
Interchange Formats and Automated Benchmark Model Generators for
Model-Based Diagnostic Inference

Alexander Feldman1 and Gregory Provan2 and Arjan van Gemund1

1Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Mekelweg 4, 2628 CD, Delft, The Netherlands
Tel.: +31 15 2781935, Fax: +31 15 2786632, e-mail: {a.b.feldman,a.j.c.vangemund}@tudelft.nl

2University College Cork, Department of Computer Science, College Road, Cork, Ireland
Tel: +353 21 4901816, Fax: +353 21 4274390, e-mail: g.provan@cs.ucc.ie

Abstract

This article proposes a Diagnosis Interchange Format (DIF),
an XML-based interchange format for Model-Based Diagno-
sis (MBD). Its main purposes are to allow sharing of diag-
nostic models, observation data and fault hypotheses, and to
facilitate empirical comparative study of the performance of
existing and future MBD implementations. In this paper, we
describe the syntax and the semantics of DIF as well as the
principles underlying its design. Several examples are used to
illustrate the use of DIF, with a particular focus on expressing
structure, state and constraints for various domains. We also
recommend several sources for creating a standardized MBD
benchmark set and discuss possible extensions in subsequent
versions of the format. We compare the proposed format to
related approaches used in some modeling languages.

Introduction
The field of Model-Based Diagnosis (MBD) is in need of
a repository of standardized models in order to test the
efficiency of algorithms and the adequacy and efficiency
of modeling representations. Algorithmic development in
other AI disciplines (SAT, CSP, automated planning) has
benefited from the existence of widely-accepted problem
representations and benchmark sets. Since MBD covers
a heterogeneous range of domains, ranging from discrete
circuit through continuous value dynamical systems like
ecosystems, standardizing an MBD representation is a chal-
lenging task. This paper defines an interchange format for
MBD. We show how this model covers a wide range of
model types, and compare this language with languages for
related purposes.
From the algorithmic perspective, the task of finding

a kernel diagnosis of minimal cardinality is ΠP
2 -complete

(Eiter & Gottlob 1995), but it is not known whether it is
computationally difficult for the “average” real-world sys-
tem. There has been no systematic study of the com-
plexity of diagnosing real-world problems, and few good
benchmarks exist to aid in such a study. The pool of ex-
isting benchmarks can be supplemented by automatically-
generating models (Provan & Wang 2007b) that have the
properties of real-world models.
The ISCAS-85 set of combinatorial circuits (Brglez & Fu-

jiwara 1985) has been used as the de facto benchmark in
MBD. Unfortunately, the hierarchy in the original ISCAS-

85 circuits has been flattened-out and they have been dis-
tributed in a simple Netlist format. Instead of the original
flat representation, we have translated it to our suggested in-
terchange format the reverse engineered ISCAS-85 circuits
(Hansen, Yalcin, & Hayes 1999).
From the representational perspective, several different

modeling representations have been developed, such as
the Java-Based Model Programming Language (Williams
& Nayak 1996), KOALA (Benazera, Travé-Massuyès, &
Dague 2002), HYBRID CC (Carlson & Gupta 1998), LY-
DIA (Pietersma, Feldman, & van Gemund 2006), many of
which are mutually incompatible. Hence, model-sharing un-
der current conditions is virtually impossible. These issues
can be overcome by developing a standard model format.
We do not expect diagnostic reasoners to support the full

Diagnosis Interchange Format (DIF) specification; e.g., a
solver capable of reasoning in propositional logic would
not support hybrid constraints. Rather, a diagnostic solver
should specify the domain and constraint types it supports,
the DIF specification would provide a model classification
framework.
The rest of this paper is organized as follows. The next

section discusses related work. The third section describes
the syntax and semantics of DIF. Finally, we propose some
initial benchmark problems and discuss future work.

Related Work
We now summarize a selection of formats that have influ-
enced the design of DIF, and some tools of practical consid-
eration.

Interchange Formats
An interchange format provides a standardized, declarative
semantics, i.e., the meaning of expressions in the represen-
tation can be understood without appeal to an interpreter for
manipulating those expressions. Related formats include:
DTIF: The IEEE Digital Test Interchange Format specifies
the information content and the data formats for the inter-
change of digital test program data between digital auto-
mated test program generators (DATPGs) and automatic
test equipment (ATE) for board-level printed circuit as-
semblies. This information can be broadly grouped into
data that defines the following: UUTModel, Stimulus and
Response, Fault Dictionary, and Probe.

Although this is an IEEE standard, it is restricted to digital
circuits and test-based diagnostic methodologies.

HSIF: The Hybrid Systems Interchange Format (Pinto et
al. 2006) is probably the most advanced and most com-
prehensive format in existence today. It covers arguably
the complete range of systems that one may want to diag-
nose. The main issue is extending this framework to make
it more diagnosis-specific.
This framework is focused more on modeling systems,
and less on interface specifications for implementing em-
bedded systems.

OSA-CBM: The Open-Systems Architecture for Condi-
tion-Based Maintenance interchange format1 was devel-
oped specifically for diagnosis and condition-based main-
tenance. In addition, it provides code-generators that can
be used for creating interfaces for distributed sensors, ac-
tuators, and other inference modules.
In comparison to HSIF, this framework is higher-level,
as it does not define semantics for equation types (e.g.,
dynamical equations), or of the transformations among
equation types. This framework is focused more on in-
terface specifications for implementing systems, and not
on the specifics of modeling.

KIF: The Knowledge Interchange Format is a comput-
er-oriented language for the interchange of knowledge
among disparate programs. It has declarative semantics;
it is logically comprehensive (i.e., it provides for the ex-
pression of arbitrary sentences in the first-order predicate
calculus); it provides for the representation of knowledge
about the representation of knowledge; it provides for the
representation of nonmonotonic reasoning rules; and it
provides for the definition of objects, functions, and re-
lations.

XMLBIF: The Bayesian Network XML Interchange For-
mat represents directed acyclic graphs that can be associ-
ated to conditional probability measures for discrete vari-
ables, with the possibility that decision and utility vari-
ables be present in the graph.

PSL: The Process Specification Language defines a vendor-
and representation-neutral formalism for manufacturing
processes. This may be important for representing life-
cycle analysis issues, and not just one-time model specifi-
cations. Process data is used throughout the life cycle of a
product, from early indications of manufacturing process
flagged during design, through process planning, valida-
tion, production scheduling and control. In addition, the
notion of process also underlies the entire manufacturing
cycle, coordinating the workflow within engineering and
shop floor manufacturing.

In building our proposal, we have considered a number of
specialized formats for representing data structures of inter-
est to MBD. These include BDDs, Petri Nets (Billington &
others 2003), Netlists and decomposable NNFs (Darwiche
2001). Furthermore, many digital circuits are expressed in

1Cf. http://osacbm.org/.

VHDL and Verilog, and we envision tools for translating
subsets of these two languages.

Diagnosis Model Auto-Generation
The literature does not contain any work, to our knowledge,
that addresses diagnosis model generation for applications
other than for circuit diagnosis. The most closely-related
work in the literature is the work on diagnostic model gener-
ation for circuits (Vogels et al. 2004). This work addresses
the detailed simulation of IC circuit defects (such as metal
spot defects or defects in circuit geometry), which itself if
a big task. This methodology is important in that very few
other researchers have addressed the need to have libraries of
components with detailed physics-based failure-mode defi-
nitions. This approach, however, has focused on very small
circuits, such as a 4-bit ALU, and does not use algorithms
for generating arbitrary circuit topologies. Further, the de-
fect simulation cannot be generalised beyond circuits, as it
adopts a number of circuit-specific heuristics and parame-
ters.
Recently, a diagnosis generation methodology based on

graphical model generators has been proposed (Provan
2006; Provan & Wang 2007a). This work is aimed at auto-
generating models for arbitrary systems, given a library of
model components. The proposed methodology first gener-
ates a graph representing the system topology, and then as-
signs system functionality using the component library, in-
serting a component for each node in the graph describing
the system topology.
This approach is significant in that it can capture arbi-

trary systems. However, it is as accurate as (a) the topol-
ogy generation mechanism and (b) the component library.
Random graph generators can effectively capture the gross
topology of complex systems, but much work remains to
more precisely capture detailed structure of particular do-
mains. For example, the actual structure of the WWW is
known to differ from the predictions of random graph mod-
els (Donato et al. 2004). In contrast, the practical applica-
tions and validity of the circuit-synthesis methods are more
heavily-researched than the applications and validity of the
random-graph generation approach; as a consequence, the
models that a circuit-synthesis method generates are prov-
ably closer to the real-world targets (circuits) than are the
models generated by random-graph generators are to their
real-world targets, such as the WWW (Donato et al. 2004).
However, many aspects of the circuit-generation algorithms
are so particular to the precise architectures of circuits that
they are not generalisable to other domains.

Circuit Benchmark Auto-Generation
A second group of related work addresses automatic bench-
mark circuit generation for improving the design of pro-
grammable logic architectures. A considerable literature ex-
ists for auto-generating circuits, such as (Stroobandt, Ver-
plaetse, & van Campenhout 1999; Pistorius, Legai, & Mi-
noux 2000; Christie & Stroobandt 2000; Hutton, Rose, &
Corneil 2002; Chang, Cong, & Xie 2003; Kundarewich &
Rose 2003; Phillips & Hauck 2005; Chan, Congy, & Sze
2005; Holland & Hauck 2006).

Benchmark circuit auto-generation originally was based
on applying a circuit generation rule, called Rent’s rule
(Landman& Russo 1971), but has since expanded to include
other methods. Two recent surveys include (Chang, Cong,
& Xie 2003; Adya et al. 2003).
We now describe the basic methodology of automatic dis-

crete circuit generation, pointing out the similarities and dif-
ferences to our approach for automating the generation of
diagnostic models for circuits and other domains.
Most automatic circuit generation methods are based

on one of two methods, which we call equivalence-class
and Rent-based methods. The equivalence-class methods
(Ghosh & Brglez 1999) are based on perturbing a seed cir-
cuit to generate a circuit with similar overall structure but
different local connectivity. The Rent-based methods use a
power-law methodology, called Rent’s rule, to generate cir-
cuits (Christie & Stroobandt 2000). Both methods can gen-
erate combinational and sequential circuits, where we de-
fine a combinational circuit as one without any distinguished
clock inputs (e.g., as provided by D-type Flip-Flop compo-
nents), and a sequential circuit as a circuit with distinguished
clock inputs. Most auto-generation algorithms first create
the combinational circuits, and then use a hierarchical ap-
proach to generate the sequential circuits for each level of
delay (Hutton, Rose, & Corneil 2002).
In the following, we examine the combinational circuit

generation process, since this process has some proper-
ties that are potentially generalisable to any system model;
sequential circuit generation addresses issues that are re-
stricted to a specific class of temporal feedback systems with
distinguished clock inputs, features that are not present in
many other domains. Moreover, because of its greater gen-
erality, we focus in this article on the Rent-based combina-
tional circuit methods.
Rent’s rule (Landman & Russo 1971), was originally de-

rived empirically, but has since been given mathematical un-
derpinnings. Rent’s rule describes the relationship between
the number of external signal connections to a logic block
(called the number of “pins”) and the number of logic gates
in the logic block.
Rent’s rule is given by:

T = tnξ,

where (a) T is the number of input/output pins,2 (b) n is
the number of gates, (c) and the (internal) Rent exponent
0 ≤ ξ ≤ 1 represents the level of placement optimization
within a statistically homogeneous circuit, which is charac-
terized by an interconnection topology with an average node
degree t (or in engineering terms, t terminals per gate). From
an engineering perspective, ξ = 1 corresponds to no place-
ment optimization, i.e., the circuit is interpreted as a random
gate arrangement. In actual circuits, the parameter ξ is de-
pendent on circuit-topology: microprocessors, gate-arrays,
and high-speed computers are characterized by Rent expo-

2In graph-theoretic terms, if we represent component i using
a node in a topology graph, then the degree ki of component i
corresponds to the set of terminals of component i in the circuit-
generation domain.

nents of ξ = 0.45, 0.5, and 0.63, respectively (Christie &
Stroobandt 2000).
Several tools have been developed to generate benchmark

circuits based on Rent’s rule and other approaches. Exam-
ples of such tools are CIRC and GEN3. These tools can
be integrated within the diagnostic model-generation frame-
work described in this article.
Circuit generation algorithms have proven very useful for

applications like FPGA design; however, they are restricted
to a specific domain, and focus on topology optimisation,
rather than on the issues of fault isolation that are relevant
to diagnosis benchmarks. As a consequence, we have devel-
oped a more general approach to benchmark generation that
has some commonality with circuit generation algorithms,
but also some key differences.
The key commonality between our approach and these

circuit generation algorithms is that we first generate the
underlying system topology, using a graph generation algo-
rithm. Specifically, we use a graph generation algorithm that
generates a graph with a power-law topology. This approach
is a generalisation of the Rent-based topology algorithm,
in that Rent’s rule uses a power-law method that is almost
identical to the power-law approaches developed within the
random-graph community.
Both the Rent-based and random-graphmethods focus on

defining a graphical structure G(V, E) in which the nodes
V correspond to components and the edgesE correspond to
wires between the components.
Key differences between these areas include (1) the ex-

tension of the system topology to incorporate functional-
ity, and (2) the tuning of the topology and functionality.
With regard to (1), our diagnostic benchmark generator ex-
tends the system topology to incorporate a functional de-
scription that describes both normal and anomalous system
behaviours. With regard to (2), the diagnostic benchmark
generator methodology has parameters that can be tuned to
generate models to approximate particular domains, but as-
sumes that these parameters are domain-dependent and need
to be supplied by domain experts. In the absence of good
domain parameters, the generated models will approximate
real models with good accuracy, the quality of which can be
improved with the use of precise parameters.

Diagnosis Interchange Format
TheDIF supports representation of models, observation vec-
tors and diagnoses. Modeling semantics is a topic of re-
search and it is unlikely that our proposal would accommo-
date all the different approaches, especially when consid-
ering hybridization with continuous systems and time and
state. In designing DIF, our main goals have been simplic-
ity, translatability from existing implementation formats and
extensibility.

Syntax and Semantics of DIF
As the standards described in this paper do not imply volu-
minous data according to current computing standards, and
all the formats expose an ample amount of structure, our

3See http://www.eecg.toronto.edu/∼jayar/software/.

Subsystem

System

type : String

Component
Instantiation

Subsystem
Instantiation

Transition

id : String

Instantiation

type : String

Connection

Integer Variable

Variable TermFinite Domain

Domain

type : String

Boolean Domain Probability

Arithmetic
Function

Function
Term

Conjunction

Equivalence

Implication

Dusjunction

Negation

Constant Term

Prologue

properties : List

+

Next

only.

transitions

Allowed in

Component

type : String

Sentence

Literal

Term

Value

Variable

id : String

type : Enum

Bool Variable

Constraint

Real Variable

FDI Variable

ModelStructure

Temporal
Operator

1 1

*

1

1

11

1

1

1

1

*

1

2

1

1

1

1

1

1

1

1

1

*

*

1

*

*1

1

2

*

1 1

1

1

*

0,2

*

1

*

1
*

2

2

2

2

*

1

1

1 11

1

11

Figure 1: A visual representation of the DIF 1.0 model syntax (function classification, individual functions and some of the
variable attributes are omitted).

benchmark is encoded using eXtensible Markup Language
(XML) (Bray et al. 2006). The latter choice greatly simpli-
fies the syntactical validation and representation, and allows
the user to borrow from the vast amount of XML tooling.
The DIF XML schema is visualized in Figure 1 and its full
specification is available for download from (obscured for
anonymity).

A DIF model has four sections: prologue, domains, struc-
ture, and components. The prologue describes the main
characteristics of the model, i.e., the types of the constraints,
fault-modeling, etc. The structure displays the model hierar-
chy that is essential for many of the MBD algorithms exist-
ing today. The domain description specifies symbolic values
for all the Finite Domain Integer (FDI) variables (Booleans
are treated as a special case of many-valued logic). Finally,
for each component a set of constraints and transitions are
specified. In particular, DIF supports constraints ranging
from logic to differential equations.

DIF supports any First-Order Logic (FOL) sentence as a
constraint, hence it provides for a large range of modeling
techniques. The variables in a component or a subsystem,
except Boolean or FDI can be in the real or (infinite) integer
domains. For the latter two variable types, it is not neces-
sary to specify domains. The framework is suitable for both

abductive and consistency-based diagnosis.
Next, we discuss the DIF representation of some models.

A Combinatorial Circuit Example Expressing structure
is important, both from the algorithmic and modeling per-
spective. A DIF model typically specifies a number of hier-
archical systems and a set of components. A system, then,
can instantiate an arbitrary number of subsystems and com-
ponents (cyclic instantiations are forbidden). Each system
also defines a set of variables and how these variables are
mapped into the systems and components it references. The
use of hierarchy is best illustrated with the circuit shown in
Figure 2.
The circuit is a full adder, each gate of which is allowed to
fail without specifying faulty behavior. It consists of two
half adders and an OR gate. The XML element in Figure
3 represents the structure in DIF (the variable mappings are
omitted from the example for brevity). The top level system
instantiates two copies of the half adder subsystem and an
OR logic gate. The half adder uses an XOR and an AND
gate. Note, that in the actual model the top-level system has
some internal variables (f , p, and q) representing the wire
connections.
The structure of a model is, essentially, a rooted, edge-
labeled multidigraph G = 〈V, E〉, where the set of nodes

i1

half adder

ci

i2
f

q

p

Σ

co

half adder

Figure 2: A full adder circuit.

<model>
...

<structure>
<system type=”fullAdder ”>

<subsysInst type=”halfAdder ” id=”ha1” />
<subsysInst type=”halfAdder ” id=”ha2” />
<compInstance type=”orGate” id=”orGate” />

</system>
<subsystem type=”halfAdder ”>

<compInst type=”xorGate” id=”xorGate” />
<compInst type=”andGate” id=”andGate” />

</subsystem>
</structure>

Figure 3: Structure describing element of a full adder circuit.

V consists of all systems and components and there is an
edge in E for each instantiation. One of the nodes is dis-
tinguished as a root (top-level) system. Constructing an al-
gorithm which converts the hierarchical representation into
a “flat” one is straightforward, by recursively merging the
nodes of G.
A component model is given as a set of multi-valued

propositional Wff over a set of variables V . A multi-
valued variable vi ∈ V takes a value from a finite do-
main, which is a set of symbols (with 1-to-1 mapping to
Z

+) Di = {s1, s2, . . . , sm}. All the domains of FDI vari-
ables have to be explicitly specified in the second section of
a DIF model. In the combinatorial circuit used for illustra-
tion, all variables are in the Boolean domain and the DIF
definition of the latter is shown in Figure 4.

<domains>
<booleanDomain type=”bool”>

<value default=”true”>true</value>
<value>false</value>

</booleanDomain>
</domains>

Figure 4: A DIF specification of the Boolean domain.

A positive multi-valued literal l+j is a Boolean function

l+j ≡ (vi = dk), where vi ∈ V and dk ∈ Di. A nega-
tive multi-valued literal l−j is defined in a similar fashion. A
multi-valued propositionalWff, then, is a formula over the
multi-valued literals l1, l2, . . . , ln, and the standard Boolean
connectives: ¬ (negation), ⇔ (equivalence), ⇒ (implica-
tion), ∧ (conjunction), and ∨ (disjunction).

<component type=”xorGate”>
<var domain=”bool” id=”h” type=”health”/>
<var domain=”bool” id=”o”/>
<var domain=”bool” id=”i1”/>
<var domain=”bool” id=”i2”/>
<constraint>

<imply><lit id=”h”/>
<equiv><lit id=”o”/>

<equiv><lit id=”i1”/>
<not><lit id=”i2”/></not>

</equiv>
</equiv>

</imply>
</constraint>

</component>

Figure 5: A weak-fault model of an XOR logic gate.

Figure 5 shows the DIF specification of an XOR gate which
is a part of the sample full adder circuit, introduces above.
The component defines four variables: h, o, i1, and i2, of
which h is assumable. The single constraint specifies the
propositionalWff h ⇒ (o ⇔ (i1 ⇔ ¬i2)), the interpreta-
tion of which stipulates that the component health variable h
is true iff the output o is true only when the values of i1 and
i2 are different. The model of the component is weak-fault,
i.e., if all the n components in a model are constrained by
expressions in the form hi ⇒ Fi, 1 ≤ i ≤ n, where hi is an
assumable and does not appear in any of the propositional
Wff Fj , 1 ≤ i ≤ n, then the Minimal Diagnosis Hypothesis
(de Kleer, Mackworth, & Reiter 1992) holds.
Reasoning about time and state is central to MBR. Our

discussion continues with some ways to represent dynamic
characteristics of systems in DIF.

Models with State DIF allows every component to define
temporal constraints. The only assumption is that a diagnos-
tic reasoner would maintain discrete time with limited hori-
zon, and at every time step, it would copy all the variables
and all the constraints for the current time instance.
A temporal constraint is a sentence in FOL that has vari-

ables from two instantiation of the system description in
time. The only difference between a temporal constraint
and a combinatorial constraint is that a temporal constraint
allows the use of a “temporal operator”.
An example of such a temporal operator is© (next) (the

others include � (globally), ♦ (eventually)) with semantics
similar to the one in (Manna & Pnueli 1992). Note that©
can only appear in front of a variable term, in which case
¬© x is equivalent to©¬x.
Our second example clarifies the DIF temporal semantics

by discussing a model of a resettable pneumatic valve with

stateful behavior. The state transition diagram of this valve
is shown in Figure 6.

stuck
closed

opened

failed reset

idle

stuck

idle stick closed

closeopen

reset

reset

idle

stick opened

idle

failed reset

closed

opened

Figure 6: A state transition diagram of a resettable valve.

The XML element, shown in Figure 7, represents one of
the possible transitions from Figure 6. It says that, given
a positive assignment to the “reset” variable in the current
instance, and if the valve is stuck open, it will change its
state to closed when time progresses.

<transition id=”reset”>
<constraint><lit id=”c”>reset</lit></constraint>
<constraint>

<imply><lit id=”s”>stuckOpened</lit>
<next><lit id=”s”>closed</lit></next>

</imply>
</constraint>
<constraint>

<imply><lit id=”s”>stuckClosed</lit>
<next><lit id=”s”>opened</lit></next>

</imply>
</constraint>

</transition>

Figure 7: Valve transition from state “stuck closed” to
“open” upon reset.

It is not possible to show all transitions of the valve in DIF
as the full model specifies a transition for every edge of the
graph shown in Figure 6. These constraints, however, are
very similar to the one we have discussed in this section.
Before we continue with an example having an ODE for a

constraint, it worth to note that transitions are nothing more
than set of constraints, having a name and applied by the
reasoners progressively as the time expands.

Hybrid Systems Consider a numeric model of the prim-
itive water clock, shown in Figure 8. The water level h
(which has been used in ancient times for approximating the
time of the day) in time t is the solution of the ODE specified
next to the figure. It is possible to build a fault model which
specifies that the component is healthy if the predicted value
of h, ĥ, according to the numerical solution of the ODE, is
within a certain threshold δ, or |h − ĥ| > δ.
The rest of the parameters in Figure 8 are as follows. Aw and

dh
dt

= −k
√

h

h k = cAh

√
2g

Aw

f ⇔ (ĥ < h − δ) ∨ (ĥ > h + δ)

Figure 8: A set of hybrid constraints of a water clock fault
model.

Ah are the cross-sectional areas of the water and the whole,
respectively, and c is a friction constant. The gravity acceler-
ation is denoted as g. The full model uses the Boolean fault
variable f and an observable variable ĥ in the real domain.
The DIF constraint, shown in Figure 9 specifies an ODE

with t as the independent variable and both t and h in the
continuous domain (both have type “real” in the variable
declaration section of the full water clock model).

<equiv>
<fder><var id=”h” /><var id=”t” /></fder>
<uminus>

<prod>
<var id=”k” /><sqrt><var id=”h” /></sqrt>

</prod>
</uminus>

</equiv>

Figure 9: An ODE constraint for the water clock shown in
Figure 8.

Having discussed DIF in specifying a wide range of models,
we can continuewith the remaining two data structure which
are part of an MBD problem: observations and diagnoses.

Representation of Observations In addition to models,
an MBD format should specify syntax and semantics for ob-
servation vectors (sensor data). The semantics of an obser-
vation vector in DIF is illustrated in Figure 10. An obser-
vation vector in DIF is always a conjunction of variable as-
signments.

History Observation

seq : Integer

Value

id : String

Model *1

11 1 *

Figure 10: A visual representation of the DIF 1.0 observa-
tions syntax.

Figure 11 shows the DIF representation of a sample obser-

vation vector for the full-adder from Figure 2 (representing
the propositional Wff OBS2 = i1 ∧ i2 ∧ ci ∧ ¬Σ ∧ co).
An observation refers to a specific instant in time. For the
main MBD problem, a reasoner is supplied with a model in
DIF and a sequence of observations in time, and it computes
diagnoses, the format of which will be described later.

<obs seq=”2”>
<lit id=”i1”/><lit id=”i2”/><lit id=”ci”/>
<not><lit id=”sum”/></not><lit id=”carry”/>

</obs>

Figure 11: An observation of the full adder from Figure 2.

As the problem of finding a kernel diagnosis is know to be
ΠP

2 -complete, most of the MBD implementations employ a
heuristic based on the minimum number of failing compo-
nents, or smallest probability failure mass (the DIF model
language has a straightforward way for assigning probabili-
ties to variable values). Hence the goal of an MBD bench-
mark is to provide such an observation which leads to a ker-
nel diagnosis of minimum cardinality having the maximum
number of failing components. The latter problem is a topic
on its own with many applications in MBR.

Representation of Diagnoses The last part of our speci-
fication concerns the diagnoses as computed by MBD im-
plementations. As both the observation and the diagnoses
are sets of variable assignments, their formats are very sim-
ilar. The class diagram for the DIF diagnosis representation
is shown in Figure 12.

Diagnosis

Fault Catalog

Model

Value

id : String

Observation

seq : Integer

1

1

*

1

*

1

1

1

*

Figure 12: A visual representation of the DIF 1.0 diagnoses
syntax.

A diagnosis file specifies zero or more diagnoses for some
or all of the time instances at which observations have been
performed. The observation of the full-adder (cf. Figure
2) from Figure 11 has been performed at time instance 2
according to its seq attribute. All kernel diagnoses of this
observation are shown in Figure 13.
We use the dotted notation in the literal identifiers to specify
the subsystems in which the component resides. The two
possible kernel diagnoses shown in Figure 13 are each of
the two XOR gates of the full-adder being faulty.

Conclusion
This paper addresses two major problems. First, it suggests
a format for model exchange, observation vectors and di-

<obs seq=”2”>
<diagnosis>

<not><lit id=”ha1.xorGate.h”/></not>
</diagnosis>
<diagnosis>

<not><lit id=”ha2.xorGate.h”/></not>
</diagnosis>

</obs>

Figure 13: An diagnosis of the full adder from Figure 2,
given the observation from Figure 11.

agnoses in MBD. The paper considers a wide spectrum of
modeling techniques, and the implementation of its sugges-
tion would allow exchange of component libraries, models,
sensor data and facilitate cross-validation of diagnostic re-
sults.
The second problem we address, is finding a compact rep-

resentation for existing models. By using inheritance and
specialization, we show how a very broad modeling lan-
guage like DIF can be specialized to represent explicit mod-
els such as digital circuits. This specialization decreases the
modeling complexity and allows modelers to use DIF for
fault-diagnosis of Boolean circuits, for example, while not
being burdened with the language’s expressiveness outside
the domain of propositional logic.
While DIF may be compact for representing a wide range

of systems, MBD employs a variety of representations al-
lowing trade-offs in time, space, and off-line time (i.e.,
knowledge compilation approaches). A future extension of
this standard would benefit from supporting compact com-
piled representations like NNF (Negation Normal Forms),
OBDD (Ordered Binary Decision Diagrams) and others.

Acknowledgments
This work has been supported by STW grant DES.7015 and
SFI grant 04/IN3/I524.

References
Adya, S. N.; Yildiz, M. C.; Markov, I. L.; Villarrubia, P. G.;
Parakh, P. N.; and Madden, P. H. 2003. Benchmarking for
large-scale placement and beyond. In Proc. ISPD’03, 95–
103.

Benazera, E.; Travé-Massuyès, L.; and Dague, P. 2002.
State tracking of uncertain hybrid concurrent systems. In
Proc. DX’02, 106–114.

Billington, J., et al. 2003. The Petri net markup language:
Concepts, technology, and tools.

Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; Maler, E.;
and Yergeau, F. 2006. Extensible markup language (XML)
1.0. Technical Report REC-xml-20060816,W3C.

Brglez, F., and Fujiwara, H. 1985. A neutral netlist of 10
combinational benchmark circuits and a target translator in
fortran. In Proc. ISCAS’85, 695–698.

Carlson, B., and Gupta, V. 1998. Hybrid cc with interval
constraints. In Proc. HSCC’98, 80–95.
Chan, T.; Congy, J.; and Sze, K. 2005. Multilevel general-
ized force-directed method for circuit placement. In Proc.
ISPD’05, 185–192.
Chang, C.-C.; Cong, J.; and Xie, M. 2003. Optimality and
scalability study of existing placement algorithms. In Proc.
DAC’03, 621–627.
Christie, P., and Stroobandt, D. 2000. The interpretation
and application of Rent’s rule. IEEE Trans. Very Large
Scale Integr. Syst. 8(6):639–648.
Darwiche, A. 2001. Decomposable negation normal form.
Journal of the ACM 48(4):608–647.
de Kleer, J.; Mackworth, A.; and Reiter, R. 1992. Char-
acterizing diagnoses and systems. Artificial Intelligence
56(2-3):197–222.
Donato, D.; Laura, L.; Leonardi, S.; and Millozzi, S. 2004.
Simulating the webgraph: A comparative analysis of mod-
els. Computing in Science and Engineering 6(6):84–89.
Eiter, T., and Gottlob, G. 1995. The complexity of logic-
based abduction. Journal of the ACM 42(1):3–42.
Ghosh, D., and Brglez, F. 1999. Equivalence classes of cir-
cuit mutants for experimental design. In Proc. ISCAS’99,
432–435.
Hansen, M.; Yalcin, H.; and Hayes, J. 1999. Unveiling the
ISCAS-85 benchmarks: A case study in reverse engineer-
ing. IEEE Design & Test 16(3):72–80.
Holland, M., and Hauck, S. 2006. Improving perfor-
mance and robustness of domain-specific CPLDs. In Proc.
FPGA’06, 50–59.
Hutton, M. D.; Rose, J.; and Corneil, D. G. 2002. Au-
tomatic generation of synthetic sequential benchmark cir-
cuits. IEEE Trans. on CAD of Integrated Circuits and Sys-
tems 21(8):928–940.
Kundarewich, P. D., and Rose, J. 2003. Synthetic cir-
cuit generation using clustering and iteration. In Proc.
FPGA’03, 245–245.
Landman, B. S., and Russo, R. L. 1971. On pin versus
block relationship for partitions of logic circuits. IEEE
Trans. Computers 20(6):1469–1479.
Manna, Z., and Pnueli, A. 1992. The Temporal Logic of
Reactive and Concurrent Systems: Specification. Springer-
Verlag.
Phillips, S., and Hauck, S. 2005. Automating the layout
of reconfigurable subsystems using circuit generators. In
Proc. FCCM’05, 203–212.
Pietersma, J.; Feldman, A.; and van Gemund, A. 2006.
Modeling and compilation aspects of fault diagnosis com-
plexity. In Proceedings of IEEE AUTOTESTCON-06.
Pinto, A.; Carloni, L. P.; Passerone, R.; and Sangiovanni-
Vincentelli, A. 2006. Interchange formats for hybrid sys-
tems: Abstract semantics. In Proc. Hybrid Systems: Com-
putation and Control, 491–506.
Pistorius, J.; Legai, E.; and Minoux, M. 2000. Partgen: a
generator of very large circuits to benchmark thepartition-

ing of FPGAs. IEEE Trans. on CAD of Integrated Circuits
and Systems 19(11):1314–1321.
Provan, G., and Wang, J. 2007a. Evaluating the adequacy
of automated benchmark model generators for model-
based diagnostic inference. In Proc. of IJCAI’07, 99–104.
Provan, G., and Wang, J. 2007b. Automated benchmark
model generators for model-based diagnostic inference. In
Proc. IJCAI’07, 513–518.
Provan, G. 2006. Automated benchmark model generators
for model-based diagnostic inference. In Proc. DX’06, 99–
104.
Stroobandt, D.; Verplaetse, P.; and van Campenhout, J.
1999. Towards synthetic benchmark circuits for evaluat-
ing timing-driven cad tools. In Proc. ISPD’99, 60–66.
Vogels, T.; Zanon, T.; Desineni, R.; Blanton, R.; Maly,
W. Brown, J.; Nelson, J.; Fei, Y.; Huang, X.; Gopalakr-
ishnan, P.; Mishra, M.; Rovner, V.; and Tiwary, S. 2004.
Benchmarking diagnosis algorithms with a diverse set of ic
deformations. In Proc. ITC’04, 508–517.
Williams, B., and Nayak, P. P. 1996. A model-based
approach to reactive self-configuring systems. In Proc.
AAAI’96, 971–978.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

