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Abstract

We propose a model-based frame-
work to provide a clear semantics and
well-developed algorithms for assess-
ing the diagnosability of stochastic sys-
tems. This framework applies tech-
niques originally developed for model-
based diagnosis. Our framework en-
ables us to (1) assess the diagnosability
of a system, (2) analyze which faults are
diagnosable, (3) identify sensor suites
necessary for achieving pre-specified
diagnosability levels.

1 Model-Based Diagnosability of
Stochastic Systems

It is important to characterise the diagnosability
of stochastic systems, as many important systems
are inherently stochastic. Up until now, although
there is significant literature on diagnosability of
deterministic model-based systems (e.g., [3, 7]),
there is no model-based framework for diagnos-
ability of stochastic systems using a model-based
diagnosis framework (e.g., as based on [12]). This
article provides the first such framework.

We extend Reiter’s consistency-based formula-
tion of model-based diagnosis [12] to define diag-
nosability properties of stochastic systems using a
model-based diagnosis framework. We adapt Re-
iter’s model-based approach by extending model-
based diagnosis principles for deterministic diag-
nosability [3, 2] to encode stochastic behaviour
of the system. We have developed a theoretically
well-founded framework and implemented algo-

rithms to assess the diagnosability of stochastic
systems. In this article we focus on static mod-
els, but all notions can be extended to cover tem-
poral models. Given the model-based representa-
tion for finite-discrete-domain systems, we have
analysed the theoretical properties of the models,
providing information to:

• Assess the diagnosability of a stochastic sys-
tem, using a model of the system;

• Rank the faults in terms of the expected loss
of (or damage inflicted by) the fault;

• Identify the diagnosable faults via the suite
of sensors defined in a system’s model;

• Identify the sensors necessary for achieving
pre-specified diagnosability levels.

We organize the remainder of the document as
follows. Section 2 introduces our notation. Sec-
tion 3 focuses on our definitions of stochastic di-
agnosability. Section 4 presents an example of
a modeling framework using Bayesian networks.
Section 5 shows how the systems modeled in
our framework can be readily analysed to deter-
mine their diagnosability and detectability. Fi-
nally, Section 6 summarises our results.

2 Notation

This section introduces our notation for diagno-
sis systems. The standard consistency-based for-
mulation of model-based diagnosis [12] charac-
terises a model-based diagnosis (MBD) problem
Ψ using the triple〈COMPS, SD, OBS〉:

• COMPS={C1, ..., Cm} describes the operat-
ing modes of the set ofm components that
comprise the system.



• SD, or system description, describes the
function of the system. This model specifies
two types of knowledge, denotedSD=(S,B):
(1) system structureS, i.e. the connections
between the components, and (2) system be-
haviourB, based on the behaviour of each
component.

• OBS, the set of observations, denotes pos-
sible sensor measurements, which may
be control inputs, outputs or intermediate
variable-values.

In Reiter’s theory, if we instantiate theCi ∈
COMPS∗ ⊆ COMPS to ¬ OK, and all otherCi to
OK, then we can formalise the notion of a diag-
nosis as the subsetCOMPS∗ of instantiated fault-
mode variables such thatSD ∪ OBS ∪ COMPS

6|= ⊥ for an observationOBS.1

We extend this approach as follows. We charac-
terise a system model using standard dynamical
systems notation. We define a model in terms of
a variable setV, which consists of three disjoint
subsets〈V,Φ,Y〉, where:

• V = {V1, ..., Vn} is the set of state variables;
• Φ = {φ1, ..., φm} is the set of fault variables

(assumables) corresponding toCOMPS;
• Y = {Y1, ...Ys} is the set of measured vari-

ables (observables) corresponding toOBS.

SD can now be defined as a set of constraints
over the setV of variables, whereCOMPS∪ OBS

⊆ V, such thatCOMPS∩ OBS = ∅. Componenti
has associated mode-variableCi, which takes on
values such as{OK, Bad}, denoting that com-
ponenti is working normally or abnormally, re-
spectively. We denoteCi taking on value OK as
[Ci = OK]. We assume in this article that a com-
ponent may have multiple possible failure mode
values, i.e., we do not assume only binary-valued
failure-mode variables.

We will denoteX̃ as the domain ofX. We denote
the set of all instantiations of a variableX asX.
An observation~Y is an instantiation of a subset of
Y, i.e., ~Y ⊆ ×i Ỹi.

1Reiter [12] uses a predicate logic in which anAB pred-
icate denotes abnormal behaviour; hence it definesAB(c)
are componentc being faulty. In this article we assume a
propositional framework.

Our model representation thus isΨ = (V,S,B),
given a setS ∪ B of constraints overV, and the
input to a diagnosis problem is(Ψ, ~Y).

Definition 1 (Candidate Diagnosis). A candi-
date diagnosis∆(Ψ, ~Y) is an instantiationϑij of
fault modeφi ∈ Φ, i = 1, ..., m, i.e., an assign-
ment

∧m
i=1[φi = ϑij ].

Given the collection of all possible multiple-fault
diagnoses contained in the power-setP(Φ), we
define afault ∆ ∈ P(Φ) as a candidate diagnosis
in which someφi ∈ Φ takes on a value that is not
OK.

We can define the notion ofrankeddeterministic
diagnosis, using a ranking functionϕ.2

Definition 2 (Ranking Function). Given an ob-
servation~Y, a ranking functionis a functionϕ
that imposes an ordering on faults, e.g.,ϕ : φ →
R maps faults to real numbers.

We can use this ranking function to define the
most likely diagnosis:

Definition 3 (Most-likely Diagnosis). Given an
observation~Y, a most-likely diagnosisis a fault
∆∗ defined overφ such thatΨ ∪ ~Y |= ∆∗ and
6 ∃∆ such thatΨ ∪ ~Y |= ∆ andϕ(∆) < ϕ(∆∗).

We now define the notion of stochastic diagno-
sis. In a stochastic model, we define the model
constraintsB using a probability distribution over
our system tuple〈V, Φ,Y〉: B = Pr(V,Φ,Y).

Definition 4 (Stochastic Diagnosis).A stochas-
tic diagnosis∆(Ψ, ~Y) is an assignment of (non-
zero) probabilitiesPr(∆|~Y) to ∆ ∈ P(Φ) .

We extend Lucas’s definition of diagnostic
Bayesian inference [9] by assigning probability
distributions not just to component failure modes
(as Lucas does), but also to other system vari-
ables. Our definition of stochastic diagnosis is
completely consonant with that of Lucas, who de-
fines the presence of a fault in terms of a non-zero
probability being assigned to a fault (or abnormal-
ity).

We can define a strong notion of diagnosis, in
terms of the maximum a-posteriori explanation

2Many ranking functions have been used in the model-
based diagnosis literature, such as subset-minimality [6],
probability [9], and qualitative probability [5]. We adopt a
Bayesian ranking function that maps faults to [0,1].



(MAP), the most probable configuration of fault-
mode variables given observation~Y.

Definition 5 (MAP Diagnosis). Given observa-
tion ~Y, the most probable explanation, denoted

∆MAP (∆, ~Y), is given by
argmax

∆ Pr{∆|~Y}, and
is an instantiation of assumable variablesφ ∈ ∆
such thatPr{∆|~Y} is maximised.

3 Diagnosability

This section defines notions of fault diagnosabil-
ity by extending the notions defined for determin-
istic systems [3, 7] to stochastic systems.

3.1 Deterministic Diagnosability

Definition 6 (Sensor Signature).We define the
sensor signature of a fault∆ as given byΨ∪∆ |=
~Y.

Loss of diagnosability occurs when two different
faults trigger the same sensor signature.

Definition 7 (Fault Diagnosability). A fault is
diagnosable, given an appropriate observation
~Y based on sensor suiteΣ, if the fault can be
uniquely isolated, i.e., we can compute a unique
sensor signature~Y. In other words, two faults
∆i and∆j , with respective signatures~Yi and ~Yj ,
are diagnosable under the sensor setY only if
~Yi 6= ~̄Yj .

We can extend this notion tosystem diagnosabil-
ity as follows:

Definition 8 (System Diagnosability).A system
is diagnosable, given a sensor setY, if and only if
(a) every fault can be uniquely isolated given an
appropriate observation~Y based onY, and (b)
for any observation~Y there exists a unique most-
likely fault.

We can formalise this as follows:

Lemma 1 (Diagnosability). For a systemΨ with
sensorsY and fault variablesφ, a fault ∆ is di-
agnosable via observation~Y iff

1. ∃ a unique∆ such that[Ψ∪ ~Y |= ∆] ∧ [Ψ∪
∆ |= ~Y]. A fault is undiagnosable if[Ψ ∪
~Y 6|= ∆] ∧ [Ψ ∪∆ |= ~Y].

2. for every value of an assumable such that
[φ 6= nominal], we have some~Y such that
Ψ ∪ ~Y |= φ.

The proposed definitions of diagnosability differ
from the diagnosability definitions of [3, 7] in
some important ways. We use our consistency-
based definition of fault as the basis for the defini-
tion of (and method of computing) diagnosability,
whereas [3, 7] use different definitions; for exam-
ple, [7] uses a set-theoretic definition. In addition,
we adopt a decision-theoretic approach, such that
we can define loss-minimal notions of fault and
diagnosability; neither [3, 7] define loss functions
to enable such notions.

3.2 Stochastic Diagnosability

We need to frame our definitions of stochastic di-
agnosability in terms of avoiding situations of un-
diagnosability, since diagnosability is now deal-
ing with continuous spaces, as opposed to the de-
terministic model, for which sharp distinctions on
discrete spaces can be made.

We first define when a fault and a system are un-
diagnosable.

Definition 9 (Stochastic Fault Undiagnosabil-
ity). A fault ∆i with associated sensor mea-
surement~Yj , is undiagnosable (undetectable) if
Pr(∆i|~Yj) = 0 ∀~Yj ∈ ~Y.

Definition 10 (Stochastic System Undiagnos-
ability). A systemmodel is undiagnosable if any
possible fault is undiagnosable, i.e, if for any
∆i ∈ P(Φ) with associated sensor measurement
~Yj , Pr(∆i|~Yj) = 0 ∀~Yj ∈ ~Y.

We now define two classes of stochastic diagnos-
ability, weak and strong. These classes differ in
terms of the strength of evidence required to es-
tablish one class or another.

Definition 11 (Weak Stochastic Diagnosabil-
ity). A systemmodel is weakly diagnosable if
there is no∆i ∈ P(Φ) that is undiagnosable.

We now shift our attention to fault diagnosabil-
ity for stochastic systems. The notion of diagnos-
ability is quite clear-cut for deterministic systems,
and for stochastic systems requires a domain-
dependent(0, 1) threshold, as in Definition 12, or
an MAP-based notion, as in Definition 13.

Definition 12 (Stochastic Diagnosability).For
a stochastic systemΨ with sensorsY and fault
variablesφ, a fault ∆ is diagnosable via obser-



vation ~Y iff Pr{∆|Ψ, ~Y} > δ for some (domain-
dependent) thresholdτ ∈ (0, 1), and is undiag-
nosable otherwise.

Definition 13 (Strong Stochastic Diagnosabil-
ity). For a stochastic systemΨ with sensorsY
and fault variablesφ, a fault ∆ is strongly diag-
nosable via observation~Y if ∆ is the MAP diag-

nosis, i.e.,∆ =
argmax

∆ Pr{∆|~Y}.

3.3 Minimal-Loss Diagnosability

This section extends our definitions of stochas-
tic diagnosability (which incorporates only uncer-
tainty) to a decision-theoretic framework that in-
corporates both uncertainty and the loss associ-
ated with a system state. For example, we can as-
sign a loss measure associated with a device func-
tioning normally or if it has a fault. This notion is
standard in real-world applications, such as a car
manufacturing plant, which measures the down-
time caused by a failure in thousands of euro per
hour.

Our objective is to compute the loss associated
with a fault, using a utility (or loss) functionµ,
which specifies the loss (utility) associated with
an actionA, given a world state, i.e.,µ : A ×
2φ → R..3 Given a likelihood ranking over
faults, we can compute the expected loss asso-
ciated with faults, i.e., a ranking of which faults
cause the most damage to the diagnosis system,
using a utility function of the formµ : ∆ →
R. Given a set of utilities{µ1, ..., µr} and like-
lihoods {ϕ1, ..., ϕr} associated with diagnoses
{∆1, ..., ∆r}, we can compute the expected util-
ity asE[µ(∆)] =

∑r
i=1 ϕi ∗ µi(∆).

We can use this expected utility to define a
minimum-loss fault:

Definition 14. Given an observation~Y, a
minimum-loss fault∆∗ is a fault whereΨ ∪ ~Y |=
∆∗ and 6 ∃∆ such thatΨ ∪ ~Y |= ∆ with µ(∆) <
µ(∆∗).

4 Example: Bayesian Network
Diagnosability

The modeling framework that we extend is a
Bayesian Network (BN) [10]. Our underlying

3In this article we assume that the diagnosis system just
identifies faults and no other actions are taken, i.e.,A = ∅.

model representation is a directed acyclic graph
(DAG) G = (V, E) of verticesV and edgesE ⊆
V × V. We denote a directed edge fromVi to Vj

by (Vi, Vj). The edges show independence rela-
tions, such that the absence of an edge fromVi to
Vj denotes thatVj is independent ofVi.

Definition 15 (Bayesian Network). A BN is a
tuple (G, ζ), whereG is a DAG, andζ is a set
of probability distributionsconstructed from ver-
tices inG based on the topological structure of
G. ζ satisfiesPr{V} =

∏n
i=1 Pr{Vi|pa(Vi)},

wherepa(Vi) are the parents ofVi in G.

We can use BNs to model MBD problems by:

• assigning each MBD variable in COMPS to
a special BN node representing a failure-
mode variableφ;

• assigning each non-mode MBD variable
Vi ∈ V \ COMPS to a BN node inV \ φ;

• defining the MBD system structureS using
the BN graphical structure, and the MBD
system behaviourB using the CPTs of the
BN.

A BN allows you to compute the posterior distri-
bution for any variable, given an observation~Y.

Plant
Setting

Risk

SR1

SP

SR2

G

A2

A1

Alarm

Figure 1: Causal graph for alarm activation based
on fault status in a power plant.

We can apply our BN framework to an exam-
ple as follows. Figure 1 depicts a causal graph
for diagnosing faults in a simplified model of a
nuclear power plant, which consists of a cooling
tower and two reactors, with fault-detection sen-
sorsSP , SR1, SR2 respectively. Faults in the sys-
tem will sound an alarm, depending on the plant
operational settingSetting(eitheractiveor inac-
tive), plus the risk level for a fault, denoted by



variableRisk, with values{high, medium, low}.
The risk level is itself determined by the values
of two fault-mode variables,A1, A2, denoting
the presence of a fault at levels{high,low,zero}
in reactorsR1 andR2 respectively. The sensors
indicate an alarm status, which takes on values
{present, absent}.
Figure 2 shows a subset of the Conditional Prob-
ability Tables for Bayesian network. Given ob-
servation~Y = {[SW1=off], [SW2=alarm], [SD

=alarm] and [alarm=on]}, we can compute the
most likely (MAP) single faults∆ as[A1

int=low]
and [A2

int=low], each with probability 0.420.
Given this suite of sensors, it turns out that the
system is both strongly and weakly diagnosable,
with a threshold of 0.3. However, if we restrict
our observables to just the alarm (and not the in-
dividual sensors as well), then the system needs
a significantly lower threshold, of the order of
0.15. In this case only weak diagnosability per-
tains. This indicates that the system is quite de-
pendent on the suite of sensors.

0.05            0.95Low

0.8              0.2Medium

0.99           0.01High

Sensor
On       Off

Risk

0.01    0.99---inactive

0.2     0.8Low active

0.65    0.35Mediumactive

0.95     0.05Highactive

Alarm
On      off

RiskSetting

0.01    0.01 0.9800

0.35    0.60     0.05Low Low

0.70    0.25     0.050High

0.80    0.19     0.01Low High

0.98    0.01     0.01High High 

Risk
High   Medium  Low

A2A1

Figure 2: Partial description of Conditional Prob-
ability Tables for Bayesian network. The dash in
the second table indicates that the probabilities for
alarm, given [Setting=inactive] are independent of
the value ofRisk Status.

5 Diagnosability Assessment

This section describes an algorithm for comput-
ing system diagnosability, and how we can anal-

yse the resulting levels of system diagnosability.

5.1 Diagnosability Measures

Since it may not be possible to guarantee absolute
diagnosability for a real-world system, one key
parameter of interest is the percentage of faults
that are actually diagnosable. To compute this,
we need the following notions.

We use the indicator variableδi to indicate di-
agnosability of theith fault. Given a probabil-
ity thresholdτ , we denote a threshold-basedδi as
follows:

δi =
{

1 if Pr(∆i|~Y) > τ ,
0 otherwise

Note that we can use an alternative, MAP-based,
definition ofδi, namely

δi =

{
1 if ∆i =

argmax
∆ Pr(∆|~Y),

0 otherwise

The diagnosability measureof a modelΨ is the
fraction of all faults that can be identified:

Definition 16. The diagnosability measureof Ψ
is given by

κ(Ψ,Y) =
∑

i δi : i ∈ P(Φ)− 1
P(Φ)− 1

(1)

We can also use loss-weighted diagnosability
measures, but we omit their description here for
ease of exposition.

5.2 System Diagnosability Algorithm

We have developed algorithms for estimating a
system’s diagnosability measure by generalising
the diagnosability approach described in [11].
Since computing diagnosability measures is com-
putationally taxing for complex system models,
we employ approximation techniques, e.g., focus-
ing search on the highest-loss faults.

We now describe an algorithm for computing sys-
tem diagnosability.4 We adopt an approach dif-

4Note that we can map our representation into one where
it is possible to use a variety of verification tools, such as
SMV/NUSMV [1], or into a timed (stochastic) automaton
[4].



ferent from the techniques for computing diag-
nosability [13, 2], which use formal methods, to-
gether with the list of possible faults, to determine
if faults can be identified uniquely.

We first simulate the sensor-outputs predicted
given the presence of an fault-set, and then use
the sensor-outputs to try to diagnose the presence
of the true faults.

We assess which of the vulnerable system states
will result in alarms being raised, which aids in
computing a diagnosability measure. Our di-
agnosability analysis procedure consists of three
main steps.

1. First, for each fault∆ in a set of faults to
test,P(Φ), simulate the associated test- (or
sensor-vector)T . This produces a set of
pairs of faults and test-vectors,{〈∆, T 〉}.5

2. Next, for each test-vector, compute the fault-
list associated with that vector, generating
the tuple{〈∆, T, α〉}.

3. Finally, compute the diagnosability statistics
given the tuples.

To facilitate this procedure, we have two models:
a simulation modelΨS , and a diagnosis model
ΨD. Each model is optimized for its particular
task, either simulation or fault-detection. Our key
concern is to specify the difference between the
real fault-state∆ and the computed fault-state (as
represented by the faultα); we average this value
over a large suite of real faults∆. If α = ∆, then
we have perfect fault detection. In many cases
there is an ambiguity group (set of disjunctive
fault-statesα = α1 ∨ · · · ∨ αl), so we must com-
pute the degree of diagnosability that we have. If
α = ∅, then that fault is undiagnosable.

5.3 Sensor Selection and Placement

A key capability of any diagnosis system is the
ability to isolate faults when they occur. This ca-
pability is a function of the design of the system,

5This step is analogous to the Diagnosability Assessment
step, as it is simulating the sensor settings that should be
recorded if a fault were compromised. Note that if we have
insufficient sensors, then a fault could be compromised with-
out any alarms being raised.F is the true Diagnosability-
state, and the sensor vectorT allows us to identify the
recorded state.

and in particular of the sensors that the system has
for state-measurement.

The general sensor selection task is a difficult one,
and can be formulated as follows [8]. Given a set
Y = {Y1, ..., Ys} of sensors (together with their
locations), we need to choose the set of sensors to
optimise a functionΓ. This task requires trading
off the utility associated with optimisingΓ with
the cost of the sensors and their associated mea-
surements.

We assume a utility functionη : 2Y → R, and a
cost functionχ : 2Y → R, which returns the cost
of measurements from eachY ′ ⊆ Y. The sen-
sor selection problem then is to choose the sub-
setY ′ ⊆ Y that maximises utility and minimises
cost. We can define a generic function for this
task that computes the highest-utililty subset of
sensors for a cost limit ofβ.

SS(β) =
argmax

Y ′⊆Y,χ(Y′)≤β η(Y ′).

In our case, we can define the diagnosability
problem as a sensor selection problem where
our utility function is the diagnosability measure
κ(Ψ,Y), and the cost function assumes each sen-
sor has identical unit cost and measurements are
free.

5.4 Achieving Target Diagnosability Levels

Real-world systems typically entail trading off the
cost of sensors for system observability. In the
case of fault detection, we can use our diagnos-
ability assessment techniques to analyse appropri-
ate tradeoffs of sensors for fault diagnosability. In
other words, we can compute the suite of sensors
necessary to achieve a [0,1] fault diagnosability
measure. To accomplish this, we need to extend
our definition of system model to include the sen-
sor suiteΣ, which specifies the number and topo-
logical location of the sensors.

We can define the fixed-target diagnosability
(FTD) problem as a sensor selection problem
where we impose a targeted diagnosability level
of τ , our utility function is the diagnosability
measureκ(Ψ,Y), and the cost function assumes
each sensor has identical unit cost and measure-
ments are free. We can formulate this problem as
follows:



FTD(β) =
argmin

Y⊆Y,κ(Ψ,Y ′)≥τ χ(Y ′).

Our analysis is related to the use of analytical re-
dundancy relations (ARR) for diagnosability [14].
The use of ARRs is based on the notion of fault
signatures, which define the faults in a fault sig-
nature matrix. In contrast, we examine a sensor-
signature matrix, in which the sensor signatures
are analysed. In situations where there are fewer
sensor signatures than fault signatures (which we
argue is most likely the case given that most situ-
ations have limited sensors), this approach will be
more efficient than the ARR-based approach.

We now analyse the case of havingk binary sen-
sors.6 We can define a sensor signatureSi of an
fault φi as the vector of sensor values underφ.

Definition 17 (Deterministic Fault Sensor Sig-
nature). Given a setY of s sensors, the fault
sensor signature of fault∆j is a binary vector
{σ1j , σ2j , ..., σsj} in which

σij =

{
1 if ∆j causes an anomalous reading at~Yi,
0 if ∆j causes a nominal reading at~Yi.

We generalise this deterministic signature to a
stochastic signature as follows.

Definition 18 (Stochastic Fault Sensor Signa-
ture). Given a setY of s sensors and threshold
τ ∈ [0, 1], the stochastic fault sensor signature of
fault ∆j is a vector{σ1j , σ2j , ..., σsj} in which

σij =
{

1 if Pr(∆j |Yi = on) > τ ,
0 if Pr(∆j |Yi = nominal) ≥ (1− τ).

A fault sensor matrixM(Ψ,Y) is aq × r matrix
in which row i, i = 1, ..., r, consists of the fault
sensor signature for fault∆i. We use this sen-
sor data to define the discriminability of a suite
of sensors. We can discriminate two faults using
Definition 7, i.e., faults∆i and∆j are discrim-
inable under sensorsY if ~Yi 6= ~Yj . We can ex-
tend this notion to system-wide discriminability,
i.e., where all sensors are pairwise discriminable.
We can identify the required sensors for discrim-
inability as follows.

6We can extend this case toq-ary sensors in a direct man-
ner.

Lemma 2. If we havek binary sensors, then the
maximum number of descriminable faults is2k −
1.

Corollary 1. The minimum number of binary-
valued sensors required to discriminatem faults
is dlog2(m + 1)e.

Given a potential suite ofN possible sensors, we
can identify a subset of cardinality-minimal sen-
sors that can achieve a target diagnosability mea-
sure as follows.7 If M(Ψ,Y) is as× r matrix of
rank≥ dlog2(r + 1)e then all faults can be de-
tected, i.e., the diagnosability measure is 1.8 If
the rank is smaller, then we must compute the di-
agnosability measure fromM(Ψ,Y) using Equa-
tion 1.

For fault detectabilty analysis, we have adapted
a system (based on [11]) that allows a user to
compare the diagnosability measures of a set of
models, e.g.,Ψ(Y1), ...,Ψ(Ym), that differ only
in the relative position, number and type of sen-
sors. We generateM(Ψ,Y) and use this to see
if ∆(Ψ) > τ , whereτ is a target diagnosability
level.

5.5 Example

We have two fault variables,A1 and A2, each
with 3 possible values{high, low, nominal}, giv-
ing 23 − 1 faults, which will require at least 4 bi-
nary sensors to achieve fault discriminability (us-
ing Corollary 1). Table 1 depicts the sensor sig-
natures for the single-fault scenarios.

Consider the case where we limit our analysis to
faults occurring only one at a time, e.g., we can
have a single fault[A1 = high]. Given the current
suite of sensors{SR1 , SR2 , SP }, Table 1 shows
the single-fault sensor signatures, from which we
can discriminate only[A1 = low] and [A2 =
low], since the sensor signatures for the cases for
bothhighandlow fault levels are the same forA1

andA2. Hence, we can compute the diagnosabil-
ity measure∆(Ψ,Y) as 1

3 , since we can discrim-
inate only 2 out of 6 total faults.

7We can use other criteria for sensor selection, such
as cost, by identifying an objective function to opti-
mise during this sensor minimisation process.

8See [14] for justification of this approach.



A1 SR1 SR2 SP A2 SR1 SR2 SP

high 1 1 1 high 1 1 1
high 1 1 0 high 1 1 0
high 1 0 1 high 1 0 1

low 1 0 0 low 0 1 1
low 0 1 0 low 0 1 1
low 0 0 1 low 0 1 1

nominal 0 0 0 nominal 0 0 0

Table 1: Fault sensor matrix, with sensor signatures defined for the two fault types,A1 andA2.

6 Concluding Remarks

This article has presented a general framework
for computing system diagnosability for model-
based systems. This approach provides several
important advantages over existing approaches.
The model-based approach enables a user to de-
fine a range of levels of detail in a model and yet
still retain verification and diagnosability proper-
ties, facilitating trading off the cost of model con-
struction with the quality of fault isolation and re-
pair.
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