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Abstract

Computing test vectors that are optimized to isolate faults
is an important area of diagnostics. The literature has fo-
cused on test vectors for single-fault diagnoses. This arti-
cle generalizes this, addressing the problem of computing
Max-Fault Min-Cardinality (MFMC) observation vectors in
Model-Based Diagnosis (MBD), and proposing two algo-
rithms for solving it. An MFMC observation vector is an
observation that, for a given system description, results in the
maximum number of faults in the minimum cardinality kernel
diagnosis. Computing MFMC observation vectors has appli-
cation in testability analysis, MBD benchmarking, optimal
sensor placement and other areas of model-based reasoning.
We discuss the high computational complexity of the MFMC
problem and introduce stochastic methods to reduce the so-
lution complexity. The first method for computing MFMC is
based on importance sampling while the second one is based
on simulated annealing. Both algorithms lead to significant
speed-up compared to exhaustive search and perform best for
different classes of system descriptions. The algorithms de-
scribed in this paper have been implemented and tested on a
benchmark of combinatorial circuits.

Introduction
The problem of computing minimum cardinality diagnoses,
given an observation and a system description, is central
to Model-Based Diagnosis. Consider the inverse problem
of computing an observation which distinguishes a specific
number of faulty components. Computing observations that
distinguish a single failing component is studied by ATPG
and dates back to (Roth 1966). The goal of ATPG is, then,
to compute a sequence of test vectors that can distinguish
every possible single fault in a device.
Single-fault ATPG has been extended to finding observa-

tion vectors leading to double faults (Hughes 1988) and to
multiple faults (Kubiak & Fuchs 1991). All of these ap-
proaches have several drawbacks, including: (1) they are in-
herently suboptimal, i.e., they do not answer the question of
what is the maximum number of faults distinguishable by
a single test vector, (2) they suffer from very high compu-
tational complexity, and (3) they severely limit the class of
system abstractions by using various simulation techniques.
There is a limited number of papers on algorithms com-

puting observation vectors that distinguish the maximum
number of failing components in a system, e.g., (Abramovici

1981). One can devise a class of more general algorithms
for this, based on techniques from MBD and abductive rea-
soning. The current paper formalizes the problem of find-
ing Max-Fault Min-Cardinality (MFMC) observation vec-
tors and proposes two algorithms for solving it. These two
methods are very efficient, given the existence of a fast MBD
engine.
One of the advantages of the algorithms in this paper

over the related k-fault ATPG algorithms is that they do
not impose any limitations on the model (e.g., they do not
require stuck-at modes or unlimited observability). This
makes them applicable not only to testing but to a wider
range of Model-Based Reasoning problems. The MFMC
algorithms can be used for MBD benchmarking (Provan &
Wang 2007), optimal sensor placement (Console, Picardi, &
Ribaudo 2000) and other applications.
A summary of our contributions follows. This paper in-

troduces the MFMC problem and two algorithms for com-
puting MFMC observation vectors. The first one is based
on importance sampling and the second one on simulated
annealing. The two algorithms are empirically analyzed on
a number of diagnostic models. Furthermore, we discover
some properties of the MFMC search and reason about its
computational complexity.
The rest of this paper is organized as follows. The section

which comes after this introduction defines the basic MFMC
framework. It is followed by a short discussion on some
complexity issues. The fourth section suggests algorithms
for solving the MFMC problem. Finally, we evaluate the
empirical performance of the algorithms.

Properties of the MFMC Observation Vectors
The discussion starts by formalizing some basic notions in
MBD (de Kleer, Mackworth, & Reiter 1992). A qualitative
model of an artifact is represented as a propositional Wff
over some set of variables V . Discerning a subset of them
as assumable or observable gives us a diagnostic system.

Definition 1 (Diagnostic System). A diagnostic systemDS
is defined as the triple DS = 〈SD, COMPS, OBS〉, where
SD is a propositional theory describing the behavior of the
system, COMPS is a set of assumable variables in SD, and
OBS is a set of “measurable” variables in SD.

Let α be any (possibly partial) instantiation of the variables



in OBS. The traditional diagnostic query in MBD results in
finding terms of assumable variables which are explanations
for SD ∧ α.

Definition 2 (Partial Diagnosis). A term ω over a set of
assumable variables h ∈ COMPS is a partial diagnosis of
SD ∧ α iff ω |= SD ∧ α.

Under lex parsimoniae we are interested in computing these
partial diagnoses only, which are not contained in other im-
plicants of SD ∧ α. These partial diagnoses, minimal under
subsumption, are the prime implicants of SD ∧ α.

Definition 3 (Kernel Diagnosis). A partial diagnosis ω is a
kernel diagnosis iff no ω′ |= SD ∧ α exists, such that ω′ is
the conjunction of a proper subset of the literals in ω.

It is possible for a kernel diagnosis ω to contain both posi-
tive and negative literals. This is different from the notion
of minimal diagnosis as defined in (de Kleer & Williams
1987). The advantage is the lack of restrictions on SD, i.e.,
SD can be any propositional theory. Computing all kernel
diagnoses, however, is strictly more difficult than comput-
ing the set of all minimal diagnoses.
Given a kernel diagnosis ω, we are often interested in the

subset of these literals in ω which have the same (e.g., nega-
tive) polarity. Loosely speaking, each negative literal would
manifest a single malfunctioning component. Simply count-
ing the number of these negative literals in ω gives us diag-
nosis cardinality.

Definition 4 (Min-Cardinality). Let ω |= SD ∧ α, ω be
a term and Card(ω) denote the number of negative literals
in ω. The minimum cardinality of SD ∧ α is defined as
minω|=SD∧α Card(ω).
The aforementioned notion of cardinality can be slightly
generalized by introducing a cardinality function f : B

n →
Z

+ from the space of all possible diagnoses. For the pur-
pose of this paper, however, it suffices to count the negative
literals. The number of negative literals in the minimum car-
dinality diagnosis of SD ∧ α is denoted asMinCard (α).
In diagnosis, OBS is traditionally observed and supplied

by the user. The main subject of this paper is the automatic
generation of observation vectors, introducing an additional
optimality criteria – maximizing the min-cardinality fault.

Definition 5 (Max-Fault Min-Cardinality Observation).
Given a diagnostic system DS a Max-Fault Min-Cardinality
(MFMC) observation is such a instantiation γ (possibly par-
tial) to the variables in OBS that minω|=SD∧γ Card(ω) is
maximized.

Throughout this paper we will use the term MFMC diagno-
sis, that is any of the minimal-cardinality kernel diagnoses
ω for which γ is an MFMC observation. The cardinality of
the MFMC diagnosis of a diagnostic system DS is denoted
as MaxCard(DS). Even without imposing any restrictions
on the propositional theories allowed in SD we can derive
some useful properties of the minimal cardinality diagno-
sis. These properties will help us constructing algorithms
for generating MFMC observation vectors.

Proposition 1 (Observation Monotonicity). Given that
DS = 〈SD, COMPS, OBS〉 is a diagnostic system and α

and β are two partial instantiations of subsets of OBS such
that α ⊇ β then it holds thatMinCard(α) ≥ MinCard(β).

Proof. The proof comes directly from the definitions of di-
agnosis. We construct a system of Boolean equations B in
the following manner. First, the propositionalWff in SD is
converted to a Boolean equation in a straightforward man-
ner and the latter is added to B. Second, for each literal
li ∈ α, an equation of the form li = 1 or li = 0 (depend-
ing on the polarity of li) is appended to B. A system of
Boolean equations B′ is constructed from SD and β in an
analogous way. The solutions of B and B′ are the impli-
cants of SD ∧ α and SD ∧ β, respectively. Observe, that,
due to the fact that α ⊇ β, the equations in B′ are superset
of these in B and both are over the same set of variables.
But then, S(B′) ≤ S(B), where S(X) denotes the number
of solutions in a system X . The above holds also when the
solutions of B and B′ are ordered according to their cardi-
nality. Hence, if a diagnosis with a cardinality smaller than
the smallest cardinality diagnosis inB′ exists, it is inB.

The above proposition stipulates that increasing the number
of observed variables in SD leads to a monotonic increase
in MaxCard(DS). A follow-up question is, if it is possible
to find an upper bound of MaxCard(DS). An obvious, and
not very practical one isMaxCard(DS) ≤ |COMPS|.
Defining a tighter upper bound seems to be impossible

without imposing any restrictions on the theories used in SD.
We will find an interesting upper bound for a subclass of the-
ories often seen in MBD, these are the models which define
normative behavior of their components only, i.e., models
which specify no fault-modes1.

Definition 6 (Implicit Fault System). A diagnostic system
DS belongs to the class IFS iff SD is in the form (h1 ⇒
F1) ∧ . . . ∧ (hn ⇒ Fn) such that for 1 ≤ i, j ≤ n, {hi} ⊆
COMPS, Fj ∈ Wff , and none of hi appears in Fj .

To facilitate reasoning we will construct graphs from the di-
agnostic systems belonging to IFS. In the definition that
follows, given DS ∈ IFS, SD =

∧n
i=1 hi ⇒ Fi, v(hi) de-

notes the set of variables which appear in the consequent
formula Fi of hi.

Definition 7 (Fault Propagation Graph). A Fault Propa-
gation Graph (FPS) of a diagnostic system DS ∈ IFS is a
graph G = 〈G, E〉 such that G = OBS ∪ COMPS, and
E = {{x, y : x, y ∈ COMPS, v(x) ∩ v(y) �= ∅} ∪ {x, y :
x ∈ OBS, y ∈ COMPS, x ∈ v(y)}}.
In what follows, Gf (DS) is used for the FPS graph con-
structed from DS and COMPS = IN ∪ OUT, i.e., the ob-
servable variables and the respective nodes in Gf (DS) are
distinguished as input and output. We relateMaxCard(DS)
to the minimum number of edgesMinCut(Gf (DS)) which
have to be removed in order to separate all input nodes from
all output nodes in Gf (DS).

Proposition 2 (MFMC Upper Bound). IfDS ∈ IFS, then
it holds thatMaxCard(DS) ≤ MinCut(Gf (DS)).

1Sometimes referred to as weak-fault models.



In many cases from practice, the computed upper bound
will be the actual cardinality of MaxCard(DS). Charac-
terizing those systems for which that holds is beyond the
scope of this paper. In the MFMC search algorithms which
come later we will use Proposition 2 as a termination criteria
whenever DS ∈ IFS. Note that MinCut(Gf (DS)) can be
computed in polynomial time.

Complexity of the MFMC Problem
We have already seen that there is dependency between the
observability of a model and the cardinality of the MFMC
diagnosis (the average complexity of the problem). Before
we continue our reasoning with the worst-case complexity
of MFMC, we motivate the need of MFMC by noting that
building diagnosable systems is expensive in terms of sen-
sors (observables).
Assume that we have a system with k binary-valued sen-

sors and n components, and that each component can be ei-
ther failed or OK, i.e., the fault description does not define
failure modes. We define a failure as an instantiation of fault
modes, and a test as an instantiation of sensors.
There are 2k test-vector settings (the test space Γ), and

2n − 1 possible fault combinations (the failure space Ω).
The ability to isolate all fault combinations (in which case

the system is diagnosable) is typically impossible for practi-
cal reasons. In most cases, for a large system, it is too expen-
sive to provide enough sensors to ensure full diagnosability.
The following theoremdefines the number of sensors needed
to isolate q failures:

Theorem 1. The minimum number of sensors needed to iso-
late q failures is given by �log2(q + 1)�.
As a consequence, we must operate in a world where
some failures are indistinguishable given Γ (they mask each
other). In this article we choose to focus on the probabilis-
tically most-likely failures, assuming that we have a proba-
bility distribution over the individual faults and all faults are
mutually independent.
To complete our theoretical notions, we reason about the

worst-case complexity of the MFMC problem. We can show
that solving a simplified restriction of the MFMC problem is
NP-complete.

Theorem 2 (Complexity of Restricted MFMC). Given a
diagnostic model 〈SD, COMPS〉 and a diagnosis D, it is
NP-complete to determine a manifestation for the observa-
tion OBS.

This theorem can be proven by observing that it is just
the dual to the problem of determining the existence of a
diagnosis D given the observation OBS (Theorem 4.7 of
(Bylander et al. 1991).)
Further, the complexity of the MFMC problem is likely

to be higher than that of isolating multiple-fault diagnoses
(which is NP-complete (Bylander et al. 1991; Friedrich,
Gottlob, & Nejdl 1990)), or that of computing a minimum-
size test set to isolate all single stuck-at faults in electronic
circuits (which is NP-complete (Krishnamurthy & Akers
1984)). With regard to the Multiple-Fault Diagnosis (MFD),
MFMC introduces an optimization task that makes multiple

calls to an MFD oracle, which is clearly harder. With re-
gard to testability analysis, MFMC addresses the multiple-
fault case, and is applicable to arbitrary models, and not just
stuck-at circuit models.
It is also likely that approximating MFMC within a con-

stant factor is intractable. Approximating the single-fault
minimum-size test set within a factor α > 1 of optimality is
NP-hard (Krishnamurthy & Akers 1984).
As a consequence of intractability and other practical is-

sues, such as dealing with failures which are indistinguish-
able (they mask each other), we focus on the probabilisti-
cally most-likely failures, assuming that we have a proba-
bility distribution over the individual faults and all faults are
mutually independent.

Algorithms for Computing MFMC
In this section we discuss algorithms for computingMFMC.
The first one is based on exhaustive search, hence it is suit-
able for understanding the basics of the MFMC computa-
tion only. The second algorithm borrows from Importance
Sampling (IS) (Yuan & Druzdzel 2006) to skip over health
assignment leading to faults of low cardinality. Finally, we
suggest a simulated annealing algorithm for generation of
MFMC.

A Naı̈ve Brute-Force Algorithm
The simple Boolean circuit shown in Figure 1 is used to il-
lustrate the workings of the algorithms discussed in this pa-
per. The 2-to-4 line demultiplexer consists of four Boolean
inverters and four and-gates.

b
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o1

o2

o3

o4

I2

I3 I4
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A3

A4

I1

A1

Figure 1: A 2-to-4 line demultiplexer.

The expression h ⇒ (o ⇔ ¬i) models an inverter, where
the variables i, o, and h represent input, output and health
respectively. Similarly, an and-gate is modeled as h ⇒ (o ⇔
i1 ∧ i2 ∧ i3). These propositional formulae are copied for
each gate in Figure 1 and their variables renamed in such a
way as to properly connect the circuit and disambiguate the
assumables, thus receiving a propositional formula for SD.



Obviously the model of the 2-to-4 line demultiplexer be-
longs to IFS. An algorithmwhich finds such an observation
by trying all possible instantiation of the observable vari-
ables is shown in Algorithm 1.

Algorithm 1 An exhaustive search algorithm for generation
of MFMC observation vectors.
1: function NAÏVEMFMC(SD, OBS) returns a term

inputs: SD, a propositional theory
OBS, a set of observable variables

local variables: α, ω, R, terms
M , an integer, initially 0

2: for all α ← INSTANTIATE(OBS) do
3: ω ← FINDMCDIAG(SD ∧ α)
4: ifM < COUNTFAULTS(ω) then
5: R ← α
6: M ← COUNTFAULTS(ω)
7: end if
8: end for
9: returnR
10: end function

The outer loop of Algorithm 1 tries all the 2|OBS| instantia-
tions of the variables inOBS. For each possible instantiation
α it finds the minimal cardinality diagnosis by issuing a call
to the FINDMCDIAG subroutine. The observation leading
to a diagnosis with a maximum number of faults (in this ex-
ample COUNTFAULTS simply counts the number of negative
assumable literals in ω) is preserved as a result.
Any method for computation of prime implicants can be

used as an implementation of FINDMCDIAG and various
methods like compilation (Darwiche 2001) or heuristics and
conflict exploitation (Williams & Ragno 2004) can be used
to speed-up this function.
For the circuit shown in Figure 1 Algorithm 1 generates

exhaustively 128 instantiations of OBS. Let us consider the
arbitrary assignment α = ¬a ∧ ¬b ∧ i ∧ ¬o1 ∧ . . . ∧ ¬o4.
Clearly, the only minimal-cardinality diagnosis such that
ω |= α ∧ SD is ω = ¬I1 and Card(ω) = 1.
For the example demultiplexer MaxCard(SD) = 4 and

there are total of 4 observation vectors which can discern
minimal-cardinality diagnosis of 4 faults. One of these max-
fault min-cardinality observation vectors is αmfmc = ¬a ∧
¬b ∧ ¬i ∧ o1 ∧ . . . ∧ o4. Interestingly, from all the 128
possibilities, there are 8, 40, 53, and 23 observation vectors
leading to a nominal, single-fault, double-fault and triple-
fault diagnosis respectively.

Computing MFMC Approximations through
Importance Sampling

Our IS algorithm is based on a weighted approach and works
for a restricted set of system descriptions. Furthermore,
the algorithm uses an extension to DS, a valuation function
Pr : COMPS → [0, 1]. In practice, Pr assigns a priori
probabilities to the system failure modes.
We assign an a priori valuation to an assignment α us-

ing Pr (α) = Πx∈α∪COMPSPr(x), which corresponds to

assuming that all variables in SD are conditionally indepen-
dent.
Consider systems that model the faulty behavior of their

components. For some of them, it is possible to partition
the set of observable variablesOBS into two subsets IN and
OUT (denoting input and output variables respectively), and
after giving values to IN andCOMPS, to use a reasoning al-
gorithm (e.g., unit-propagation) to find a unique assignment
to the values in OUT.

Definition 8 (Explicit Fault System). Given a system DS
and an observation OBS = IN ∪ OUT, DS ∈ EFS if for
any instantiation φ of all variables in IN∪COMPS, it holds
that there is exactly one term α such that φ |= SD∧α and α
is an instantiation of all variables in OUT.

The above restriction on the class of the propositional mod-
els allows us to introduce the algorithm which follows.

Algorithm 2 An algorithm for computing an MFMC ap-
proximations by using Importance Sampling.
1: function ISOBS(DS, IN, Pr , Pr∗) returns a term

inputs: DS = 〈SD, COMPS, OBS〉, a diag. system
IN, a set of variables, IN ⊆ OBS
Pr , a valuation function
Pr∗, a biasing pdf

local variables: i, o, h, ω, R, terms
M, s, integers, initially 0

2: while s < S# do
3: 〈h, i〉 ← INSTANTIATE(COMPS, IN,Pr ,Pr∗)
4: o ← PROPAGATE(SD ∧ i ∧ h)
5: ω ← FINDMCDIAG(SD ∧ i ∧ o)
6: ifM < COUNTFAULTS(ω) then
7: R ← i ∧ o
8: M ← COUNTFAULTS(ω)
9: end if
10: s ← s + 1
11: end while
12: return R
13: end function

Algorithm 2 uses qualitative simulation to compute a subset
of all (physically) possible states of a system. A biasing pdf
is used to increase the probability of a sample being con-
sistent with a higher number of faults. For each of the S#

samples over the input values i, the outputs o are computed
and the minimal diagnosis consistent with i∧o is computed.
The observationwhich leads to a maximum number of faults
is preserved throughout the sampling process and returned at
the end of the procedure.
We discuss the implementation of the INSTANTIATE func-

tion which determines the quality of the observation vectors
and the performance of the algorithm. Assuming equal prob-
abilities for the input variables, it implements the function
given next for assigning values to the variable set supplied
as an argument.

P (x = True) =
{

k [1 − Pr (x)] : x ∈ COMPS
0.5 : x ∈ OBS



The above function uses a skewing coefficient k to scale the
probability of an assumable variable being instantiated as
faulty. In general, this coefficient depends on the model and
we will observe its effect in the experimentation section.
The implementation of the PROPAGATE subroutine is

straightforward. We suggest the use of a Binary Constraint
Propagation (BCP) method which can efficiently derive a
satisfying assignment for the output variables. The auxiliary
function GETOBS is used to discern these literals in a model
of SD which instantiate observable variables.
Algorithm 2 computes minimal cardinality diagnosis by

issuing a call to the FINDMCDIAG subroutine. The observa-
tion leading to a diagnosis with a maximum number of faults
(in this example COUNTFAULTS simply counts the number
of negative assumable literals in ω) is preserved as a result.
The number of calls to the potentially most expensive sub-
routine FINDMCDIAG decreases from 2|OBS| (in the case of
an exhaustive search) to S#, where S# is generally low.
Any method for computation of prime implicants can be

used as an implementation of FINDMCDIAG and various
methods like compilation (Darwiche 2001) or heuristics and
conflict exploitation (Williams & Ragno 2004) can be used
to speed-up this function.
To illustrate the workings of Algorithm 2 on the 2-to-4

line demultiplexer, we have seen in the beginning of this sec-
tion, it is necessary to change the system description used by
the exhaustive search algorithm. The reason for this is that
due to the weak-fault model the propagation routine would
not be able to derive the values of the output variables given
all inputs and health. In order to fix this, instead of one we
use two assumable variables per logic-gate f0 and f1 to de-
note “stuck-at-zero” and “stuck-at-one” respectively.
The new formula for modeling an inverter is (f0 ⇒ ¬o)∧

(f1 ⇒ o)∧ (¬f0 ∧ ¬f1 ⇒ (¬i ⇔ o))∧ (¬fo ∨ ¬f1). Each
of the and-gates is represented as (f0 ⇒ ¬o) ∧ (f1 ⇒ o) ∧
(¬f0 ∧ ¬f1 ⇒ (i1 ∧ i2 ∧ i3 ⇔ o)) ∧ (¬fo ∨ ¬f1). Again,
we have to rename the variables for each gates, receiving a
system containing eight Boolean equations. For brevity, we
will omit the actual system description from this paper.
In running Algorithm 2 on the demultiplexer circuit, we

assign the set of inputs IN = {a, b, i}, the set of output vari-
ables OUT = {o1, o2, o3, o4}, the Pdf Pr (f0 = True) =
Pr(f1 = True) = 0.01 and k = 25. The number of sam-
ples S# has been set to 25.
For the demultiplexer circuit, Algorithm 2 works as fol-

lows. First it draws random values with equal probabili-
ties for the input variables a, b and i. Then it draws val-
ues for the “stuck-at-zero” and “stuck-at-one” assumables
with probability 0.25. After propagation, the values for
the output variables o1, . . . , o4 are computed. At the end,
from all samples the observation consistent with minimal-
cardinality diagnosis of maximum number of faults is cho-
sen. For this example run, let this observation be αis =
a ∧ ¬b ∧ ¬i ∧ o1 ∧ ¬o2 ∧ o3 ∧ o4. As the reader can see,
this is consistent with a minimal cardinality triple-fault diag-
nosis ωis =

(
A1 ≡ F 1

) ∧ (
A3 ≡ F 1

) ∧ (
A4 ≡ F 1

)
, where

An ≡ F 1 denotes an and-gate “stuck-at-one”. The received
observation leads to a diagnosis of acceptable quality, but the

sampling continues until an observation leading to a quadru-
ple fault has been found.

A Simulated Annealing Algorithm

Algorithm 3 has no restrictions on the theories for which
it can compute MFMC approximations. The technique it
employs is simulated annealing (Rutenbar 1989).

Algorithm 3 A simulated annealing algorithm for genera-
tion of MC observation vectors of multiple faults.
1: functionMCHILLCLIMB(SD, OBS) returns a term

inputs: SD, a propositional theory
OBS, a set of observable variables

local variables: vc, vn, terms
t, j, ΔE, integers
T , a real

2: t ← 0
3: repeat
4: vc ← INSTANTIATERANDOM(OBS)
5: j ← 0
6: repeat
7: T = Tmaxe

−jr

8: for all vn ← FLIPOBSERVABLE(vc) do
9: ΔE ← f(SD ∧ vn) − f(SD ∧ vc)
10: ifΔE > 0 then � Better MFMC?
11: vc ← vn � Accept the move.
12: else � Consider going downhill.
13: if RAND() < eT−1ΔE then
14: vc ← vn

15: end if
16: end if
17: end for
18: j ← j + 1
19: until T < Tmin

20: t ← t + 1 � Number of attempts.
21: until t = N
22: return vc

23: end function

Algorithm 3 performs a maximum number of N indepen-
dent attempts, each one starting from a random observation
vector. These random observations are returned by INSTAN-
TIATERANDOM, which assigns with equal probabilityTrue
or False to each observable. As we will see in the ex-
perimentation section, a random observation vector is most
likely to lead to a diagnosis of cardinalityM/2, whereM is
the number of faults in the MFMC diagnosis.
The algorithm manipulates the initial random observation

in an attempt of reaching a good optimum. The manipula-
tion of the observation vector, aiming at “climbing uphill” is
performed by the FLIPOBSERVABLE subroutine. The idea
is to try “flipping” variables in the observation vector until
a “flip” leads to an improvement in the fault cardinality. In
some of the cases, however, “flipping” the value of an ob-
servable will lead to a decrease in the associated number of
faults. In these cases Algorithm 3 considers accepting the
“worse” observation in its current state vc with some prob-



ability depending on the current temperature T . This is to
allow the search to “escape”, if stuck in a local optimum.
The probability of accepting a state vn which is worse

than the current one in vc, defines the process of “cooling”,
which gives the name of Algorithm 3. The temperature T ,
which starts from Tmax and decreases gradually to Tmin, re-
sults in such “worse” states being accepted with higher prob-
ability in the beginning of each iteration and decreasing the
likelihood of such “flips” towards the end of the search, i.e.,
when the search “freezes”.
The “value flips” are repeated until the current observa-

tion in vc becomes consistent with a minimal-diagnosis fault
of improved cardinality, computed by the evaluation func-
tion f . The implementation of f returns the number of
faults in the minimal cardinality diagnosis consistent with
SD ∧ α and is the same as in Algorithm 3. In particular it
calls COUNTFAULTS and FINDMCCARD functions.
The parameters of the simulated annealing algorithm

which affect its performance and the quality of the MFMC
observation vectors are Tmin, Tmax,N , and r. These are the
starting and “cool-off” temperatures, the number of “tries”
and the decay rate, respectively. Similar to (Spears 1996),
we will choose r = (|OBS| ∗ M)−1. The rational behind
this choice of r is that we would like a “faster” decaying
when the problem size or the number of random restarts in-
crease. Increasing the temperature range Tmax − Tmin or
reducing the decay rate r would allow more thorough search
to be performed from each randomly chosen position.
The RAND function returns a normally distributed ran-

dom number x such that 0 ≤ x < 1. In the beginning of the
decaying process T is close to 1, hence the search is stochas-
tic, hence more likely to escape local optima. In the cooling
process the search becomes like an ordinary hill-climbing.

Experimental Results
This section presents an empirical analysis of our algo-
rithms.

Implementation Notes and Test Set Description
Our implementation is approximately 1000 lines of C code
(excluding the diagnosis computation) and is a part of the
LYDIA2 package. Two variants of the critical subrou-
tine for finding a minimal-cardinality diagnosis have been
used. These utilize conflict-based search (Williams& Ragno
2004) and exploitation of structure (Feldman& van Gemund
2006). Despite the above state-of-the-art implementations,
the diagnosis search routine constraints the efficiency of the
MFMC observation vector search, which is not surprising
knowing that we are trying to diagnose circuits with obser-
vations consistent with multiple-faults of large cardinality.
Table 1 summarizes the benchmark we have used for test-

ing of our algorithms. All the models are derived from the
74XXX family of arithmetic circuits.
Some of the basic properties of the models we have used for
benchmarking are shown in Table 1. For the models belong-
ing to IFS, Vw,Hw, andO are the total number of variables,

2This package for model-based fault diagnosis can be down-
loaded from http://fdir.org/lydia/.

Name Description Vw Hw O Cw Cs

74180 9-bit parity check 38 14 12 48 90
74139 2-to-4 decoders 42 18 14 52 106
74153 4-to-1 selector 44 16 14 62 110
74182 4-bit CLA 47 19 14 75 132
74283 4-bit adder 89 40 14 130 250
74L85 4-bit comparator 93 41 14 134 257
74181 4-bit ALU 138 62 22 216 402

Table 1: Basic characteristics of the fault models from the
74XXX circuits family.

the number of assumables |COMPS| and the number of ob-
servables |OBS|, respectively. For the strong-fault models,
used in the testing of Algorithm 2, the number of assum-
ables is Hs = 2Hw, the number of observable variables is
the same as in the weak-fault models and the total number of
variables is Vs = Vw + Hw. Columns Cw and Cs show the
number of clauses in the CNF representations of the weak
and strong system descriptions, respectively.
All the experiments described in this paper are performed

on a host with 1.86 GHz PentiumMCPU and 2 Gb of RAM.

MFMC Vector Sizes and Performance Results
A series of exhaustive MFMC experiments allowed us to
make an interesting observation. For all the benchmark cir-
cuits we have tested, the empirical pdf of the MFMC fault
cardinalities, in respect to the observation vectors, approxi-
mates a binomial pdf within a very small margin. The results
for two of the circuits are plotted in Figure 2.

0 2 4 6 8
0

0.1

0.2

0.3

74139

Faults

F
re
qu
en
cy

0 1 2 3 4 5
0

0.2

0.4
74182

Faults

Figure 2: Empirical distributions of the fault cardinalities
and normal pdf lines.

In the 74182 circuit, for example, given a randomly gener-
ated observation, the probabilities of a nominal kernel di-
agnosis or a quintuple fault are equal and very small. An-
alyzing the reasons for this behavior is a topic of its own,
but our suggestion is that the underlying cause is the uncer-
tainty introduced by the limited observability of the circuits
(observability is defined as the ratio between the number of
observable variables and all model variables).
The two implementations we test in this section are pa-

rameterized as follows. The importance sampling algorithm



uses biasing coefficient k = 25 and the number of sam-
ples is equal to the number of components in the strong-fault
model, i.e., S# = Hs. For the simulated annealing, we have
set Tmin = 0.1, Tmax = 0.105, and N = 4.

Name Te M Ti Mi Ts Ms

74180 1.4 2 0.04 2 0.1 2
74139 13.5 8 0.08 4.9 0.6 7.4
74153 8.8 2 0.08 2 0.2 2
74182 53.4 5 0.23 4.4 2.7 5
74283 371.9 5 5.74 3.9 18 3.9
74L85 196.9 3 3.28 3 14.5 3
74181 − − 596.48 5.4 6114.4 6.5

Table 2: Fault cardinalities and wall-clock times [s] for com-
puting of MFMC observation vectors.

The wall-clock times for the importance sampling and sim-
ulated annealing searches are shown in columns Ti and Ts

of Table 2, respectively. The cardinalities of the MFMC ob-
servation vectors, computed by the two algorithms, are in
Mi and Ms. As both MFMC computation methods in this
paper are randomized, we have averaged the values of Ti,
Mi, Ts, andMs over 10 runs. It was possible to perform an
exhaustive search, in all the test cases except for 74181. The
results are shown in columnsM and Te, the former denoting
the cardinality of the global MFMC optima and the latter –
the computation time.
It is visible from Table 2 that Algorithm 2 outperforms

Algorithm 3 by a factor of 2.5 − 11.7. The cause of this is
mainly in the smaller number of diagnoses which have to be
computed, i.e., the importance sampling is more informed
in reaching a local optimum. The observation vectors com-
puted by Algorithm 2 lead to diagnoses of somewhat smaller
cardinality than these computed by Algorithm 3. The differ-
ence is usually one fault, except in the 74139 circuit.
Figure 3 shows the progress of the MFMC search for two

of the benchmark models. We note that for the 74139 cir-
cuit, the local optimum is found in the third iteration, while
74182 reaches its result from the first attempt. As a result
decreasing N would keep the cardinality of the result but
decrease the number of diagnostic computations.
From Figure 3 it is also visible that it is possible to climb to a
good local optimum from an arbitrary initial random instan-
tiation. This justifies the “observation bit flipping” operator
(implemented in the FLIPOBSERVABLE subroutine of Algo-
rithm 3) for climbing uphill in the stochastic search.

Conclusion
We have described two methods for computing MFMC ob-
servation vectors. The first algorithm, based on importance
sampling, is applicable to a subset of all possible proposi-
tional theories, in particular to strong-fault models. This re-
striction, which does not exist in the simulated annealing
algorithm, results in a smaller number of calls to the under-
lying diagnostic engine and faster diagnostic reasoning.
We have studied the real-world behavior of the two algo-

rithms on a series of combinatorial circuits. In all exper-
iments, the number of faults in the diagnostic results was
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Figure 3: Fault cardinalities during sample simulated an-
nealing sessions.

close to the global optimum: in some cases Algorithm 3
leads to diagnoses having one more fault than those com-
puted by Algorithm 2.
An MBD oracle has been used in both of the algorithms.

The only disadvantage of this is the underlying complex-
ity of the diagnostic algorithms. Existing MBD heuristic
methods, however, are tailored towards testing candidate di-
agnoses in order of likelihood. With the further develop-
ment of the reasoning techniques, like the ones discussed in
this paper, we expect new MBD heuristic methods to be de-
veloped that benefit from focusing the diagnostic search on
high-cardinality diagnoses.
Finding MFMC observation vectors is of significant prac-

tical importance, and we expect more attention in the model-
based reasoning community. Finally, we hope that the
MFMC search will improve the algorithms for MBD, which
in their turn will allow MFMC observation of better cardi-
nality and for bigger models to be computed.
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