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This article addresses the presence and size of basic functional modules (mo-
tifs) in complex systems. The current view of motifs is that they are small
modules of 3-4 “nodes”, where a node is interpreted as a primitive compo-
nent, such as a primitive logic gate (AND, OR, NOT) or its correlative in
other domains. For the domain of electrical circuits, we show that standard
function blocks used to build real-world circuits are much larger than the
proposed 3-4 node motifs, and in fact these function blocks themselves are
typically comprised of a collections of several 3-4 node motifs. We argue that,
for this domain, the statistical over-representation of 3-4 node motifs is due
to function blocks consisting of motif-clusters, and not that motifs, in and of
themselves, play any discernible functional role in a circuit.

1 Introduction

In recent years, many real-world complex networks including biological net-
works and engineering/technological networks have been characterized by
global properties such as small world and long-tailed degree distribution [2, 4].
This has enabled the underlying topology of biological systems to readily be
compared with engineering systems, which are traditionally described by net-
works such as flow charts and blueprints. Remarkably, when such a compar-
ison is made, biological networks are seen to share structural principles with
engineered networks [1].

One of the key thrusts of complex systems research has been the topologi-
cal analysis of the network underlying a complex system. One key question is
whether these structures are truly compositional, and, if so, what the under-
lying building blocks are. For example, biological networks have been shown
to be decomposable into modular components that recur across and within
given organisms: various researchers, e.g., (Lee et al. 2002; Shen-Orr et al.
2002; Zak et al. 2003), have argued that the underlying building blocks, or
motifs, consist of interacting groups of between 2 and 4 genes, which control
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transcriptional regulation [Barkai and Leibler (2000)]. Given this evidence,
(Shen-Orr et al. 2002) have proposed motifs as the basic building blocks in bi-
ological networks, and further argue that such motifs possess direct analogues
in technological systems.

Studies of the most significant network motifs found in Escherichia coli
(Shen-Orr et al. 2002) and in Saccharomyces cerevisiae (Lee et al. 2002) in-
dicate that there exists a network structure governing biological regulation
that consists of elementary modules or components, similar to those found in
a digital circuit. It should be noted that these components work together in
a sophisticated pattern of cascaded control loops, which are interconnected
with other (transcriptional) control loops (doyle and stelling 2006). Hence, it
is unclear whether the regulatory and transcriptional functionality is due to
the motifs themselves, or to the complex interactions and structure of the mo-
tifs. In other words, it is not entirely clear what the basic structural building
blocks are.

Modularity is a common property in engineering systems, such as libraries
or cells used in electronic circuits [5] and subroutines in software [16]. It is also
an oft-mentioned property of biological networks. For example, proteins are
known to work in slightly overlapping, co-regulated groups such as pathways
and complexes [1]. Alon [1] proposed a working definition of a module based
on comparison with engineering: A module in a network is a set of nodes
that have strong interactions and a common function. A module has defined
input nodes and output nodes that control the interactions with the rest of
the network. Modules in engineering, and presumably also in biology, have
special features that make them easily embedded in almost any system [1].

The basic building block of the modular structure of biological and engi-
neering networks, termed “motif”, has been defined as a subgraph that occurs
significantly more frequently in real-world networks than expected by chance
alone [15]. The observed over-representation of motifs has been interpreted
as a manifestation of functional constraints and design principles that have
shaped network architecture at the local level. Some researchers believe that
motifs reflect the underlying processes that generated different networks and
may have specific functions as elementary computational circuits in the net-
works [15]. Finding motifs in a new network may help explain what system-
level function the network performs, and how it performs it.

At presently, it is not clear what determines the particular frequencies of
all possible network motifs in a specific network [17]. In terms of the defini-
tions the motifs and the functional modules are very close to each other. For
the moment, we distinguish the two by emphasizing small size and recurrence
for motifs, endowing modules with larger size, and perhaps a composition
dominated by interconnected motifs. Wolf’s point of view on motifs and mod-
ules is that motifs - small, repeated, and conserved regulatory devices - are
arranged by evolutionary or design processes into modules, which are larger,
overlapping, and functionally significant subnetworks [19]. However the rela-
tion between motifs and functional blocks and their method of integration
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into full network has not been previously examined, so we need to investigate
the real-world networks and verify the relation between motifs and functional
modules or blocks. Once a dictionary of network motifs and corresponding
functional modules is established, one could improve the understanding of the
structure and underlying mechanism of complex networks.

In contrast with engineering networks, such as digital circuits, where design
and control are explicitly engineered, our understanding of biological network
design principles and of mechanisms that control the biological information is
very poor. As the high-throughput assays are inherently noisy and biased in
their nature, we can only get very incomplete data on biological networks. At
present many of the connections, numbers and input functions in biological
networks are not known, so the resulting network would still require careful in-
terpretation to extract its underlying biological meaning. The recent research
suggests that it is difficult to gain significant insights into biological function
simply by considering the connection architecture of a gene network, or its
decomposition into simple structural motifs [7].

Function modules can be defined for the main reaction pathways in a living
cell, defined in terms of macromolecular machines with compact structure or
ensembles that change their composition and/or organization during function
[?]. These function modules can be distinguished using a number of properties,
including topological distance, specificity and a characteristic time domain
within which their function proceeds.

Biological systems are also characterized by their dynamical behaviour and
the variability of the functional roles that the sub-structures can play. The dy-
namics of functional modules is critical, as all modules go through functional
cycles, with phases of increasing and decreasing complexity of molecular inter-
actions. Furthermore, each functional module can changes its function based
on a number of intrinsic and extrinsic properties.

In contrast, electronic circuits are typical technology systems following
well-defined engineering design principles. Though the structure of large scale
circuits is also very complex, there is a great advantage of electronic circuits:

• Circuits have function blocks that have a stable function, in contrast to
biological function blocks;

• Circuits have clearly-defined dynamical behaviour, and there are feedback-
free circuits for which the dynamics is basically irrelevant;

• a lot of representative benchmark circuits such as ISCAS benchmark suites
having complete netlists are available and convenient for our experiments
and analysis [6]. Thus, electronic circuits will be a good point to begin our
investigation. In particular, we focus on the class feedback-free circuits,
combinational circuits.

In this paper we firstly detect motifs and extract corresponding instances
in benchmark circuits [18, 15]. We develop a library of circuit function blocks
through a process of reverse-engineering, and identifying function blocks de-
fined in IC databooks, cell libraries and in text books. We then search the
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common functional blocks used in benchmark circuits and discover their in-
stances [5]. Furthermore we compare topologies and instances of motifs and
functional blocks. This provides the first experimental demonstration on the
relation between motifs and functional blocks. The experimental results show
that all motifs are subgraphs of functional blocks, and give a clear explana-
tion for observed over-representation of motifs. We also find that the common
functional blocks discovered in benchmark circuits are motifs themselves and
unlikely to present in the random graphs. This result will give us more clues
on modeling real-world networks. At last we analyze the significance profile
(SP) of benchmark circuits [14], and find that the circuits having similar func-
tions are highly correlated in terms of the SP. It presents an effective approach
based on the SP for comparing the local structure and function of benchmark
circuits.

We organize the remainder of the article as follows. Section 2 discusses
related work on motifs and corresponding functions. Section 3 elaborates our
work on detecting motifs and functional blocks in benchmark circuits and ana-
lyzing the relation between motifs and functional blocks. Section 4 summarizes
our contributions and research work in the future.

2 Notation

We assume that the underlying topology of a system is modeled using a graph
G(V, E), where V is the set of vertices and E the set of edges.3 A subgraph
G′ = (V ′, E′) of G is a graph such that V ′ ⊆ V and E′containsalledgesbetweenV’.
A size-k subgraph is a subgraph that is induced by a vertex set of size k.

For a given integer k, the set of all size-k subgraphs in G can be extracted
into sets Si

k(G), called subgraph classes, where two size-k subgraphs belong
to the same subgraph class if and only if they are isomorphic (that is, if
and only if they are topologically equivalent). Following [18], we define the
subgraph-frequency as follows:

Definition 1 (Subgraph-frequency). The subgraph-frequency Ci
k(G) of a

subgraph class Si
k(G) is defined as

Ci
k(G) = |Si

k(G)| ·

∑

j

|Sj
k(G)|



−1

.

We call GR the class of generalized random graphs keeping the degree
sequence of G [15, 8, 12, 9]. We call Ci

k(GR) the subgraph-frequency of a
subgraph class Si

k(G) within the class GR of generalized random graphs.

Definition 2 (Motif). A motif of a graph G is a subgraph class Si
k(G) such

that Ci
k(G) À Ci

k(GR).
3 We assume that all graphs we consider will be connected.
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This definition of motif focuses on the rate of occurrence of the subgraph
and is independent of the function of the subnetwork. In contrast, we can
define a function block in terms of performing a key function within the overall
system. To capture this notion, we introduce an abstract function φ(H, I)
that a graph H will perform in a system given inputs I. For example, in
a circuit where H corresponds to a NOT gate, φ(H, I) just evaluates the
boolean function ¬I.

We introduce a first basic notion of function block.

Definition 3 (Function block). A function block of a graph G is a subgraph
class Si

k(G) such that function φ(Si
k(G), I) is well-defined and all vertices

V ∈ Si
k(G) participate in φ.

3 Related Work

A number of publications have recently examined the occurrence and func-
tions of the feed-forward loop motif in a variety of networks [7, 13]. They
just focus on the dynamics of the motif alone and don’t involve high-level
functional blocks because our understanding of biological networks is not yet
enough for the reverse-engineering. Additionally, it must be recalled that these
motifs do not exist in isolation within the network, and their behavior will be
heavily influenced by both global and local environment and the state of the
network as a whole. These considerations alone may make attempts to draw
positive conclusions about how a motif will behave overly optimistic Ingram
looked in some detail at dynamics of the bi-fan motif and found that even with
this relatively simple model, the bi-fan motif can exhibit a wide range of dy-
namical responses. This suggests that it is difficult to gain significant insights
into biological function simply by considering the connection architecture of
a biological network, or its decomposition into simple structural motifs [7].

It is of interest to understand how network motifs combine to form larger
structures. Kashtan presents a systematic approach to define ’motif general-
izations’: families of motifs of different sizes that share a common architectural
theme [11]. To define motif generalizations, he defines ’roles’ in a subgraph
according to structural equivalence. For example, the feed forward loop triad,
a motif in transcription, neuronal and some electronic networks, has three
roles, an input node, an output node and an internal node. The roles are used
to define possible generalizations of the motif. The feed forward loop can have
three simple generalizations, based on replicating each of the three roles and
their connections. He presents algorithms for efficiently detecting motif gen-
eralizations and finds networks which share a common motif can have very
different generalizations of that motif. Though this allows generalizing from
small motifs to the larger complexes in which they appear, but a generalized
motif is only a combination of one type of motifs and obviously the general-
ized motif is different from a functional block. And in experiments the author
only analyzes generalizations of the feed-forward loop motif.
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Itzkovitz proposes a repeated pattern discovery approach based on net-
work motifs for simplifying networks by creating coarse-grained networks in
which each node is a repeated pattern in the original network [10]. He defines
coarse-graining units (CGU), which can be used as nodes in a coarse-grained
version of the network. He demonstrates this approach by coarse-graining a
small ISCAS89 benchmark electronic circuit which is given as a netlist of
five gate types (AND, OR, NAND, NOR, NOT) and a D-flipflop (DFF).
He first replaced every DFF occurrence with a standard implementation us-
ing four NAND gates and one NOT gate. All gates were then replaced with
their standard transistor-transistor logic (TTL) implementation. The CGUs
were detected in transistor network to recover the logic gates, and then ap-
plied coarse-graining process at the gate-level network to detect the DFF. At
the last step he continued to detect higher-level CGUs at the gate-DFF-level
and tried to discover the functional blocks by coarse-graining. But CGUs de-
tected in the last step can only be called repeated patterns rather than real
functional blocks. Since functional blocks should provide significant common
functions easily embedded in almost any system and usually can be found in
the standard libraries. And actually the detected CGUs are different from the
functional blocks in the high-level analysis by electronic engineers. The cor-
responding repeated pattern discovery has rather high computing complexity
and can be only applied on very small circuits. It is claimed that coarse-
graining seeks a small dictionary of simple subgraph types in order to help
understand the function of the network in terms of recurring independent
building blocks without prior knowledge of library of functional blocks used
in the design, but it is very hard to achieve in practical applications.

4 Analysis on motifs and functional blocks in digital
circuits

Over the years, there have been many attempts to create and use neutral
benchmark circuits for evaluation of different tools and algorithms. These
benchmark sets are surrogate circuits chosen to represent the kinds of prob-
lems a tool will encounter in real use [6]. The widely accepted ISCAS-85
benchmark suite has been in use ever since being introduced in netlists of
fundamental logic gates at the International Symposium of Circuits and Sys-
tems in 1985. The circuits are industrial designs whose functions and high-
level designs have not been published, both for confidentiality reasons and to
allow them to be viewed as random logic circuits with no significant high-
level structure. But recently in researching test generation techniques, some
researchers found that, in fact, the ISCAS-85 circuits have well-defined, high-
level structures and functions based on common functional blocks such as
multiplexers, adders, carry-look-aheads (CLA) and decoders. They reverse-
engineered the benchmarks, starting with the original gate-level netlists and
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systematically recover the circuits’ hidden functional and structural informa-
tion [5]. The discovered high-level structures in ISCAS85 benchmark circuits
provide an excellent opportunity to study the relation between motifs and
functional modules.

A network motif in the sense introduced by Milo is a pattern or small sub-
graph that occurs more often (at some statistically significant level) in the true
network than in an ensemble of networks generated by randomly rewiring the
edges in the true network, where the number of nodes and the degree of each
node is kept fixed [15]. Of interest are the differences in the frequencies with
which network motifs occur in real-world (biological as well as technological)
networks. The recurrent presence of certain motifs has been linked to system-
atic differences in the functional properties required from networks, and it has
been suggested that the motifs in networks reflect functional or computational
units which combine to regulate network behavior as a whole. Electronic cir-
cuits can be viewed as networks in which nodes (or vertices) are electronic
components (e.g. logic gates in digital circuits and resistors, capacitors, diodes
and so on in analogic circuits) and edges (or connections) are wires in a broad
sense [3]. Here, we address the question of whether a given network motif ap-
pears independently in the network or whether instances of the motif combine
to form larger structures. If the latter occurs, what is the function of these
larger structures? Do different networks that share a certain network motif
also share the same structural combinations of that motif? These questions
require analysis of large subgraphs, a computationally difficult problem.

Figure 1 shows part of the netlist defining one of ISCAS85 benchmark
circuit - the C880[5]. Each line in the netlist describe a logic gate and its
inputs, such as ”765=nand(600,678)” show a nand gate which is assigned the
ID 765 and has two inputs with the ID 600 and 678 respectively.

We treat the inputs in circuits as a special type of components, and convert
the netlists of benchmarks into corresponding graphs. The netlist is presented
in the logic gate level, so the number of nodes of the graph is the sum of the
number of gates and the number of inputs. The table 1 shows properties of
ISCAS85 circuits.

4.1 Detection of network motifs in electronic circuits

At first we detected 3-node and 4-node motifs in 10 circuits of ISCAS85 bench-
mark suite (Since the C17 has only 7 gates, we didn’t run experiments on it).
We applied a strict rule for filtering candidate subgraphs, which requires that
frequencies of subgraphs are much higher than that in random graphs be-
sides high Z-scores, and we think it can produce more reliable and convincing
results. We found only one type of 3-node motif (Feed-forward loop) which
appears in only 3 circuits, and two 4-node motifs (Bi-fan and Bi-parallel) are
discovered in most circuits. The description of the motifs is listed in the table
2. The ID of a motif is a decimal number generated from its adjacent matrix
which can be treated as a binary number. For example the adjacent matrix
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Fig. 1. A portion of the ISCAS85 C880 benchmark netlist

Table 1. ISCAS85 benchmark circuits

circuit input number gate number node number edge number clustering coefficient

C17 5 6 11 12 0
C432 36 160 196 336 0.003118
C499 41 202 243 408 0
C880 60 383 443 729 0
C1355 41 546 587 1064 0.217149
C1908 33 880 913 1497 0
C2670 233 1117 1350 2075 0.006926
C3540 50 1669 1719 2936 0.000892
C5315 178 2307 2485 4386 0.002067
C6288 32 2416 2448 4800 0.231808
C7552 207 3511 3718 6144 0.000241

of the feed-forward loop can be converted into a binary number ’000100110’
which is equal to 38.

The above three motifs are also detected in several forward logic circuits
in the ISCAS89 benchmark suite by Milo [15]. The detailed statistics of motifs
in ISCAS85 are listed in Table 3, Table 4 and Table 5. For each motif or
subgraph i, the statistical significance is described by the Z − score:

Zi = (Nreali− < Nrandi >)/std(Nrandi)

Where Nreali is the number of times the subgraph appears in the circuit,
and < Nrandi > and std(Nrandi) are the mean and standard deviation of
its appearance in the randomized network ensemble [15].
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Table 2. Motifs detected in ISCAS85 benchmark circuits

ID topology Adjacent Matrix Name Circuit Number

38 feed-forward loop 3
000
100
110

204 bi-fan 8

0000
0000
1100
1100

2182 bi-fan 8

0000
1000
1000
0110

The p − V alue of a subgraph is the proportion of randomized graphs
which have more instances of the subgraph than the real circuit. Obviously
for a motif a less p− V alue is better.

Table 3. Statistics of feed-forward loop motifs in ISCAS85 benchmark circuits

Circuit Frequency [real] Frequency [random] Standard-Dev [random] Z-Score p-Value

C1355 6.2575% 0.12839% 0.00059554 102.92 0
C2670 0.20253% 0.047177% 0.00027097 5.7333 0
C6288 6.1975% 0.027431% 0.00012762 483.46 0

Table 4. Statistics of bi-fan motifs in ISCAS85 benchmark circuits

Circuit Frequency [real] Frequency [random] Standard-Dev [random] Z-Score p-Value

C432 0.28197% 0.047422% 0.00030755 7.6263 0
C880 1.2167% 0.015106% 0.0001347 89.208 0
C1355 0.05385% 0.010872% 7.8586e-005 5.4689 0
C1908 3.0596% 0.0078224% 5.9881e-005 509.64 0
C2670 0.87064% 0.0036917% 4.0357e-005 214.82 0
C3540 0.66965% 0.0051092% 3.2887e-005 202.07 0
C5315 1.2751% 0.0049267% 2.43e-005 522.68 0
C7552 1.4738% 0.0013707% 1.22e-005 1207 0
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Table 5. Statistics of bi-fan motifs in ISCAS85 benchmark circuits

Circuit Frequency [real] Frequency [random] Standard-Dev [random] Z-Score p-Value

C880 0.8709% 0.026338% 0.00017817 47.401 0
C1355 0.70005% 0.021553% 0.00011125 60.989 0
C1908 1.1727% 0.014336% 7.3778e-005 157.01 0
C2670 0.55909% 0.0083733% 5.8272e-005 94.507 0
C3540 0.23039% 0.0075035% 3.8007e-005 58.644 0
C5315 0.51197% 0.0057288% 2.7175e-005 186.29 0
C6288 0.68145% 0.0046884% 2.3736e-005 285.12 0
C7552 0.50259% 0.0033538% 1.9274e-005 259.01 0

Actually there are several other 4-node motifs with high Z-scores in C1355,
C2670 and C6288. These motifs are listed in Figure 2. Obviously these 4-node
motifs are directly derived from the 3-node motif feed-forward loop by adding
an additional edge. We want to ensure that a high significance was not assigned
to a pattern only because it has a highly significant subpattern [15], so these
motifs are not listed in Table 3, Table 4 and Table 5.

2124 2076 2118 202 142

Fig. 2. Other 4-node motifs and corresponding IDs

4.2 Analysis of Functional Blocks in ISCAS85 circuits

We need to reverse-engineer netlists of the ISCAS85 circuits in order to dis-
cover what common functional blocks they may contain. Fortunately Hansen
has done a good job on reverse-engineering and identifying high-level func-
tional blocks in ISCAS85 [5]. His research showed that ISCAS85 circuits have
well-defined structures and functions based on common small functional blocks
such as multiplexers, adders, carry generators and decoders. If we find these
common functional blocks and corresponding instances in ISCAS85 circuits,
then we can compare them with detected motifs. Though Hansen’s work pro-
vided valuable guidelines by summarizing high-level models of each circuit,
not all implementations of common functional blocks are illustrated in details.
So we have to search the functional blocks and verify their implementation.
In general, circuit designers tend to follow published or textbook designs,
and this is a boost for our work. We find the gate-level implementations or
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schematic diagrams of functional blocks in IC databooks or standard cell li-
braries and in textbooks, e.g.[?]. The functional blocks usually exist in variants
due to differences in input size and gate types, so we developed a tool to auto-
mate small functional block recognition. This tool, which implements a simple
subgraph-matching method, searches certain subcircuits corresponding to a
given functional block. In following part we list the most widely-used small
functional blocks in ISCAS85 circuits.

Figure 3 displays a XOR functional block implemented by 4 NAND gates,
which is frequently used in C1355. Its topological structure contains two 3-
node feed-forward loops and one bi-parallel structure, and that’s why the
feed-forward loop and the bi-parallel are the two most significant motifs in
C1355.

Fig. 3. A 2-input XOR functional block implemented by 4 NAND gates and the
corresponding topology

The functional block in Figure 4 is a 2-to-1 multiplexer widely used in
most of the ISCAS85 circuits.

Fig. 4. A 2-to-1-multiplexer and the corresponding topology

C6288 consists of 240 full and half adder cells arranged in a 15x16 matrix.
Figure 5 is a full adder cell functional block used in C6288. There are several
types of half adders in C6288. The 15 top-row half adders lack the Ci input;
each has two inverters at locations V . The single half adder in the bottom row
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lacks the B input, thereby acquiring two inverters at locations W . Obviously
the topologies of both full adders and half adders contain abundant 3-node
feed-forward loop and 4-node bi-parallel structures. Since the full and half
adders are the only types of functional blocks in C6288, there is no bi-fan
motif in C6288.

Fig. 5. A adder used in C6288 and the corresponding topology

It is interesting that we found another implementation of the half and full
adders in Figure 6 from many text books [?]. The half adder itself appears as
a bi-fan motif and the full adder contains two bi-fan motif structures. They
are widely-used functional blocks in real circuits as well, although they don’t
appear in ISCAS85 circuits.

According to reverse-engineering analysis, many ISCAS85 circuits imple-
ment the function of the ALU or adder, so the carry look-ahead (CLA) gen-
erator is one of the most important common functional blocks in ISCAS85
circuits.

The highlighted block in Figure 7 shows a carry generator for the third bit
of CLA in C880. Since the input of the NOT gate has no direct connection
to other gates in the block, we can ignore the NOT gate and display the
topology without it. There are four bi-parallel and one bi-fan structures in
this block. The same CLA generator functional blocks also appear in C3540,
and there is a different implementation of CLA generators in C7552, C5315
and C2670. Figure 8 shows a CLA generator block used in C2670, and the
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Fig. 6. The adders in textbooks and the corresponding topologies

highlight block is also a carry generator for the third bit. Though this carry
generator uses gates with different types, its topology is the same as that of
C880. We also can see that the block corresponding to the second bit in CLA
present a bi-parallel structure.

Fig. 7. A carry generator for the third bit of a CLA in C880 and the corresponding
topology

There are also some other common functional blocks such as the 4-to-1
multiplexer and decoder in ISCAS85. Figure 9(a) shows a 4-to-1-multiplexer
used in C2670 which also contains abundant bi-fan and bi-parallel structures.
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Fig. 8. A carry generator for the third bit of a CLA in C2670 and the corresponding
topology

In Figure 9(b) there is an example of the 2-to-4 decoder. We can find a lot of
bi-fan and bi-parallel structures in them as well. The topological structure of
the 2-to-1-multiplexer can also be found in the 4-to-1-multiplexer, since the
4-to-1-multiplexer is extended from the 2-to-1-multiplexer.

(a) (b)

Fig. 9. A 4-to-1 multiplexer (a) and a 2-to-4-decoder (b)
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We discover the feed-forward loop, bi-fan and bi-parallel motifs in the
ISCAS85 circuits because they are contained in common functional blocks
and combined to form the main structure of these functional blocks.

The 2-to-1 multiplexer is a 5-node common functional block used in almost
every circuit. We only didn’t find any 2-to-1 multiplexer in C432 and C6288,
and in some circuits this functional block has a couple of variant implemen-
tations, such as replacing a 2-input OR by a 2-input NOR and replacing a
2-input AND by a 2-input NAND. Actually we found the structure of 2-to-1
multiplexer itself present as a motif. In Table 6 we compared its occurrence
in ISCAS85 with that in corresponding random graphs.

Table 6. Statistics of 2-to-1 multiplexers in ISCAS85 benchmark circuits

Circuit Frequency [real] Frequency [random] Standard-Dev [random] Z-Score p-Value

C499 0.034862% 0.014656% 3.9158e-005 5.1602 0
C880 0.037032% 0.015961% 6.6586e-005 3.1646 0.003
C1355 0.027103% 0.012835% 3.6355e-005 3.9247 0.001
C1908 0.087428% 0.0070623% 2.0987e-005 38.292 0
C2670 0.35125% 0.0051655% 2.175e-005 159.12 0
C3540 0.10784% 0.0037717% 1.1234e-005 92.639 0
C5315 0.1908% 0.0027487% 7.4177e-006 253.52 0
C7552 0.18692% 0.0020339% 6.5669e-006 281.54 0

Furthermore we investigated the carry generator for the third bit of a CLA,
and Table 7 shows the results.

Table 7. Statistics of the carry generators for the third bit of CLAs in ISCAS85
benchmark circuits

Circuit Frequency [real] Frequency [random] Standard-Dev [random] Z-Score p-Value

C880 0.0013813% 0% 0 undefined 0
C2670 0.0024862% 0% 0 undefined 0
C3540 0.00021153% 0% 0 undefined 0
C5315 0.0021738% 0% 0 undefined 0
C7552 0.0063876% 0% 0 undefined 0

Similarly we investigate the 6-node structure corresponding to the imple-
mentation of the XOR functional block in Figure 3. This structure is also
presented in the full and half adders in C6288 with the different function.

Experimental results show that 3-node and 4-node motifs are subgraphs
in common functional blocks used in ISCAS85 circuits, and these functional
blocks themselves are also motifs. The random graph generators keeping the
same degree distribution are unlikely to even produce one instance of small
common functional blocks having only 6 nodes. An engineering system with
limited number of the common functional blocks can is easy to be maintained.
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Table 8. Statistics of the 6-node structure in Figure 3 in ISCAS85 benchmark
circuits

Circuit Frequency [real] Frequency [random] Standard-Dev [random] Z-Score p-Value

C1355 0.016731% 0% 0 undefined 0
C6288 0.013197% 0% 0 undefined 0

Similarly a gene circuit must be robust to such perturbations imposes severe
constraints on its design: only a small percentage of the possible circuits that
perform a given function can perform it robustly [1]. Both engineering systems
and biological systems share the similar principles.

Li also demonstrated that in the context of such complex and highly en-
gineered systems as the Internet, it is largely impossible to understand any
nontrivial network properties while ignoring all domain-specific details such
as technological constraints and function demand, as is typical in methods
inspired by statistical mechanics [?]. Her experimental results show that the
networks with high performance in real-world Internet are highly unlikely
to generate by probabilistic approaches like random rewiring or preferential
attachment and provide macroscopic evidence to display that the networks re-
sulting from a careful design process are vanishingly rare from a conventional
probabilistic graph point of view. Our microscopic analysis is consistent with
her macroscopic analysis.

4.3 Analysis of the Significance Profile in ISCAS85 circuits

Milo presented an approach for comparing network local structure based on
the so called significance profile (SP). The SP is the vector of Z-scores nor-
malized to length 1:

SPi = Zi/(
∑

Z2
i )1/2

The normalization emphasizes the relative significance of subgraphs, rather
than the absolute significance. This is important for comparison of networks of
different sizes, because motifs in large networks tend to display higher Z-scores
than motifs in small networks [14].

Based on the SP approach, we can compare structures of the ISCAS85
circuits more fully. Firstly we extract all 17 subgraphs appearing in ISCAS85
circuits and assign each of them a number from 1 to 17. The following Table
9 show these 17 subgraphs with their motif IDs. The No.5 and No. 10 are the
bi-fan motif and the bi-parallel motif respectively.

Table 9. The list of detected 4-node motifs in ISCAS85 circuits

NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Motif ID 14 140 142 202 204 2076 2116 2118 2124 2182 2184 2188 28 392 536 652 74
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We present in Figure 10 the SP of 17 detected 4-node motifs for ISCAS85
circuits.
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Fig. 10. The 4-node SP of ISCAS85 circuits

It is very interesting that the SP approach can not only display local
structures of circuits intuitively but also distinguish functions of circuits.
For example, the C880, C2670, C3540, and C5315 are ALUs and C7552 is
Adder/Comparator. The main functions of these 5 circuits are similar and re-
lated to the fundamental addition operation. The SPs of circuits implementing
the similar functions are highly correlated each other (correlation coefficient
c > 0.95). But C6288 is a multiplier and obviously its SP is quite different
from the 5 circuits related to the addition operation (correlation coefficient
c < 0).

5 Further Discussion

Dobrin found that individual motifs aggregate into homologous motif clus-
ters and a supercluster forming the backbone of the E. coli transcriptional
regulatory network and play a central role in defining its global topological
organization [?]. The supercluster coalesced by motif clusters establishes dis-
tinct topological hierarchies that show global statistical properties similar to
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the whole network. We also found that motifs detected in ISCAS85 circuits
are usually overlapped and clustered in functional blocks. It will be interest-
ing to make similar investigation on ISCAS85 circuits, and can present more
global information on motifs and functional blocks. The problems of detecting
features in a given network and of generating synthetic but realistic networks
have received considerable attention recently. For instance, a huge amount
of benchmark circuits with suitable characteristic parameters is required for
the development and evaluation of tools and algorithms of digital circuits [?].
Appropriate models are stringently required to match and generate networks
with real-world properties. We applied a machine learning method based on
counting subgraphs to evaluate several most widely used models in biolog-
ical and engineered networks, which has been successfully used to inferring
the best mechanism underlying a protein interaction network, and inferred
the model most accurately capturing real circuit structure [?]. Our experi-
mental results show that the generalized random graph model keeping the
same degree distribution outperforms all other models including the prefer-
ential model, the preferential model with spatial constraints, the small-world
graph model and the optimization model under multi-objective constraints
[2, 4, ?, ?, ?]. It is not really surprising that the generalized random graph
model match real circuits better than other models. The input of generalized
random model is the degree sequence of the original real circuit, but in general
other models only get the number of nodes and the number edges as the in-
put, so basically there are more constraints on the generalized random graph
model. We can not simply say that the generalized random graph is a model
better than other models, since they have no different intentions and appli-
cation cases. Essentially the generalized random graph model tries to capture
degree distribution of real network directly and is different from our models
such as the preferential attachment model and the optimization model, which
try to give a general underlying mechanism shaping the network. As the null
model in motif detection the generalized random model has been proved to
fail to produce functional blocks of real circuits well in our experiments. But
compared with other models, the generalized model is still best. This situation
presents us a big challenge on generating synthetic but realistic networks, and
we still have a lot of work to do on this topic.

Recently Mahadeven proposed a new, systematic approach for analyzing
network topologies, which introduces the dK-series of probability distributions
specifying all degree correlations within d-sized subgraphs of a given graph G
[?]. Increasing values of d capture progressively more properties of G at the
cost of more complex representation of the probability distribution. When d
= 0, the approach is just the generalized random graph model. She found that
the d = 2 case is sufficient for most practical purposes, while d = 3 essentially
reconstructs the Internet AS- and router-level topologies exactly. Though dK-
series is an approach describing the networks instead of explaining networks,
but at least it provide us a systematic approach to quantitatively measure the
distance between two graphs and construct random graphs that accurately
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reproduce virtually all metrics proposed in the literature. So it maybe provides
us more insight on the real-world networks such as electronic circuits and
offer useful guidelines for generating realistic networks. We can investigate if
common small function blocks will emerge in the synthetic networks at an
appropriate value of d.
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