
Generalizing Global Constraints Based
on Network Flows

Igor Razgon1,2, Barry O’Sullivan1,2, and Gregory Provan2

1 Cork Constraint Computation Centre, University College Cork, Ireland
2 Department of Computer Science, University College Cork, Ireland

{i.razgon|b.osullivan|g.provan}@cs.ucc.ie

Abstract. Global constraints are used in constraint programming to help users
specify patterns that occur frequently in the real world. In addition, global con-
straints facilitate the use of efficient constraint propagation algorithms for prob-
lem solving. Many of the most common global constraints used in constraint
programming use filtering algorithms based on network flow theory. We show
how we can formulate global constraints such as GCC, Among, and their com-
binations, in terms of a tractable set-intersection problem called Two Families
Of Sets (TFOS). We demonstrate that the TFOS problem allows us to represent
tasks that are often difficult to model in terms of a classical constraint satisfaction
paradigm. In the final part of the paper we specify some tractable and intractable
extensions of the TFOS problem. The contribution of this paper is the charac-
terisation of a general framework that helps us to study the tractability of global
constraints that rely on filtering algorithms based on network flow theory.

1 Introduction

Global constraints are used in constraint programming to help users specify patterns
that occur frequently in the real world (see, for example, [8–13]). In addition, global
constraints facilitate the use of efficient constraint propagation algorithms for problem-
solving. Many of the most common global constraints used in constraint programming
employ filtering algorithms based on network flow theory. Examples are the Global
Cardinality Constraint (GCC) [11], and the Among Constraint [3], which generalize a
number of other global constraints such as NotAllEqual, Max, and Member constraints.

A real-life problem usually needs combinations of global constraints, rather than a
single constraint. Some of these combinations may be efficiently solved, but generally
they are intractable [13]. A question that arises in this context is to describe a tractable
problem that can represent various combinations of network flow-based global con-
straints. This question is addressed in this paper. In particular, our contributions are as
follows.

1. We define a model that includes a ground set V and two families F1 and F2 of
subsets of V . Any two elements of each family are either disjoint or contained
one in the other. Each subset of V contained in these families is associated with
two nonnegative integers called minimal and maximal cardinalities. We refer to the
model as TFOS, which is an acronym for Two Families Of Sets.

2. Given a TFOS model (V, F1, F2) we say that a subset of V is valid if the size of
its intersection with each set contained in F1 or F2 lies between the cardinalities
assigned to that set. We define a TFOS problem as finding the largest valid subset
of V and study the tractability of the problem.

3. We show that GCC and Among constraints, as well as (some of) their combina-
tions considered in [13], can be represented by the TFOS model. In the proposed
representation, V is the set of all values of the CSP being considered, F1 is the fam-
ily of all domains, F2 represents the global constraints. By introducing additional
sets to F1, we demonstrate that it is possible to represent as a TFOS problem some
optimization tasks that seem difficult to express as a classical CSP.

4. We propose a propagation algorithm that can be used to speed up search in cases
where part of some intractable problem is presented as a TFOS problem. The prop-
agation algorithm is based on the approach suggested in [11].

5. We discuss possible extensions of the TFOS model. In particular we show tractabil-
ity of the weighted TFOS problem. Then we prove that introducing an additional
family of sets of V with the same properties as the families of the TFOS model
makes the resulting problem NP-hard. Finally, we show that we can preserve poly-
nomial solvability by restricting the properties of the third family.

Several other approaches to the design of generalized global constraints are de-
scribed in [2, 4, 13]. The work reported in [13] is most closely related to our approach:
it proves the tractability of two types of combinations of GCC and Among constraints.
However, the TFOS model is more general because, as we show further in this paper,
it can express the combinations of constraints considered in [13] as well as a number
of additional combinations of constraints that seem hard to express by that approach.
The authors of [2] propose a method to design tractable logical combinations of some
primitive constraints. However, their method is unable to express some basic network
flow-based global constraints such as Among. The approach described in [4] has an em-
phasis different from ours: it aims at the design of a unifying language for expressing
global constraints, but this language does not necessarily enforce tractability.

The rest of the paper is organized as follows. Section 2 provides the necessary back-
ground. Section 3 defines the TFOS problem and proves its tractability. Section 4 de-
scribes possible applications of the proposed model. Section 5 provides a scheme for
developing a propagation algorithm for TFOS. Section 6 discusses possible extensions
of the model. The implications of the TFOS model on the modelling process are dis-
cussed in Section 7. A number of concluding remarks are made in Section 8.

2 Background

Given a directed graph G = (V,E) with two specified nodes s and t called source and
sink, a flow in G is a function from the set of arcs E(G) to the set of non-negative
integers1 that satisfies the following conditions: for each vertex v except s and t, the
amount of flow entering v equals the amount of the flow leaving v, the amount of the
flow entering s as well as the amount of flow leaving t is 0.

1 Generally, a flow does not have to be integral but this restriction is sufficient here.

The maximum flow problem, in its simplest formulation, associates non-negative
integer capacities with each edge of G and asks for the maximum flow from s to t such
that the flow delivered through each edge does not exceed its capacity. The problem
can be solved by picking an initial flow and augmenting it iteratively by finding a path
from s to t in the residual graph obtained from G by removing some edges and adding
“opposites” to other edges (see [1], Sections 6.3 and 6.4 for a detailed description). The
time required by each iteration is proportional to the sum of the number of vertices
and edges of G. The flow, due to its integrality, is augmented by at least one at each
iteration. Hence, the resulting complexity is the complexity of one iteration multiplied
by the maximum flow. Polynomial-time algorithms for the maximum flow are well-
known [1].

The constraint satisfaction problem (CSP) is defined on a set of variables V AR =
{var1, . . . , varn} and a set values V AL = {val1, . . . , valm}. Each variable has a
domain, which is a subset of V AL. The objective is to assign each variable with exactly
one value from its domain subject to certain constraints. A constraint specifies a subset
S of variables and restricts tuples of values allowed to be assigned to the variables of S.
The set S is called the scope of the constraint. The scope of a global constraint may be
of an arbitrary size, even including all the variables. In this paper we consider two types
of global constraints: the Global Cardinality Constraint (GCC) [11] and the Among
constraint [3]. The former constraint specifies for each value of V AL its minimal and
maximal number of occurrences in a solution of the given CSP. The latter constraint
specifies for a subset T of V AL the minimal and maximal number of occurrences of
values of T in a solution of the given CSP.

The CSP is intractable in general but there have been many tractable classes studied
(see, for example, [6]). In particular, a CSP constrained by a single GCC or a single
Among constraint is tractable because it can be transformed into a network flow prob-
lem [13].

3 The TFOS Model

Let V be a set of vertices. Let F1 and F2 be two families of nonempty subsets of V
such that any two sets that belong to the same collection are either disjoint or contained
one in the other. The intersection between sets from different families may be arbitrary.
Each set Y ∈ F1 ∪ F2 is associated with two non-negative numbers called minimal
and maximal cardinalities that do not exceed |Y |. We refer to the model (V, F1, F2) as
TFOS, which is an abbreviation of Two Families Of Sets. Let X be a subset of V such
that for each element Y of F1 or F2, the size of X ∩ Y lies between the cardinalities
associated with Y 2. We call X a valid subset of V . The task of the TFOS problem is to
find the largest valid subset of V . Consider the following example of application of the
proposed model.

Example 1. Consider a scheduling problem with sets J and E of jobs and employees,
respectively. Each job is specified by a subset of employees who can perform this job.

2 If Y ∈ F1 ∩F2 and, consequently, Y is associated with two distinct pairs of cardinalities, one
for F1, the other for F2, this condition should be satisfied for both pairs of cardinalities.

Each employee is specified with the minimum and the maximum number of jobs to
be performed. The task is to assign each job with exactly one employee so that no
employee violates her (or his) restriction of the minimal and maximal allowed number
of jobs.

(a) An example problem. (b) The corresponding TFOS model.

Fig. 1. An illustration of Example 1.

In Figure 1 we have three jobs and three employes. Figure 1(a) shows which job can
be performed by which employee: the vertex denoting a job is adjacent to the vertices
denoting the employees that can perform this job. The corresponding families of sets
are shown in Figure 1(b). In particular, one family of sets denotes sets V1, V2, V3, each
of them includes Job/Employee pairs with the same first element. The second family of
sets includes sets U1, U2, and U3 which unite the pairs according to the same second
element.

More formally, let (V, F1, F2) be a TFOS model such that V is the set of all pairs
(Ji, Ek) where Ek is an employee who can perform job Ji. Assume that there are n
jobs and m employees. Then F1 contains n subsets of V and the i-th subset contains all
pairs with the first element Ji. The cardinalities for each set of F1 are both 1, expressing
the requirement that exactly one employee is to be assigned to a job. The family F2

contains m subsets of V with the k-th subset containing all pairs having Ek as the
second element. The cardinalities of the subset corresponding to employee Ek are the
minimal and the maximal number of jobs allowed to Ek. It is not hard to observe that
any feasible solution of the specified TFOS problem represents a valid assignment of
jobs to employees. Observe that the resulting TFOS model is equivalent to a CSP with a
GCC constraint, where F1 represent domains of variables and F2 represent cardinality
constraints assigned to values. N

Now we prove the tractability of the TFOS problem. Given a TFOS model (V, F1, F2),
we assume that both F1 and F2 cover all vertices of V . If, for example, the set V \

⋃
F1

is not empty, we can add it to F1 accompanied with cardinalities 0 and |V \
⋃

F1|.
Clearly, the resulting TFOS problem is equivalent to the original one.

Let F1 = {S1, . . . , Sm}, F2 = {T1, . . . , Tk}. We define the graph G(F1, F2) as
follows. The vertices of the graph are s, t, s1, . . . , sm, t1, . . . , tk, where si and ti corre-
spond to the respective sets, s and t are the source and the sink of the flow. There is an
edge (s, si), for every Si which is maximal in F1 and an edge (ti, t) for every Ti which
is maximal in F2. There is an edge (si, sj) whenever Sj is a maximal subset of Si and
an edge (tj , ti) whenever Tj is a maximal subset of Ti. Finally, let V (Si, Tj) ⊆ Si∩Tj

be the set of all u such that Si and Tj are minimal in their families subject to containing
u. There is an edge (si, tj) whenever V (Si, Tj) is not empty.

Observation 1 We make the following observations.

1. G(F1, F2) has exactly one edge entering any si and exactly one edge leaving any
ti.

2. G(F1, F2) has O(|V |) vertices and O(|V |) edges.

Proof. See Appendix A.

Now we associate with each edge of G(F1, F2) its minimal and maximal capacities.
The edge entering any si or leaving any tj is associated with the respective minimal
and maximal cardinalities of the corresponding set. Finally, the minimal capacity of
any edge between si and tj is 0, the maximal capacity is |V (Si, Tj)|.

We will prove that the size of the largest valid subset of V equals the amount of the
maximal flow that can be delivered from s to t in G(F1, F2). The proof is divided into
two lemmas (see Appendix A). In the first one we show that for any valid X ⊆ V , there
is a flow of size |X|. The other lemma shows that for any flow from s to t there is a
valid set X whose size equals the amount of the delivered flow. Combining these two
lemmas together yields the desired result.

Theorem 1. Given a TFOS model (V, F1, F2), the problem of finding the largest valid
subset of V can be solved in O(|V |2). (In some cases there may be no valid subset at
all. In this case, a network flow algorithm reports the absence of feasible flow.)

Proof. The maximum flow in graph G(F1, F2) is at most |V |, and all the capacities are
integral. Consequently, a traditional iterative approach to solving the maximum flow
problem with maximal and minimal capacities (see [1], Section 6.7) solves the problem
in O(|V |) iterations. The complexity of each iteration is proportional to the sum of
the number of vertices and the number of edges of G(F1, F2), which is O(|V |) from
Observation 1. �

An illustration of an application of Theorem 1 is presented in Figure 2. In this figure
we have a binary CSP: ellipses represent variables, black circles represent the values,
and the edges represent the binary conflicts. In this particular example all the conflicts
form cliques. So, we can introduce two families of sets {V1, V2, V3, V4} where for each
family at least one value has to be selected and the family {U1, . . . , U5} of cliques
where at most one value can be selected. According to Theorem 1, this CSP can be
solved in polynomial time.

Fig. 2. An illustration of an application of Theorem 1.

Remark. If a TFOS model represents a CSP with n variables and the maximum domain
size d then V corresponds to the set of all values of the CSP and has size O(nd); the
maximum flow corresponds to a solution of the CSP which has size n. Hence the flow
algorithm takes O(n2d).

4 Applications

This section shows that the GCC and the Among constraints, as well as (some of)
their combinations, can be represented by the TFOS model. Moreover, it shows how
to represent some optimization tasks as a TFOS problem that are hard to express using
the classical CSP paradigm.

4.1 GCC and Value-Disjoint Among Constraints

Consider the scheduling problem described in Example 1. We specify additional re-
quirements for this problem. Assume that the employees are partitioned according to
their professions, based on the minimal and the maximal number of jobs allowed to
be performed by persons of each profession. It is not hard to update the TFOS model
shown in Example 1 so that it expresses the new requirement. For each profession P ,
add to F2 a set that includes all pairs (Ji, Ek) such that Ek has profession P . Set the
minimal and maximal cardinalities of that set equal to the minimal and maximal number
of jobs, respectively, allowed to fellows of profession P .

It can be shown that this TFOS model is equivalent to a CSP with a combination of
GCC and value-disjoint Among constraints [13]. In particular, the value-disjoint Among
constraints are represented by the new sets added to F2. The domains of variables and
the cardinality constraints are represented as shown in Example 1.

The resulting TFOS model can be further updated to express new requirements. For
example, imagine that the jobs specified in our example scheduling problem span some
period of time, say, a week, i.e. the existing constraints restrict the number of jobs in
a week. In addition we can restrict the number of jobs performed by each particular
person in a day. Let P1, . . . , P7 be the partition of jobs according to the day they are to
be performed. For each employee Ek, we add to F2 seven new subsets, the j-th subset
contains all elements (Ji, Ek) where Ji is a job of Pj that can be performed by Ek. The
cardinalities of j-th subset are the minimal and the maximal number of jobs allowed for
Ek on j-th day. Observe that the new elements of F2 preserve the property of the TFOS
model.

4.2 GCC and Variable-Disjoint Among Constraints

In the scheduling problem presented in Example 1, assume that only a subset F ⊆ E
of employees is constrained by restricting the minimal and maximal number of jobs.
Assume, as in the previous subsection, that the jobs of J span a time period of a week
and we constrain the number of jobs performed by all the employees in a day. That
is, we add seven new restrictions to the example problem that specify the minimal and
the maximal number of jobs performed by the employees of F in each of the seven
days of a week. These new restrictions can be represented as variable-disjoint Among
constraints. It can be shown that the resulting problem is equivalent to the combination
of GCC and Among constraints if the number of partition classes of J is not necessarily
seven, but an arbitrary integer.

The description of the obtained scheduling problem in terms of the TFOS model
is not straightforward, because the sets corresponding to the variable-disjoint Among
constraints cannot be added to any of the families of sets defined in Example 1 without
violating the properties of these families. To obtain the description, observe that there
are three possible cases of the example scheduling problem. In the first case, for each
job there is an “unconstrained” employee that can perform this job. This case is trivial
because each job can be assigned to such an employee without violating any constraint.
In the second case, E = F , that is, there are no unconstrained employees at all. In this
case, partition the sets in F1 into seven classes according to the day the corresponding
jobs are assigned. The Among constraints can be expressed by unions of the sets that
belong to the same partition class. The cardinalities for each set are the minimal and the
maximal number of jobs allowed on the corresponding day. The sets corresponding to
Among constraints can be added to F1 because they do not violate the required property
that any two sets of F1 are either disjoint or contained one in the other.

In the last case of the example scheduling problem, unconstrained employees can
perform only a part of the required jobs but not all. In this case, the TFOS model is con-
structed in two stages. In the first stage, we take the TFOS model described in Example
1 and replace F1 by the “projection” of F1 to F . That is, we replace each set in F1 by a
subset that contains all the elements (Ji, Ek) such that Ek ∈ F . We associate the sets
that have lost some of their elements as a result of this replacement with cardinalities 0
and 1, the cardinalities of the other sets both remain 1. In the second stage the Among
constraints are introduced by analogy with the previous case. It can be shown that if
the resulting TFOS problem does not have a feasible solution, the example scheduling

problem does not have a solution either. Otherwise, take any valid set of the obtained
TFOS model and assign the jobs “unassigned” by this set to respective unconstrained
employees. The resulting assignment is a solution to the problem.

4.3 Compact CSP Modeling

Consider again the scheduling problem and the corresponding TFOS model described
in Section 4.1. Recall that the sets of family F1 represent domains of the corresponding
CSP. A relative inflexibility of CSP as a modelling language is that each variable must
be assigned with exactly one value from its domain. In this subsection we demonstrate
that the TFOS model does not have this disadvantage. In particular we show that by
introducing a number of additional subsets into family F1 of the TFOS model being
considered, we can represent a scheduling problem that seems difficult to be expressed
in terms of classical CSP.

Recall that the scheduling problem described in Section 4.1 assigns exactly one em-
ployee to each job and that the set of all employees is partitioned according to their
profession. Assume that we would like to assign each job not with a single employee
but with a crew of employees with a specified minimal and maximal number of fel-
lows of each profession participating in the crew. To introduce these new constraints
into the TFOS model, we partition each set S of F1 according to the profession of the
employees with which the elements of S correspond. We associate each partition class
with the cardinalities equal to the minimal and the maximal number of fellows of the
corresponding profession allowed to be assigned to the job corresponding to S. Then
we add the resulting new sets to F1.

5 Towards a Propagation Algorithm for TFOS

In this section we present a Propagation Algorithm (PA) for the TFOS problem. The
input of the algorithm consists of a TFOS model (V, F1, F2) and an integer k. If there
is no valid subset of V of size at least k, the algorithm reports infeasibility. Otherwise,
it outputs the subset of V containing the elements that do not belong to any valid subset
of size at least k. Before presenting the PA itself, let us specify how it can be used to
speed up the search.

We assume that an optimization problem is formulated as finding a largest sub-
set of V subject to certain restrictions, a part of which are families F1 and F2 with
their minimal and maximal cardinalities, and that the problem is solved by a systematic
Search Algorithm (SA). In every iteration, the SA possesses additional data: the size
m of the largest known subset of V satisfying all the restrictions and a subset V ′ of
V . The SA tries to extend V ′ to a size of at least m + 1. The PA decides whether the
extension is possible if the only restrictions considered are those imposed by families
F1 and F2. If yes, the PA specifies which elements of V \ V ′ cannot participate in such
a set. Clearly, if the PA reports infeasibility, the SA must backtrack immediately. If a
set of infeasible elements is specified, the SA discards them in its attempt to extend
V ′, thus pruning the branches of the search tree. Note that the PA considers the TFOS
model (V \ V ′, F ′1, F

′
2), where the elements of F ′1 and F ′2 are obtained from F1 and

F2, respectively, by appropriate restriction of their sets and updating cardinalities. In
particular, a set S ∈ F1 is transformed into a set S \ V ′ of F ′1 with the cardinalities
max(l(S)−|S∩V ′|, 0) and u(S)−|S∩V ′|, where l(S) and u(S) are the cardinalities
of S in F1. The transformation from F2 to F ′2 is analogous. The minimal size of a valid
subset “pursued” by the PA is m− |V ′|+ 1. (If the problem being considered is a CSP,
the minimal size of a valid subset always equals to the number of unassigned variables.)

Given a TFOS model (V, F1, F2) and an integer k as input, the PA proceeds in
two stages. In the first stage, the feasibility of a valid subset of size k is checked. In
particular, the PA constructs a graph G′(F1, F2) obtained from G(F1, F2) by adding a
new node s′ and an additional edge (s′, s) of capacity k. Then the maximum flow from
Y s′ to t is computed. Clearly a valid subset of size k is feasible only if a flow of size
k can be delivered from s′ to t. If a valid set of the required size is found out to be
feasible, the algorithm goes on to the second stage: computing the subset of infeasible
values of V .

Proposition 1. Let u be a value of V . Let F1(u) and F2(u) be the minimal elements of
F1 and F2 that contain u. Let e be an edge of G′(F1, F2) from the node corresponding
to F1(u) to the node corresponding to F2(u).3 There is a feasible subset X of V such
that |X| ≥ k and u ∈ X if and only if there is flow of size at least k from s′ to t and the
flow delivered through edge e is nonzero.

Thus, the set of the infeasible elements of V can be extracted in O(|V |) from the set
of infeasible edges of G′(F1, F2), i.e., the edges that are left “untouched” by any maxi-
mum flow from s′ to t. These edges can be found by an approach suggested in [11]. Ac-
cording to that approach we consider the residual graph GR obtained from G′(F1, F2)
by delivering flow Y . The graph GR is partitioned into strongly connected components.
The infeasible edges are those whose ends do not belong to the same component. Parti-
tioning into strongly connected components for GR can be done in O(|V |) applying an
algorithm by Tarjan (see, for example, [5]). Hence the complexity of the propagation
algorithm is determined by the time complexity of the maximum flow computation,
which is O(|V |2) by Theorem 1. Finally, note that the if the TFOS model being con-
sidered represents a CSP, the complexity of the PA, which, in terms of CSP, is called
achieving generalized arc-consistency, is O(n2d).

6 Extensions of the TFOS model

6.1 The Weighted TFOS Problem

Given a TFOS model (V, F1, F2) and a weight function w associating each element of
V with a weight, the task of the weighted TFOS problem is to find the largest valid
subset of V having the smallest weight (the weight of a set is computed as the sum
of weights of its elements). By analogy with the unweighted TFOS problem, it can be
shown that the weighted TFOS problem generalizes various network flow-based global
constraints with costs [12].

3 There is such an edge because u ∈ V (F1(u), F2(u)), hence V (F1(u), F2(u)) is not empty
and thus corresponds to an edge by construction of G(F1, F2).

Theorem 2. The weighted TFOS problem is tractable.

Proof. The weighted TFOS problem can be transformed into the problem of finding the
minimum cost flow ([1], Chapter 10) in a graph Gw(F1, F2) that can be obtained from
G(F1, F2) by introducing the following modifications. The edges entering the nodes
corresponding the elements of F1 or leaving the nodes corresponding to the elements
of F2 are associated with zero costs. Each edge between a node corresponding to a
set A ∈ F1 and a node corresponding to a set B ∈ F2 is split into |V (A, B)| edges
corresponding to elements of V (A, B). The edge corresponding to each element u ∈
V (A, B) is associated with cardinalities 0 and 1 and with cost w(u). The correctness of
the transformation can be proved in a way similar to that employed in Lemmas 1 and 2
(presented in the appendix). �

6.2 Three Families of Sets cause NP-hardness

If we allow more than two families with the property of families of a TFOS model, the
corresponding optimization problem can be shown to be NP-hard.

Theorem 3. An extension of the TFOS problem that includes three families of sets is
NP-hard.

Proof. The NP-hardness can be shown by the reduction from a version of 3-SAT where
each variable occurs at most one as a positive literal and and most twice as a negative
literal. This problem is well known to be NP-complete (see, for example, the classical
”Computational Complexity” book of Papadimitriou). Let F be a 3-CNF formula over
a set of variables v1, . . . vn such that each vi appears at most once and each ¬vi appears
at most twice. Let Z be a binary CSP with variables corresponding to the clauses of
F , the values of the domain of each variable correspond to the literals of the respective
clause, two values are incompatible if they correspond to the positive and the negative
literal of the same variable. It is not hard to see that Z is soluble if and only if F is
satisfiable.

Observe that Z has two types of conflicts. A conflict of the first type can be called
an isolated conflict. It involves a pair of values (val1, val2) which are incompatible but
no other value is incompatible with val1 nor with val2. A conflict of the second type
can be called a complex conflict. It involves a triple (val1, val2, val3) such that val1 is
incompatible with both val2 and val3 and no other value is incompatible with either of
val1, val2, val3.

We introduce the three families of sets structure (U, F1, F2, F3) as follows. The
set U includes all the domain values of Z (the values of different domains are consid-
ered distinct). F1 is the family of all domains. The set F2 is constructed as follows.
For each isolated conflict (val1, val2), the set {val1, val2} ∈ F2. For each complex
conflict (val1, val2, val3), the set {val1, val2)} belongs to F2. No other sets are con-
tained in F3. The set F3 contains only sets {val1, val3} for each complex conflict
(val1, val2, val3). It is not hard to observe that the sets within each family are pair-
wise disjoint. The associate the upper and lower bounds 1 with the sets of F1, upper
bound 1 and lower bound 0 are associated with the sets of F2 and F3.

Observe that (U,F1, F2, F3) has a valid set of size n = |F1| if and only Z is soluble.
Indeed, if Z is soluble then any solution of Z is a valid set of (U, F1, F2, F3) because it
has exactly one value within each domain (i.e. each set of F1) and contains no pairs of
conflicting values (i.e has at most one value within each set of F2 and F3). Conversely,
any valid set has exactly one value in each domain and satisfies all the constraints of Z,
hence it is a solution of Z. �

6.3 Preserving Tractability: Restrictions on the third family

Although the optimization problem based on three families of sets is NP-hard in general,
it could be solved efficiently if we restrict the properties of the third family. The follow-
ing example demonstrates this possibility. We define the three family of sets problem
(3FOS) as a four tuple (V, F1, F2, F3), where the first three components are the same
as in the TFOS model and F3 is a family {Y1, . . . Yl} of subsets of i such that Yi ⊂ Yj

whenever i > j. Assume that the minimal cardinalities associated with the elements of
F3 are all zeros. Let u1, . . . ul be the respective maximal cardinalities. We may assume
that ui < uj whenever i > j as if not, the cardinality constraint imposed by ui is
redundant.

Theorem 4. The 3FOS problem can be solved efficiently using an algorithm for the
weighted TFOS problem as a procedure.

Proof. We associate the elements with weights as follows. All elements of V \ Y1 are
associated with zero costs. All elements of Y1 \ Y2 are associated with some large pos-
itive weight W , say 1000. For i > 1, let K be the weight associated with the elements
of Yi−1 \ Yi. Then the elements of Yi \ Yi+1 (or Yi in case i = l) are associated with
weight K ∗ ui−1/ui. Observe that X ⊆ V violates the cardinality constraints imposed
by F3 if and only if the weight of X is greater then W ∗ u1. This observation suggests
the following way of solving the problem.

Solve the weighted TFOS problem (V, F1, F2) with the weights assigned as shown
below. If there is no feasible valid subset of V then the original problem has no feasible
valid subset either. If the resulting largest valid subset X has a weight smaller than or
equal to W ∗u1 then X is a solution of the original problem. Otherwise, we learn that the
original problem has no solution of size |X|. To introduce this additional constraint, we
add to F1 set V with cardinalities 0 and |X|−1. (If such a set already exists, we adjust its
maximum cardinality.) Then we solve the resultant weighted TFOS model again. This
process may be repeated a number of iterations. It stops if in some iteration a feasible
solution of weight at most W ∗ u1 is found or infeasibility is reported. Otherwise, the
maximal allowed cardinality of set V in family F1 is decreased by 1. Infeasibility is
reported if this maximal cardinality has been reduced to 0 with no feasible solution
found before. �

Although the described example is rather artificial, it it shows the existence of a non-
trivial polynomially solvable optimization problem based on more than two families of
sets.

7 Modelling Intractable Problems using the TFOS Model

In this section we demonstrate that the TFOS model can be useful for modelling in-
tractable problems. The main benefit of the TFOS model is that it allows us to model
intractable problems in a way that makes constraint propagation more efficient. An in-
tractable problem is usually modelled as a conjunction of global constraints [13, 14].
Each constraint in the conjunction is propagated separately in a number of iterations
until no value can be removed from the domains of the constrained variables. Hence,
the number of constraints in the conjunction has a multiplicative factor on the complex-
ity of the propagation algorithm and it is desirable that the number of such constraints
be as small as possible. We show now that there are hard problems that can be modelled
using a much smaller number of TFOS structures as compared to other types of global
constraints.

Consider, for example, the problem obtained at the end of Section 4.1. One can
imagine that this problem represents one shift of some timetabling problem that can
occur in real applications. A timetabling problem usually consists of a number of shifts
with intersecting sets of jobs associated with different shifts that make the problem
hard [7]. It follows from the description in Section 4.1 that such a hard timetabling
problem can be modelled using one TFOS structure per shift, while the number of GCC
and Among constraints is linear in the number of variables participating in a shift (a lin-
ear number of among constraints is needed, for instance, to represent constraints added
at the end of Section 4.1). Moreover, the separate propagation of the GCC and Among
constraints cannot discard all the values that might be discarded by the propagation of
TFOS structures.

8 Conclusion

We have presented an optimization problem that we termed the TFOS problem. We
showed that various combinations of network flow-based global constraints can be ex-
pressed in terms of the TFOS problem. We also demonstrated that the TFOS model
can describe scenarios that seem difficult to express in terms of a classical CSP. We
presented global constraints in terms of a scheduling problem rather than an abstract
setting, which demonstrated that the TFOS model can be useful for modelling sophis-
ticated resource allocation tasks. We identified some tractable and intractable exten-
sions of the TFOS model. In particular, we showed that the weighted TFOS problem
is tractable and that with three families of sets, though intractable in general, it can be
made tractable by applying restrictions on the properties of the third family. Finally, we
discussed the implications of the TFOS model on the modelling process.

While this paper has raised a route for generalizing collections of flow-based global
constraints, much remains to be done. Firstly, it would be interesting to implement our
proposed framework and compare its efficiency against more standard approaches to
solving collections of flow-based global constraints. Secondly, while we have outlined a
propagation scheme for TFOS, a generic filtering algorithm must be developed in order
to make the approach more general. A possible direction of further theoretical research
is to identify other tractable generalizations of the TFOS problem and to design methods

for coping with intractability (such as approximation or parameterized algorithms) for
intractable extensions of the TFOS problem.

Acknowledgements

Razgon and O’Sullivan are supported by Science Foundation Ireland (Grant No. 05/IN/I886).
Provan is supported by Science Foundation Ireland (Grant No. 04/IN3/I524).

References

1. R. Ahuja, T. Magnatti, and J. Orlin. Network Flows. Prentice Hall, 1993.
2. F. Bacchus and T. Walsh. Propagating logical combinations of constraints. In IJCAI, pages

35–40, 2005.
3. N. Beldiceanu and E. Contjean. Introducing global constraints in CHIP. Mathematical and

Computer Modelling, 12:97–123, 1994.
4. C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The range and roots constraints:

Specifying counting and occurrence problems. In IJCAI, pages 60–65, 2005.
5. T. Cormen, C. Leiserson, R. Rivest, and Clifford Stein. Introduction to Algorithms, Second

Edition. The MIT Press and McGraw-Hill Book Company, 2001.
6. R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.
7. A. Meisels and A. Schaerf. Modelling and solving employee timetabling problems. Annals

of Mathematics and Artificial Intelligence, 39:41–59, 2003.
8. G. Pesant. A regular language membership constraint for finite sequences of variables. In

CP, pages 482–495, 2004.
9. C.-G. Quimper, A. Lopez-Ortiz, P. vanBeek, and A. Golynski. Improved algorithms for

the global cardinality constraint. In Principles and Practice of Constraint Programming-
CP2004, pages 542–556, Toronto, Canada, sep 2004. Springer.

10. J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings of
AAAI, pages 362–367, 1994.

11. J.-C. Régin. Generalized arc consistency for global cardinality constraint. In AAAI/IAAI,
Vol. 1, pages 209–215, 1996.

12. J.-C. Régin. Arc consistency for global cardinality constraints with costs. In CP99, pages
390–404, 1999.

13. J.-C. Régin. Combination of among and cardinality constraints. In CPAIOR 2005, pages
288–303, 2005.

14. J.-C. Régin and Jean-Francois Puget. A filtering algorithm for global sequencing constraints.
In CP97, pages 32–46, 1997.

A Intermediate Proofs from Observation 1 to Theorem 1

Observation 1 We make the following observations.

1. G(F1, F2) has exactly one edge entering any si and exactly one edge leaving any
ti.

2. G(F1, F2) has O(|V |) vertices and O(|V |) edges.

Proof. Each observation is proven separately.

1. If Si is maximal then (s, si) is the only edge that enters si. If Si is not maximal,
assume that there are two sets Sj and Sf such that Si is a maximal subset of both
of them. From the structure of F1, either Sf ⊆ Sj or Sj ⊆ Sf . The former case
contradicts Si being the maximal set contained in Sj . In the latter case, there is the
same contradiction regarding Si and Sf . The proof for ti is symmetric.

2. The statement regarding the number of vertices easily follows from the observation
that the number of sets in F1 as well as in F2 is at most 2∗|V |−1. This observation
can be proven by induction on |V |. It is immediate if |V | = 1. For |V | > 1, F1 may
contain (in the worst case) V itself and a partition of V into n, (n ≥ 2) subsets of
sizes y1, . . . yn. By the induction hypothesis, i-th partition class together with all
its subset sum up to at most 2 ∗ yi − 1. Summing these numbers together we get
2 ∗ |V | − n subsets that together with V itself are at most 2 ∗ |V | − 1 subsets.
To prove the upper bound on the number of edges, observe that there is at most one
edge entering a node corresponding to an element of F1 and at most one edge leav-
ing a node corresponding to an element of F2. It follows that we need to check only
the number of edges connecting the nodes corresponding to elements of different
families. To this point note that each of these edges corresponds to a non-empty
subset of V and that the subsets associated with different edges do not intersect. �

Lemma 1. Let X be a valid subset of V . Then there is a flow of size |X| from s to t.

Proof. We construct the flow as follows. Associate every edge (si, tj) with the flow
|X∩V (Si, Tj)|. Having associated the edges (si, tj) with the appropriate flows, proceed
as follows. Whenever there is vertex si such that all the edges leaving si have already
been associated with their flows and the edge entering si has not been yet, associate the
edge entering si with the flow equal to the sum of flows on the edges leaving si. Repeat
analogously for ti with the only difference that the edge leaving ti is associated with
the sum of flows on the edges entering ti. The obtained assignment of flows guarantees
that the flow entering s as well as the flow leaving t is zero and that the flow entering
each intermediate node equals the flow leaving that node. In the rest of the proof, we
show that the constructed flow “respects” all the capacities and has size |X|.

Claim. The flow entering any si equals |Si ∩ X| and the flow leaving any tj equals
|Tj ∩X|.

Proof. We prove the claim regarding s1, . . . , sm; the proof regarding t1, . . . , tk is sym-
metric. Assume that s1, . . . , sm are ordered in such a way that i < j whenever Si ⊆ Sj .
The proof is by induction on this sequence. Let e1, . . . , el be the edges leaving s1. Due
to minimality of S1 the heads of the edges correspond to sets T ′1 . . . T ′l of F2. Denote
X ∩ V (S1, T

′
i) by X ′i . Observe that X ′1, . . . , X

′
l is a partition of X ∩ S1. Indeed, any

two X ′y and X ′z are disjoint because any u ∈ X ′y ∩ X ′z implies that one of T ′y and T ′z
is contained in the other one contradicting the minimality assumption for the larger set.
For any u ∈ X ∩ S1, the set S1 is the minimal one that contains u just because it is
a minimal set in F1. Let T ′ be the minimal set in F2 that contains u. Clearly, there is
an edge between the vertices corresponding to S1 and T ′, hence there exists a j such
that T ′ = T ′j and u belongs to X ′j . We have proved that X ′1 . . . X ′l are disjoint and
cover all the vertices of X ∩S1. Hence, they form a partition of X ∩S1. Consequently,

|S1 ∩X| = |X ′1| + . . . + |X ′l |. Recall that |X ′j | is exactly the flow assigned to ej and
the flow on the edge entering S1 is the sum of flows on all ej . The validity of the claim
for S1 follows immediately.

Consider now si for i > 1. Let e1, . . . , el be the edges leaving si. The head of every
ej is either some sy or some tz . In the former case, let X ′j = Sy ∩X , in the latter case
let X ′j = V (Si, Tz)∩X . Similar to the case with S1, we can show that X ′1, . . . X

′
l form

a partition of X ∩ Si. Observe that the flow assigned to every ej is exactly |X ′j |: if the
head of ej is some sy , it follows from the induction hypothesis taking into account that
y < i; if the head of ej is some tz , the observation follows from the initial assignment
of flows. Taking into account that |Si ∩ X| = |X ′1| + . . . + |X ′l | and that the flow on
the edge entering Si is the sum of flows on the edges leaving Si, |Si ∩X| is exactly the
flow on the edge entering si. �

Considering that X is a valid set, it respects the minimal and the maximal cardinal-
ities of all the sets in F1 and F2. It follows that the flow assigned to the edge entering
each si is valid and leaving each tj is valid. For the edges of type (si, tj), the validity
follows by definition of the flow on these edges.

It remains to show that the amount of flow delivered from s to t is exactly |X|. To
this point observe that the amount of flow leaving s is the sum of flows entering the
nodes corresponding to the maximal sets of F1. Let S′1, . . . , S

′
l be these maximal sets.

Clearly, |S′i ∩ X| is exactly the flow entering each vertex s′i. Taking into account that
each element of X belongs to some S′i, we obtain X = |S′1 ∩X|+ . . . |S′l ∩X|. �

Lemma 2. Let F be a valid flow from s to t. Then there is a valid set X such that |X|
equals the amount of flow that leaves S.

Proof. For every edge e between vertices si and tj , fix X(e) ⊆ V (Si, Tj) such that
|X(e)| is the amount of flow on edge (si, tj). There is such an X(e) since the maximal
capacity on the edge is |V (Si, Tj)|. Let X be the union of all X(e).

Using the inductive argument analogous to the one used in proof of Lemma 1, we
can show that the flow entering every si and leaving every tj equals |Si ∩ X| and
|Tj∩X|, respectively. Taking into account that the flow is valid, the number of elements
of every Si and Tj contained in X satisfies their minimal and maximal cardinalities. �

