OK) for all failure modes Xi, then we obtain
a heavy-tailed (Zipf) distribution for the diagnosis distribu-
tion.

Proof. We give a sketch of the proof. Let γk be the (nor-
malized) probability that a diagnosis has k faults. Under the
assumption that βPr(Xi = bad) = Pr(Xi = OK), ∀Xi,
we can then show that the probability distribution for γ is
given by

γ(k; β, n) =
1/kβ

∑n
j=1 1/jβ

,

where γ(k; β, n) is the number of mode variables of the k th

ranked diagnosis, k is the rank of a diagnosis, and β is the di-
agnosis likelihood exponent characterizing the distribution.

This rank distribution over the diagnoses is known as a
power-law (or Zipf’s) distribution, which, by definition, is
heavy-tailed.

We can also define the diagnosis cumulative distribution
function (cdf) as:

Γ(k; β, n) =

∑k
j=1 1/jβ

∑n
j=1 1/jβ

.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

s = 2
s = 3
s = 4
s = 5

Figure 1: CDF Γ(k; s, 10).

Figure 1 shows the cdf of Γ(k; s, 10) plotted against index
k, for various values of the distribution exponent s.

If we relax the assumption that all fault probabilities are
identical, then we can generalize our proof to show that the
diagnosis distribution is a Pareto distribution. Note that both
the Zipf and Pareto distribution are, by definition, heavy-
tailed distributions.

Distribution of Diagnosis Inference Complexity is
Heavy-Tailed
To fully demonstrate the reasons for the success of random-
ized restarts for diagnosis, we need to show that the infer-
ence necessary to locate the faults is heavy-tailed. We can
show that the minimal-cardinality diagnosis problem can
be mapped to SAT by introducing just O(n) extra clauses
(Bailleux & Boufkhad 2003; Sinz 2005). Given such a map-
ping, we can just rely on the well-established result that the
number of backtracks necessary to solve SAT is heavy-tailed
(Gomes, Selman, & Crato 1997).

For example, consider the encoding proposed by Bailleux
and Boufkhad (2003). This encoding is such that, if the car-
dinality constraint is less than the number N of variables,
as soon as N variables are true, i.e., appear in a positive
unit clause, the SAT routine unit resolution can derive a con-
tradiction. This approach been empirically demonstrated to
be efficient in solving difficult problems in parity learning
(Bailleux & Boufkhad 2003) and in finding good quality
plans in AI planning (Büttner & Rintanen 2005).

Stochastic MBD Algorithm
In this section we discuss an algorithm for computing mul-
tiple-fault diagnoses using stochastic search.

A Simple Example
The Boolean circuit shown in Figure 2 is used to give a ba-
sic idea about the intuition behind the algorithm discussed
in this paper. The subtractor consists of total of seven com-
ponents: an inverter, two or-gates, two xor-gates, and two
and-gates.

b
p

l

h1

h3
h4

h6

j

i

brwh5

h7

h2
dif

a

m

k

Figure 2: A subtractor circuit.

The expression h ⇒ (o ⇔ ¬i) models an inverter, where
the variables i, o, and h represent input, output and health
respectively. Similarly, an and-gate is modeled as h ⇒ (o ⇔

i1 ∧ i2) and an or-gate is h ⇒ (o ⇔ i1 ∨ i2). Finally, an
xor-gate is specified as h ⇒ (o ⇔ ¬(i1 ⇔ i2)).

These propositional formulae are copied for each gate in
Figure 2 and their variables renamed in such a way as to
properly connect the circuit and disambiguate the assum-
ables, thus receiving a propositional formula for SD:

SD =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h1 ⇒ (i ⇔ ¬(b ⇔ p))
h2 ⇒ (dif ⇔ ¬(a ⇔ i))
h3 ⇒ (j ⇔ b ∨ p)
h4 ⇒ (m ⇔ l ∧ j)
h5 ⇒ (brw ⇔ m ∨ k)
h6 ⇒ (a ⇔ ¬l)
h7 ⇒ (k ⇔ b ∧ p)

The set of component (assumable) variables is COMPS =
{h1, . . . , h7}. Consider an example observation OBS = a∧
b ∧ ¬p ∧ dif ∧ ¬brw . This leads to a triple fault minimal-
cardinality diagnosis: ω1 = ¬h1 ∧ ¬h3 ∧ ¬h7. The same
observation is explained by five more triple fault diagnoses,
which we will omit from this example for brevity. We notice
also that ¬h7 has the same sign in all diagnoses of SD ∧
OBS.

A deterministic A∗ search for the above diagnosis discov-
ers it after 95 assignments to assumable variables and 27
consistency checks. Even enabling conflict focusing does
not reduce the number of assignment below 42 and the num-
ber of consistency checks below 16, which shows how deter-
ministic diagnosis search becomes impractical with bigger
systems.

We will now show a two-step diagnostic process which
takes a smaller number of variable assignments and con-
sistency checks. Step 1 involves randomly choosing can-
didates. Step 2 attempts to minimize the fault cardinality in
these candidates.

In step 1, the stochastic diagnostic search for the subtrac-
tor example will start from a random quintuple candidate 2.
In this particular version of our algorithm, once a component
is marked as healthy, it cannot be changed back to faulty.
To compensate for that and to provide for the heavy-tailed
inference complexity outlined above, we perform multiple
restarts from a random candidate. In our subtractor exam-
ple, if h7 is in the initial “guess” it will prove inconsistent
with SD ∧ OBS and another quintuple fault candidate will
be guessed.

Assume that the second candidate is ω ′
2 = ¬h1 ∧ h2 ∧

¬h3 ∧ ¬h4 ∧ ¬h5 ∧ h6 ∧ ¬h7. Clearly, ω′ |= SD ∧ OBS.
The search algorithm may next try to improve the diagnosis
by “flipping” h4. The candidate ω ′

3 = ¬h1 ∧ h2 ∧ ¬h3 ∧
h4∧¬h5∧h6∧¬h7 is a valid quadruple fault diagnosis and
it can be improved once more by “flipping” ¬h5. This gives
us the final triple fault diagnosis.

Intuitively, from our example, due to the large number of
triple fault diagnoses explaining the same observation it is
not difficult to randomly guess sequences of variables which
need to be false in order to explain the observation.

2In the formal description of the algorithm we describe a
method for determining the initial candidates

A Greedy Stochastic Algorithm for Computing
Minimal-Cardinality Diagnosis
The greedy stochastic algorithm, we introduce next, can find
multiple minimal-cardinality diagnoses (if such exist). We
will restrict our discussion, however, to finding a single, ar-
bitrary, minimal-cardinality diagnosis.

The stochastic algorithm presented in this paper uses the
previously-described extension to DS, a valuation function
Pr : COMPS → [0, 1]. In the analysis of our algorithm
we use Pr to determine if an assignment to a health variable
denotes a failure or a healthy mode. The performance of the
algorithm presented in this paper is not sensitive to Pr and
the only use of the probabilities is to guide the search for
more efficient performance.

Algorithm 1 A stochastic hill climbing algorithm for ap-
proximating a set of minimal-cardinality diagnoses.
1: function HILLCLIMB(DS, M, N,Pr) returns a trie

inputs: DS = 〈SD, COMPS, OBS〉, a diag. system
M , integer, climb restart limit
N , integer, number of tries
Pr , a valuation function

local variables: m, n, integers
ω, ω′, terms
R, a trie

2: n ← 0
3: while n < N do
4: ω ← RANDOMCANDIDATE(Pr)
5: if ω |= SD ∧ OBS then
6: m ← 0
7: while m < M do
8: ω′ ← IMPROVEDIAGNOSIS(Pr , ω)
9: if ω′ |= SD ∧ OBS then

10: ω ← ω′
11: m ← 0
12: else
13: m ← m + 1
14: end if
15: end while
16: unless ISSUBSUMED(R, ω) then
17: ADDTOTRIE(R, ω)
18: REMOVESUBSUMED(R, ω)
19: end unless
20: n ← n + 1
21: end if
22: end while
23: return R
24: end function

The randomized search process performed by Algorithm 1
is parameterized by the parameters M and N . There are
N independent searches that start from randomly generated
candidates. After an initial candidate ω is found to be con-
sistent with SD ∧ OBS, i.e., ω is a diagnosis, the algorithm
tries to improve the cardinality of the diagnosis (while pre-
serving its consistency) by randomly “flipping” fault literals.

Each attempt to find a minimal-cardinality diagnosis ter-
minates after M unsuccessful attempts to change the value

of a fault variable to healthy state. Thus, increasing M will
lead to a better exploitation of the search space and possi-
bly diagnoses of lower cardinality, while decreasing it will
improve the overall speed of the algorithm.

Similar to deterministic methods for MBD, Algorithm 1
uses a SAT-based procedure for checking the consistency of
SD ∧ OBS ∧ ω. Because SD and OBS do not change in
consistency checks, using an LTMS (McAllester 1990) can
improve search efficiency. In our implementation, we have
combined a BCP-based LTMS to check for inconsistencies,
and if a candidate does not prove to be inconsistent, a second
check with a DPLL-based method is invoked for complete-
ness.

The RANDOMCANDIDATE function generates a candi-
date diagnosis, used for “seeding” the diagnostic search.
The valuation function can be modified in such a way as
to provide a more informed starting point, thus decreasing
the number of “climbing” steps. The initial diagnosis ω
should be of high cardinality, to increase the likelihood of
ω |= SD ∧ OBS. In order to do that, we generate an in-
stantiation of ω by using Pr and scaling the a priori proba-
bilities in Pr to bias the pdf from which we draw the initial
candidates. Consider an example in which each component
h ∈ COMPS fails with a probability of 5%. The valuation
function is Pr(h = False) = 0.05. We may use a scaling
coefficient k = 5 which would lead to RANDOMCANDI-
DATE returning a candidate with a quarter of the components
failing.

The biasing of Pr can improve the efficiency of Algo-
rithm 1 by exploiting knowledge about the likelihood of the
cardinality of the minimal-cardinality diagnosis. In partic-
ular, when expecting minimal-cardinality diagnoses of high
cardinality Pr should be configured to return an initial fault
of higher cardinality. If the expected faults are of small car-
dinality, the search may start from a candidate with smaller
number of faulty components, in which case more attempts
(increased N) would be necessary to find local diagnoses
close to the global optimum.

The IMPROVEDIAGNOSIS function generates a candidate
ω′ of smaller cardinality than the diagnosis ω, supplied as
an argument. This is done by flipping a random faulty lit-
eral in ω. The probability of flipping a faulty literal l in
ω is inverse proportional to the a priori probability Pr(l).
Consider a diagnosis ω = ¬h1 ∧ ¬h2 ∧ ¬h3 ∧ ¬h4, where
Pr(h1 = False) = Pr(h2 = False) = 0.1 and Pr(h3 =
False) = Pr(h4 = False) = 0.025. In this case IM-
PROVEDIAGNOSIS would return ω ′ = h1∧¬h2∧¬h3∧¬h4

or ω′ = ¬h1 ∧ h2 ∧ ¬h3 ∧ ¬h4, each of the two with
probability of 0.4, and ω ′ = ¬h1 ∧ ¬h2 ∧ h3 ∧ ¬h4 or
ω′ = ¬h1 ∧ ¬h2 ∧ ¬h3 ∧ h4 the latter with probability 0.1.

There is no guarantee that two diagnostic searches, start-
ing from a random diagnoses, would not lead to the same
minimal-cardinality diagnosis. To prevent this, we store the
generated diagnoses in a trie R, from which it is straightfor-
wards to extract the resulting diagnoses by recursively vis-
iting its nodes. A diagnosis ω is added to the trie R by the
function ADDTOTRIE, iff no subsuming diagnosis is con-
tained in R (the ISSUBSUMED subroutine checks on that
condition). After adding a diagnosis ω to the resulting trie

R, all diagnoses contained in R and subsumed by ω are re-
moved by a call to REMOVESUBSUMED. The workings of
the trie functions as well as a thorough description of the trie
data structure can be found in (Forbus & de Kleer 1993).

The complexity of Algorithm 1 is derived in a straightfor-
ward way.

Proposition 1. The time complexity of Algorithm 1 is
O(MN log NC), where C is the complexity of the consis-
tency checking procedure.

The log N factor comes from the trie maintenance, which
contains a maximum number of N diagnoses with some or-
dering imposed on their literals. Note, that the average case
complexity of consistency checking, although exponential in
the worst case, is low polynomial when incomplete methods
like BCP are used (Zabih & McAllester 1988) or when the
model is highly-observable.

Note that this is effectively a polynomial-time algorithm
that trades off some small amount of completeness and opti-
mality for significant improvements in efficiency relative to
deterministic diagnosis algorithms.

Experimental Results
The next section discusses some empirical results measured
from an implementation of the algorithm shown in this pa-
per.

Implementation Notes and Test Set Description
We have implemented our algorithm in approximately 700
lines of C code (excluding the LTMS and DPLL con-
sistency checking) and it is a part of the LYDIA3 pack-
age. LYDIA employs deterministic algorithms for comput-
ing minimal-cardinality diagnoses based on conflict-based
search (Williams & Ragno 2004) and exploitation of struc-
ture (Feldman & van Gemund 2006).

Table 1 summarizes the benchmark problems we have
used for testing our algorithms. All models are derived from
the 74XXX and ISCAS85 family of benchmark circuits. We
have added assumable variables for each component in each
model. Weak fault models, similar to the one from the ex-
ample in the previous section, have been used.
The basic characteristics of the ISCAS-85 models are shown
in Table 1. The number of assumable variables is denoted as
H . We have counted the number of variables V and the
number of clauses in the CNF representation is denoted as
Cw. The number of observable variables is denoted as O.

All the experiments described in this paper are performed
on a host with 1.86 GHz Pentium M CPU and 2 Gb of RAM.

Performance Analysis
In our experiments we compared the diagnostic time of
the stochastic algorithm and implementations of the CDA∗
(Williams & Ragno 2004) and HA* algorithms (Feldman &
van Gemund 2006). We have parameterized Algorithm 1
with M = 4 and N = 8, i.e., it makes 8 independent at-
tempts to find a minimal-cardinality diagnosis and in each

3The LYDIA package for model-based fault diagnosis can be
downloaded from http://fdir.org/lydia/.

Name Description H V Cw O

74180 9-bit parity check 14 38 48 12
74139 2-to-4 decoders 18 42 52 14
74153 4-to-1 selector 16 44 62 14
74182 4-bit CLA 19 47 75 14
74283 4-bit adder 40 89 130 14
74L85 4-bit comparator 41 93 134 14
74181 4-bit ALU 62 138 216 22

c432 27-chan. int. controller 146 328 486 43
c499 32-bit SEC circuit 202 445 714 73
c880 8-bit ALU 383 826 1 112 86
c1355 32-bit SEC circuit 514 1 069 1 546 73
c1908 16-bit SEC/DEC 252 541 911 58
c2670 12-bit ALU 983 2 153 2 856 226
c3540 8-bit ALU 1 297 2 685 3 861 72
c5315 9-bit ALU 2 202 4 800 6 983 295
c6288 32-bit multiplier 2 416 4 864 7 216 64
c7552 32-bit adder 3 024 6 465 9 085 325

Table 1: Basic characteristics of the 74XXX and ISCAS-85
fault models. H , V , Cw and O denote the number of assum-
able variables, variables, clauses (in CNF representation),
and observable variables, respectively.

try the algorithm gives up after 4 unsuccessful attempts to
improve the cardinality of a diagnosis.

We have used the same valuation function Pr for all the
experiments. In particular, Pr(h = False) = 0.01, and
Pr(h = True) = 0.99. For the initial candidate generation,
we have scaled Pr : Pr(h = False) = Pr(h = True) =
0.5. Hence, the initial diagnosis has half of its literals denot-
ing a faulty state.

In our first experiment we use small models with ob-
servations maximizing the number of faults in a minimal-
cardinality diagnosis. The results, shown in Table 2, illus-
trate the most important advantage of the stochastic algo-
rithm: its performance does not degrade when the fault car-
dinality increases.

Name Faults Th T C

74180 2 2 1 2
74139 8 10 2 8
74153 2 3 1 2
74182 5 40 2 5
74283 5 4 633 4 5.4
74L85 3 143 4 3
74181 7 169 583 9 7

Table 2: Times [ms] for diagnosing multiple faults of higher
cardinality.

Table 2 compares the time for finding a single minimal-
cardinality diagnosis of the HA* algorithm (which in these
cases performs better than CDA∗) and the stochastic algo-
rithm shown in this paper. We have denoted the search time
of HA* as Th and that of the stochastic algorithm as T .

The stochastic method discussed in this paper, is a local
search algorithm, and hence it can compute a suboptimal di-
agnosis. This was the case in the 74283 model experiments,

in which 4 out of 10 runs returned a minimal-cardinality di-
agnosis with 6 faults, while the global optimum has 5 faults,
hence the 5.4 value in Table 2. We have denoted the cardi-
nality of the diagnosis returned by the stochastic algorithm
as C. To allow for the random component in the stochastic
search, we have run it 10 times and the results in C and T
are averaged.

Table 3 shows the result from finding single and dou-
ble faults with arbitrary (manually computed) observations.
Finding single faults is known to be trivial in MBD and
CDA∗ performs well on these simple problems. The time
for finding a single fault by CDA∗ is shown in column T ∗

1 .
The time for the CDA∗ algorithm to find a double fault is
shown in column T ∗

2 . The CDA∗ algorithm could not com-
pute a double fault diagnosis in less than 10 min time for the
five biggest circuits, in which cases we have interrupted the
search.

Name Single-Fault Double-Fault

T ∗
1 T1 C1 T ∗

2 T2 C2

c432 9 32 1 5 34 2
c499 3 53 1 152 64 2
c1908 34 95 1 509 94 2
c880 18 186 1 62 068 186 2
c1355 11 285 1 4 300 310 2
c2670 1 425 1 362 1 − 1 352 2
c3540 3 050 3 080 1 − 3 115 2
c5315 13 849 19 322 1 − 19 764 2
c6288 18 317 11 070 1.4 − 11 366 2.2
c7552 35 801 37 269 1 − 37 585 2.2

Table 3: Running times [ms] for the CDA∗ and the stochastic
algorithms.

The times for the stochastic algorithm to discover a single
and a double fault are denoted as T1 and T2 respectively. In
some of the cases, our stochastic algorithm could not find
a minimal-cardinality diagnosis, but a suboptimal one. We
have shown the cardinality of the results for single and dou-
ble faults in columns C1 and C2, respectively. Again, the
values of T1, C1, T2, and C2 are averaged over 10 runs.

The relatively small number of restarts lead to small over-
all search time and in a very few cases to suboptimal re-
sult for the diagnosis cardinality. Increasing N would lead
to finding a global minimal-cardinality diagnosis in all the
cases. We note that increasing M would not help to finding
a diagnosis of lower cardinality.

As is visible from Table 3, in the single fault scenario,
CDA∗ performs better than the stochastic algorithm, which
is not surprising as in CDA∗ all single fault candidates are
tested first. On the other hand, the stochastic method per-
formed 8 independent attempts to find a minimal-cardinality
diagnosis which, having the overhead of consistency check-
ing, led to the slightly worse performance for computing sin-
gle fault diagnoses.

Similar to the earlier experiments, the performance of Al-
gorithm 1 does not degrade when the number of faults in-
creases. This is not the case with heuristic-based determinis-

tic algorithms like CDA∗ or HA∗. The time for the stochas-
tic algorithm to find a double fault is the same as for finding
a single fault, while CDA∗ suffers from a combinatorial ex-
plosion.

Based on these experiments, we may conclude that in
most of the cases, the stochastic algorithm finds diagnoses of
near optimal cardinality. The diagnostic time of the stochas-
tic algorithm is not affected by the number of faults in the
minimal-cardinality diagnosis, which is certainly not the
case with the two deterministic algorithms. The only case
in which the stochastic algorithm performs slightly worse
than a deterministic one is with single fault diagnoses.

Discussion and Future Work
For an important class of fault models, the distribution of di-
agnoses is heavy-tailed, that is, a few diagnoses of small car-
dinality concentrate most of the probability mass for some
suitably-defined valuation function. Furthermore, the infer-
ence complexity for discovering these few diagnoses has the
same distribution. As a consequence, deterministic back-
tracking or heuristic-based methods are efficient only for a
small class of systems.

In this paper, we suggest a stochastic approach for im-
proving the average-case complexity of minimal-cardinality
diagnosis, using a method that provably takes advantage of
heavy-tailed distributions. We introduce an algorithm for
finding diagnoses of near-minimal cardinality. The main
idea behind our algorithm is randomly generating candidates
until one of them turns out to be a diagnosis, and then to try-
ing to improve the cardinality of the diagnosis by “flipping”
fault variables assigned as Bad to OK.

Having once generated an initial diagnosis, reducing its
cardinality (or “climbing”) is facilitated by the fault model-
ing. In particular, the minimal diagnosis hypothesis says that
for the class of models where no fault modes are specified,
every superset of a diagnosis is also a diagnosis. The oppo-
site, of course, does not hold, but starting from a superset
of a diagnosis, it is easy to find the minimal one due to the
favorable nature of the search space.

We have tested our algorithm on a family of 74XXX and
ISCAS-85 circuits. The stochastic search could find nearly
optimal diagnoses, even for the biggest circuit, where deter-
ministic methods failed to do that. Furthermore, the perfor-
mance of the stochastic algorithm is determined only by the
size of the model and not by the cardinality of the minimal-
cardinality diagnosis it searches for. This makes our algo-
rithm especially suitable for systems where many faults have
to be diagnosed.

This paper raises a number of research questions, which
we plan to address in future work. On the theoretical side,
we have stipulated that weak-fault models have a heavy-
tailed diagnosis distribution. Outside this class, artificial
cases can be created having any fault distribution, but we
expect that these cases are rarely seen in reality. We ex-
pect semi-weak models, for which nominal behavior and
some failure modes are specified, to be dominant in fault-
modeling. We plan a more extensive investigation of such
fault distributions when more empirical data from these
cases is collected.

On the algorithmic side, we would like to experiment with
a wider variety of stochastic methods. These include simu-
lated annealing, genetic search and others. The algorithmic
work would benefit from an extensive set of benchmarking
models, coming not only from digital circuits, but random
models, real-world models and others. Last, we are inter-
ested to expanding our algorithms on a wider class of ab-
duction and constraint optimization problems.

Conclusion
We have described a randomized restarts algorithm for com-
puting diagnoses within a model-based diagnosis frame-
work, which was inspired by randomized satisfiability al-
gorithms. We have shown that weak fault models have a
heavy-tailed distribution, and hence are amenable to this
class of algorithm. We have applied this algorithm to a
suite of benchmark combinatorial circuits, and shown sig-
nificant performance improvements for multiple-fault diag-
noses, compared to a well-known deterministic algorithm,
CDA∗. Our results indicate that, although the randomized
restarts algorithm is outperformed for the single-fault diag-
noses, it shows at least an order-of-magnitude speedup over
CDA∗ for double-fault diagnoses. Moreover, whereas the
search complexity for the deterministic algorithms tested in-
creases exponentially with fault cardinality, the search com-
plexity for this stochastic algorithm appears to be indepen-
dent of fault cardinality.

Acknowledgments
This work has been supported by STW grant DES.7015 and
SFI grant 04/IN3/I524.

References
Bailleux, O., and Boufkhad, Y. 2003. Efficient cnf encod-
ing of boolean cardinality constraints. In CP, 108–122.
Büttner, M., and Rintanen, J. 2005. Satisfiability plan-
ning with constraints on the number of actions. In Proc.
ICAPS’05, 292–299.
Bylander, T.; Allemang, D.; Tanner, M.; and Josephson, J.
1991. The computational complexity of abduction. Artifi-
cial Intelligence 49:25–60.
Darwiche, A. 1998. Model-based diagnosis using struc-
tured system descriptions. J. Artificial Intelligence Re-
search 8:165–222.
de Kleer, J., and Williams, B. 1987. Diagnosing multiple
faults. Artificial Intelligence 32(1):97–130.
de Kleer, J.; Mackworth, A.; and Reiter, R. 1992. Char-
acterizing diagnoses and systems. Artificial Intelligence
56(2-3):197–222.
de Kleer, J. 1986. An assumption-based TMS. Artif. Intell.
28(2):127–162.
Eiter, T., and Gottlob, G. 1995. The complexity of logic-
based abduction. Journal of the ACM 42(1):3–42.
Feldman, A., and van Gemund, A. 2006. A two-step hi-
erarchical algorithm for model-based diagnosis. In Proc.
AAAI’06.

Forbus, K., and de Kleer, J. 1993. Building Problem
Solvers. MIT Press.
Freuder, E. C.; Dechter, R.; Ginsberg, B.; Selman, B.; and
Tsang, E. P. K. 1995. Systematic versus stochastic con-
straint satisfaction. In Proc. IJCAI 95, volume 2, 2027–
2032.
Friedrich, G.; Gottlob, G.; and Nejdl, W. 1990. Physical
impossibility instead of fault models. In Proc. AAAI, 331–
336.
Gomes, C. P.; Selman, B.; Crato, N.; and Kautz,
H. A. 2000. Heavy-tailed phenomena in satisfiability
and constraint satisfaction problems. J. Autom. Reasoning
24(1/2):67–100.
Gomes, C. P.; Selman, B.; and Crato, N. 1997. Heavy-
tailed distributions in combinatorial search. In CP, 121–
135.
Gomes, C. P.; Selman, B.; and Kautz, H. A. 1998. Boost-
ing combinatorial search through randomization. In Proc.
AAAI’98, 431–437.
Hoos, H. H., and Tsang, E. 2006. Local search methods.
In Handbook of Constraint Programming. 245–276.
Kask, K., and Dechter, R. Stochastic local search for
Bayesian networks. In Proc. AISTAT’99.
Marquis, P. 2000. Consequence finding algorithms. In
Algorithms for Defeasible and Uncertain Reasoning, vol-
ume 5 of Handbook on Deafeasible Reasoning and Uncer-
tainty Management Systems. 41–145.
McAllester, D. 1990. Truth maintenance. In Proc.
AAAI’90, volume 2, 1109–1116.
Prasad, M. R.; Biere, A.; and Gupta, A. 2005. A survey of
recent advances in SAT-based formal verification. Interna-
tional Journal on Software Tools for Technology Transfer
(STTT) 7(2):156–173.
Sellmann, M., and Ansótegui, C. 2006. Disco - Novo -
GoGo: Integrating local search and complete search with
restarts. In Proc. AAAI’06.
Sinz, C. 2005. Towards an optimal cnf encoding of boolean
cardinality constraints. In CP, 827–831.
2003. A novel model-based diagnosis engine: theory and
applications. In IEEE Aerospace Conference.
Venkatasubramanian, V.; Rengaswamy, R.; and Kavuri,
S. N. 2003. Review of process fault diagnosis - part II:
Qualitative models and search strategies. Computers and
Chemical Engineering 27(3):313–326.
Wikipedia. 2007. Heavy-Tailed Distributions.
Williams, B., and Ragno, R. 2004. Conflict-directed A*
and its role in model-based embedded systems. Journal of
Discrete Applied Mathematics.
Zabih, R., and McAllester, D. 1988. A rearrangement
search strategy for determining propositional satisfiability.
In Proc. AAAI’88, 155–160.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

